
+ +

A Near-Optimal Distributed

Fully Dynamic Algorithm for
Maintaining Sparse Spanners

Michael Elkin

Ben-Gurion University

+ 1

+ +

The Message-Passing Model

• n processors reside in vertices

of an unweighted undirected

graph G = (V, E).

Each processor v has a unique Id I(v).

• Interconnected via links of E.

• Short messages (O(logn) bits).

• Unlimited computational power.

Local computation requires zero time.

+ 2

+ +

The Message-Passing Model
(Cont.)

Synchronous setting (for this talk).

• Communication in discrete rounds.

• Messages sent in the beginning of a round

R, arrive before the round R + 1 starts.

Running Time = #rounds.

Message Complexity = # messages.

+ 3

+ +

Dynamic Model

Edges and vertices may

appear or crash at will.

The weakest studied model.

(Weaker than controlled and

partially controlled dynamic models.)

• Endpoints of a crashing edge are notified

by a link-level protocol.

• A message is lost only if its edge crashes.

Motivation for the dynamic model:

real-life networks,

modern ad-hoc, sensor, wireless networks.

Primitive devices require simple algorithms!

+ 4

+ +

Quiescence Complexity

Topology updates cease occuring at time α.

β is the time when all vertices stop

processing updates. At this point

the algorithm maintains a correct structure.

Quiescence time = max{β − α}.

Quiescence message = # messages sent

within [α, β].

+ 5

+ +

Spanners

Spanners = skeletons that approximate

metric properties.

For t ≥ 1,

G′ = (V, H) is a t-spanner of G = (V, E), H ⊆ E,

if ∀ u, w ∈ V ,

distG ′(u, w) ≤ t · distG(u, w) .

+ 6

+ +

The Basic Tradeoff

[Peleg,Schaffer,89]

∀ graph ∀t ∃ O(t)-spanner

with O(n1+1/t) edges.

The best-known result

[Althofer,Das,Dobkin,Joseph,Soares,90] -

(2t− 1)-spanner of size O(n1+1/t).

An inherent tradeoff between the

stretch parameter and the number of edges.

Optimal under Erdos girth conjecture.

+ 7

+ +

Applications of Spanners

An underlying construct for many

distributed algorithms.

• Synchronization.

[Peleg,Ullman,89],

[Awerbuch,Peleg,90]

• Routing.

[Hassin,Peleg,99]

• Approximate Distances and

Shortest Paths Computation.

[Awerbuch,Berger,Cowen,Peleg,93],

[Elkin,01]

• Broadcast.

[Awerbuch,Goldreich,Peleg,Vainish,89],

[Awerbuch,Baratz,Peleg,92]

+ 8

+ +

Distributed Spanners

State-of-the-art distributed static algorithm.

[Baswana,Sen,03],

[Baswana,Kavitha,Mehlhorn,Pettie,05]

For t = 1,2, . . ., and n-vertex G,

constructs (2t− 1)-spanner with

expected O(t · n1+1/t) edges.

Time: O(t).

Message: O(|E| · t).

Space: O(deg(v) · log n).

Near-optimal tradeoff.

+ 9

+ +

Dynamic State-of-the-Art

[Baswana,Sen,03] composed with

the simulation technique of

[Awerbuch,Patt-Shamir,Peleg,Saks,92]:

(2t− 1)-spanner of expected size O(t · n1+1/t),

Quiescence time: O(t · log3 n).

Quiescence message: O(t · |E| · log3 n).

Space: O(deg(v) · log4 n).

Drawbacks of APSPS simulation technique:

Extremely complex (a reset procedure,

neighborhood covers, a bootstrap technique,

a local rollback).

Heavy local computations -

unsuitable for simple devices.

+ 10

+ +

Our Result

(2t− 1)-spanner of expected size O(t · n1+1/t).

Quiescence time: 3t instead of O(t · log3 n).

Note: t ≤ logn.

Quiescence message: worst-case O(|E| · t),

expected O(|E|).

Space: O(deg(v) · log n).

Expected local processing per edge: O(1).

Lower bound: 2t/3.

t− 1 under Erdos girth conjecture.

Better performance in purely incremental

and purely decremental settings.

In both algorithms: non-adaptive adversary,

oblivious to coin tosses.

