7/3/2013 Exam on Distributed Algorithms
2nd term (Mond Bet)

Solve 3 questions out of 4.
Exam's duration: 2 and half hours.

1) a) Describe Luby's reduction from $(\Delta+1)$-coloring to the MIS problem. Prove its correctness.
 Analyze it. (Given an alg. that solves MIS in graphs with n vs and max' degree Δ within $T(n,\Delta)$ time, how much time will one need to solve $(\Delta+1)$-coloring in such graphs?)
 b) Suppose we have an MIS algorithm for unoriented trees that solves the problem in n-vertex trees with maximum degree Δ in $T(n,\Delta)$ time. Can it be used in conjunction with Luby's reduction to solve $(\Delta+1)$-coloring
in unoriented trees? Explain your answer.

2) Describe a construction of \(n \)-vertex graphs \(G \) with girth \((G) = \Omega(k)\) and with \(\Omega(n^{1+\frac{1}{b}}) \) edges, for an arbitrary positive integer parameter \(b \). Prove its correctness.

What are the implications of this construction to lower bounds for spanners? Prove these implications.

3) Given an \(n \)-vertex graph with arboricity \(a \), describe an algorithm that computes a \((2a + O(a^{2/3}))\)-coloring of this graph as efficiently as possible. Analyze your algorithm and its running time.

(The algorithm should be distributed.)
4) In a weighted graph \(G = (V, E) \), \(w: E \rightarrow \mathbb{R}^+ \) is a weight function, for a spanning tree \(T \), the bottleneck of \(T \) is the weight of its heaviest edge. The \textit{min-bottleneck-spanning tree} of \(G \) is the spanning tree with minimum bottleneck.

Describe a time- and communication-efficient distributed algorithm for computing a \textit{min-bottleneck-spanning tree} of \(G \). Prove its correctness and analyze its running time.

\textit{Good Luck!}