+ 11

+ +

Additional Features of
our Algorithm

• Treatment time: If edges stop crashing

at time α, but are still allowed to appear,

then at time α + 3t the spanner takes care

of all edges present at time α.

Stronger than a bound on quiescence time!

• Incremental setting: bound of 2t.

If update set F is a matching,

quiescence time is 1!

• Decremental setting:

If update set is of size o(n1/t),

the expected quiescence time is 1 + o(1).

+ 12

+ +

Historyless Dynamic Algorithm

Standard approach: maintain history

of communication, undo operations

based on the history.

Very expensive in terms of local computation.

Unfeasible in wireless, sensor, ad-hoc networks.

Our approach: No history is stored!

Look for a “replacement” for crashing edges.

Undo operations, but the list-to-undo is

deduced from the current state of affairs.

Reminiscent of memoryless online algorithms.

+ 13

+ +

The Incremental Variant:
Initialization

Focus on incremental algorithm.

Set a parameter p ≈ n−1/t.

Each v picks a radius r = r(v) from

the truncated geometric distribution

IP(r = k) = pk · (1− p), for k ∈ [0, . . . , t− 2],

and IP(r = t− 1) = pt−1.

Memoryless distribution

IP(r ≥ k + 1 | r ≥ k) = p

for k ∈ [0,1, . . . , t− 2].

[Linial,Saks,92],[Bartal,96]

+ 14

+ +

Labels

Each v has a unique id I(v),

and a label P(v) = (B(P(v)), L(P(v))).

Initially, P(v)← (I(v),0).

P = (B(P), L(P)).

Implicitly, the algorithm maintains a tree cover.

(A set of not necessarily disjoint trees

that cover all vs.)

B(P) - the id of a tree τ to which

the vertex v labeled by P currently belongs.

L(P) - the distance between v and

the root of τ .

The vertex w = wP s.t. I(w) = B(P) is

the base vertex of P .

wP is the root of the tree B(P).

+ 15

r(wP) - maximum distance to which

B(P) = I(wP) is allowed to propagate.

The tree B(P) cannot be deeper than r(wP).

⇒ For each label P , L(P) ≤ r(wP).

A label P is selected if L(P) < r(wP).

In this case v may be

an internal vertex of the tree B(P).

For a label P ,

IP(P is selected) =

= P(r(wP) ≥ L(P) + 1 | r(wP) ≥ L(P)) ≤

≤ p ≈ 1/n1/t.

Probability of a label to reach level t− 1 is

IP(r = t− 1) = IP(r = t− 1 | r ≥ t− 2)·

IP(r ≥ t− 2 | r ≥ t− 3) · . . . · IP(r ≥ 1 | r ≥ 0) =

= pt−1 ≈
(

1
n1/t

)t−1
.

Hence, whp, the #labels of level t− 1

≈ n1/t.

Comparing labels:

P(v) ≻ P(v′) iff either

(L(v), B(v)) > (L(v′), B(v′)) or

(((L(v), B(v)) = (L(v′), B(v′))) ∧ (I(v) > I(v′))).

Vertices adopt labels from their neighbors.

When v adopts a label from u, it becomes its

child in the tree B(P), P = P(u).

When a label P is adopted, L(P) is

incremented, but B(P) stays unchanged.

v

u (B,L)

L

(B,L+1)

I(root) = B
root (B,0)

+ +

Data Structures

Every v maintains an edge set Sp(v).

Initially, Sp(v) = ∅.

Sp(v) grows monotonely.

Sp(v) = T(v) ∪ X (v).

T(v) - the tree edges of v.

X(v) - the cross edges of v.

An implicit construction of a tree cover.

Edges of the tree cover are stored in T(v)’s.

The spanner also has edges connecting

different trees. Those are edges of X(v)’s.

+ 16

+ +

Data Structures (Cont.)

For each vertex v, the algorithm

maintains a table M(v).

Initially, M(v) = ∅.

M(v) is the set of trees to which

v is already connected in the spanner.

v

u ze

e’

T

e’= (v,z) in X(v) ==> B(P(z)) in M(v)
B(P(z)) = B(P(u))

e can be dropped!

+ 17

+ +

The Algorithm
(for a vx v)

For 2t rounds from the beginning or

after detecting a new edge do

Go over all received messages and do

while ∃ message P(u) with P(u) ≻ P(v)

// adopt the label of u

if P(u) is selected

B(P(v))← B(P(u));

L(P(v))← L(P(u)) + 1;

add (v, u) to Sp(v); // to T(v)

else if B(P(u)) 6∈M(v)

add B(P(u)) to M(v);

add (v, u) to Sp(v); // to X(v)

end-if

end-while

Send to all neighbors the message P(v).

Remark: Testing whether P(u) is selected

is done by standard techniques.

+ 18

+ +

The Algorithm: Discussion

Very simple:

1. One type of messages.

2. The same behavior on each round.

3. A handful of local variables.

4. Basic data structures.

+ 19

+ +

Definition - Scanning an Edge

v scans e = (v, u) if P(u) passes

the while-loop condition of the vertex v.

It may happen that on a given round,

neither v nor u scan the edge (v, u).

(Due to different order in which

v and u process edges.)

+ 20

+ +

Example

At the beginning of a round,

P(v) ≻ P(u).

The vertex v considers the message P(u)

before all other messages,

and discovers that P(v) ≻ P(u).

Thus v does not scan e.

The vertex u considers first

another message P(z).

As a result u increases its label

to P ′(u) ≻ P(v) ≻ P(u),

and then considers the message P(v).

However, since P ′(u) ≻ P(v),

it does not scan e either.

So, neither v nor u

scan e on this round!

+ 21

+ +

Analysis - Scanning Edges

Lm: Every edge e = (v, u) is eventually scanned.

Pf: v increases its label ≤ t− 1 times.

The same applies for u.

Hence among 2t rounds

∃ round (other than the first)

on which neither v nor u increase their labels.

On this round either v or u scan e.

QED

+ 22

+ +

Analysis - Stretch

Lm: Suppose v was labeled by P

at some point.

Then ∃ path between wP and v

of length ≤ L(P) in
⋃

z∈V T(z).

Pf: Induction on L(P).

For v to get label P ,

it must have inserted an edge (v, u) into T(v),

s.t. L(P(u)) = L(P)− 1, B(P(u)) = B(P).

The induction hypothesis is applicable to u.

QED

Cor: If v used to be labeled by P ,

and v′ by P ′, and B(P) = B(P ′), then

∃ path of length ≤ L(P) + L(P ′) ≤ 2t− 2

between v and v′ in
⋃

z∈V T(z).

+ 23

+ +

Analysis - Stretch (Cont.)

Lm: If v scans e = (v, u),

from that point on ∃ path of length ≤ 2t− 1

between v and u in the spanner.

Pf:

If ((P(u) is selected) or (B(P(u)) 6∈M(v))),

e ∈ Sp(v), and we are done.

If ((P(u) is not selected) and (B(P(u)) ∈M(v))),

∃u′ s.t. u′ used to have label P ′

with B(P ′) = B(P(u)), and

e′ = (v, u′) ∈ X(v) ⊆ Sp(v).

⇓

∃ uu′-path of length ≤ 2t− 2

in the spanner, and

∃ uv-path of length ≤ 2t− 1. QED

+ 24

+ +

Local Processing

Õ(t · n1/t) space.

Maintain a data structure of

Õ(t · n1/t) base values.

Support existence and insertion queries.

Naively:

log Õ(t · n1/t) = O
(

logn
t + log logn

)

time-per-query whp.

(a balanced search tree (BST))

More sophisticatedly:

o(log logn) time-per-query whp.

(hash + BST in each entry).

Open question: O(1) whp?

+ 25

+ +

Summary

• Optimal solution for

the dynamic distributed spanner problem.

• Historyless paradigm for devising

dynamic distributed algorithms.

• Lower bound of Ω(t).

• Streaming algorithm.

• Centralized dynamic algorithm.

+ 26

+ +

Open Questions

• Applications for the dynamic

distributed spanners: Synchronization (?),

Routing (?), Online load balancing (?).

• Applications for the historyless paradigm.

• Achieve O(1) processing time-per-edge whp.

• Achieve spanner size of O(n1+1/t)

instead of O(t · n1+1/t)

(even for static model).

• Derandomize.

Less challenging - devise algorithm

for an adaptive adversary,

or for a non-oblivious one.

+ 27

