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Abstract. We present a streaming algorithm for constructing sparse
spanners and show that our algorithm out-performs significantly the
state-of-the-art algorithm for this task [20]. Specifically, the processing
time-per-edge of our algorithm is drastically smaller than that of the al-
gorithm of [20], and all other efficiency parameters of our algorithm are
no greater (and some of them are strictly smaller) than the respective
parameters for the state-of-the-art algorithm.

We also devise a fully dynamic centralized algorithm maintaining
sparse spanners. This algorithm has a very small incremental update
time, and a non-trivial decremental update time. To our knowledge, this
is the first fully dynamic centralized algorithm for maintaining sparse
spanners that provides non-trivial bounds on both incremental and decre-
mental update time for a wide range of stretch parameter t.

1 Introduction

The study of the streaming model became an important research area after the
seminal papers of Alon, Matias and Szegedy [1], and Feigenbaum et al. [21]
were published. More recently, research in the streaming model was extended to
traditional graph problems [8,19,18,20]. The input to a graph algorithm in the
streaming model is a sequence (or stream) of edges representing the edge set E
of the graph. This sequence can be an arbitrary permutation of the edge set E.

In this paper we devise a streaming algorithm for constructing sparse spanners
for unweighted undirected graphs. Informally, graph spanners can be thought of
as sparse skeletons of communication networks that approximate to a significant
extent the metric properties of the respective networks. Spanners serve as an un-
derlying graph-theoretic construct for a great variety of distributed algorithms.
Their most prominent applications include approximate distance computation
[15,18,14], synchronization [4,22,6], routing [23,7,26], and online load balancing
[5]. The problem of constructing spanners with various parameters is a subject
of intensive recent research [17,15,25,12,11,27,24,28].

The state-of-the-art streaming algorithm for computing a sparse spanner for
an input (unweighted undirected) n-vertex graph G = (V, E) was presented in a
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recent breakthrough paper of Feigenbaum et al. [20]. For an integer parameter
t ≥ 2, their algorithm, with high probability, constructs a (2t − 1)-spanner with
O(t · log n · n1+1/(t−1)) edges in one pass over the input using O(t · log2 n ·
n1+1/(t−1)) bits of space. It processes each edge in the stream in time O(t2 · log n ·
n1/(t−1)). Their result also immediately gives rise to a streaming algorithm for
(2t−1)-approximate all-pairs-distance-computation (henceforth, (2t−1)-APDC)
algorithm with the same parameters.

Our algorithm constructs a (2t − 1)-spanner with O((t · log n)1−1/t · n1+1/t)
edges in one pass over the input using O(t1−1/t · log2−1/t n ·n1+1/t) bits of space,
for an integer parameter t ≥ 1. (The size of the spanner and the number of bits
are with high probability.) Most importantly, the processing time-per-edge of our
algorithm is drastically smaller than that of Feigenbaum et al. [20]. Specifically,
the expectation of the processing time-per-edge in our algorithm is O(1), it is
O

(√
log log n

log(3) n

)
with high probability, and in the worst-case processing an edge

e = (v, u) requires O
(√

log deg(e)
log log deg(e)

)
, where deg(e) = max{deg(v), deg(u)}.

To summarize, our algorithm constructs a spanner with a smaller number of
edges and number of bits of space used (by a factor of n1/(t(t−1))(t · log n)1/t),
and it does so using a drastically reduced (and very close to optimal) processing
time-per-edge, at no price whatsoever. Our result also gives rise to an improved
streaming (2t − 1)-approximate APDC algorithm with the same parameters.
Observe also that for the stretch guarantee equal to 3, our algorithm is the first
one to provide a non-trivial bound. A concise comparison of our result with the
state-of-the-art result of Feigenbaum et al. [20] can be found in Table 1.

Independently of us Baswana [9] came up with a streaming algorithm for
computing sparse spanners. The efficiency parameters of the algorithm of [9] are
equal to those of our algorithm, except that it provides amortized bound of O(1)
on the processing time-per-edge. However, processing an individual edge by this
algorithm may require Ω(n) time in the worst-case, and [9] provides no guarantee
on the expectation of the processing time-per-edge. Also, the algorithm of [9]
appears to be significantly more complex than ours.

A variant of our algorithm can be seen as a fully dynamic centralized algo-
rithm for maintaining a (2t − 1)-spanner with O((t · log n)1−1/tn1+1/t) edges.
The incremental update time of this algorithm is exactly the processing time-
per-edge of our streaming algorithm, and, in fact, the way that the dynamic
algorithm processes incremental updates is identical to the way that our stream-
ing algorithm processes each edge of the stream. The expected decremental up-
date time (the time required to update the data structures of the algorithm
when an edge e is deleted) is O( m

n1/t · (t log n)1/t), and moreover, with prob-

ability at least 1 −
(

t·log n
n

)1/t

, the decremental update time is O
(√

h
log h

)
,

where h = max{log deg(e), log log n}. The size of the data structures maintained
by an incremental variant of our algorithm is O(t1−1/t · (log n)2−1/t · n1+1/t)
bits. To cope with decremental updates as well, our algorithm needs to main-
tain O(|E| · log n) bits. (Note that the incremental algorithm maintains data
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Table 1. A comparison between the algorithm of Feigenbaum et al. [20] and our new
streaming algorithm. The degree of an edge e = (u, v) is max{deg(v),deg(u)}. The
word “whp” stands for “with high probability”. The result of [20] applies for t ≥ 2,
while our algorithm applies for t ≥ 1.

# passes Processing Stretch # Edges
time-per-edge (whp)

[20] 1 whp O(t2 · log n · n1/(t−1)) 2t − 1 O(t · log n · n1+1/(t−1))

New 1 Expected O(1), 2t − 1 O((t · log n)1−1/t · n1+1/t)

whp O
(√

log log n

log(3) n

)
,

worst-case O
(√

log deg(e)
log log deg(e)

)

structures of overall size sublinear in the size of the input |E|. This is not really
surprising, since this is essentially a streaming algorithm.)

To our knowledge, this is the first fully dynamic centralized algorithm for
maintaining sparse spanners that provides non-trivial bounds for a wide range
of stretch parameter t. The first algorithm of this type was devised recently by
Ausillo et al. [3]. This algorithm maintains 3- and 5-spanners of optimal size
with O(n) amortized time per operation for an intermixed sequence of Ω(n)
edge insertions and deletions.

Very recently Baswana [10] improved the result of Ausillo et al. [3] and devised
a fully dynamic algorithm for maintaining spanners of optimal size with stretch
at most 6 with expected constant update time. Baswana [10] presented also
a decremental algorithm for maintaining (2t − 1)-spanner of optimal size with
expected update time of O(t2 · log2 n). However, the latter algorithm provides
no non-trivial bound for incremental update time. Also, note that with high
probability the decremental update time of our algorithm is significantly smaller
than that of [10].

Related Work and Our Techniques: A fully dynamic distributed algorithm
for maintaining sparse spanners is presented in the companion paper [16]. Our
algorithm in this paper combines the techniques of Feigenbaum et al. [20], of
Baswana and Sen [12], with those developed in [16].

More specifically, both the algorithm of Feigenbaum et al. [20] and our algo-
rithm build upon the techniques of Baswana and Sen [12]. Both algorithms label
vertices by numbers, and use the labels to decide whether a newcoming edge
needs to be inserted into the spanner or not. The main conceptual difference
between the two algorithms is that in the algorithm of Feigenbaum et al. [20]
for every vertex v, the entire list of labels L such that v was ever labeled by L
is stored. These lists are then manipulated in a rather sophisticated manner to
ensure that only the “right” edges end up in the spanner. On the other hand, in
our algorithm only one (current) label is stored for every vertex, and decisions
are made on the basis of this far more restricted information. As a result, our
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algorithm avoids manipulating lists of labels, and is, consequently, much simpler,
and far more efficient.

One could expect that using a smaller amount of information to make deci-
sions may result in a denser spanner, or/and in a spanner with a relaxed stretch
guarantee. Surprisingly, however, we show that this is not the case, and that the
parameters of spanners produced by our algorithm are better than the parame-
ters of spanners produced by the algorithm of Feigenbaum et al. [20].

Preliminaries: For a parameter α, α ≥ 1, a subgraph G′ of the graph G =
(V, E) is called an α-spanner of G if for every pair of vertices x, y ∈ V ,
distG′(x, y) ≤ α · distG(x, y), where distG(u, w) denotes the distance between
u and w in G. The parameter α is called the stretch or distortion parameter of
the spanner. Also, for a fixed value of t = 1, 2, . . ., we say that a subgraph G′

spans an edge e = (v, u) ∈ E, if distG′(v, u) ≤ 2t − 1.

Structure of this paper: In Section 2 we present and analyze our streaming
algorithm. In Section 3 we extend it to the dynamic centralized setting. Most
proofs are omitted from this extended abstract.

2 The Streaming Model

In this section we present and analyze the version of our algorithm that con-
structs spanners in the streaming model of computation.

2.1 The Algorithm

The algorithm accepts as input a stream of edges of the input graph G =
(V, E), and an integer positive parameter t, and constructs a (2t − 1)-spanner
G′ = (V, H), H ⊆ E, of G with O((t · log n)1−1/t · n1+1/t) edges using only
O(|H | · log n) = O(t1−1/t(log n)2−1/t · n1+1/t) bits of storage space, and process-
ing each edge in O(1) expected time, in one pass over the stream. Note that
the space used by the algorithm is linear in the size of the representation of the
spanner. Regarding the processing time-per-edge, processing the edge e requires

O
(√

log deg(e)
log log deg(e)

)
time in the worst-case, and moreover, with high probability,

the processing time-per-edge is O
(√

log log n

log(3) n

)
.

At the beginning of the execution (before the first edge of the stream arrives),
the vertices of V are assigned unique identifiers from the set {1, 2, . . . , n} = [n],
n = |V |. (Henceforth, for any positive integer k, the set {1, 2, . . . , k} is denoted
[k], and the set {0, 1, . . . , k} is denoted [(k)].) Let I(v) denote the identifier of
the vertex v. Also, as a part of preprocessing, the algorithm picks a non-negative
integer radius r(v) for every vertex v of the graph from the truncated geometric
probability distribution given by IP(r = k) = pk ·(1−p), for every k ∈ [(t−2)], and

IP(r = t − 1) = pt−1, with p =
(

t log n
n

)1/t

. Note that this distribution satisfies
IP(r ≥ k + 1 | r ≥ k) = p for every k ∈ [(t − 2)].
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We next introduce a few definitions that will be useful for the description of
our algorithm. During the execution, the algorithm maintains for every vertex
v the variable P (v), called the label of v, initialized as I(v). The labels of ver-
tices may grow as the execution proceeds, and they accept values from the set
{1, 2, . . . , n · t}. A label P in the range i · n + 1 ≤ P < (i + 1)n, for i ∈ [(t − 1)]
is said to be a label of level i; in this case we write L(P ) = i. The value B(P ) is
given by B(P ) = n if n divides P (v), and by B(P ) = P (v) (mod n), otherwise.
This value is called the base value of the label P . The vertex w = wP such that
I(w) = B(P ) is called the base vertex of the label P . A label P is said to exist
if the level L(P ) of P is no greater than the radius of the base vertex wP , i.e.,
L(P ) ≤ r(wP ). The label P is called selected if L(P ) < r(wP ). Note that for a
label P to be selected, it must satisfy L(P ) ≤ t − 2.

One of the basic primitives of the algorithm is comparing the labels. We say
that the labels P (v) and P (v′) of the vertices v and v′, respectively, satisfy the
relation P (v) � P (v′) if and only if either P (v) > P (v′) or (P (v) = P (v′) and
I(v) > I(v′)). Note that for every two vertices v and v′, either P (v) � P (v′) or
P (v′) � P (v).

For a label P of level t − 2 or smaller,

IP(P is selected) = IP(r(wP )) ≥ L(P ) + 1 | r(wP ) ≥ L(P )) = p .

Lemma 1. With high probability, the number of distinct labels of level t−1 that
occur in the algorithm is O(n1/t · (t · log n)1−1/t).

We remark that the way that we define and manipulate labels is closely related
to the way it is done in Feigenbaum et al. [20].

For every vertex the algorithm maintains an edge set Sp(v), initialized as an
empty set. During the execution the algorithm inserts some edges into Sp(v),
and never removes them. In other words, the sets Sp(v) grow monotonely during
the execution of the algorithm. It is useful to think of the sets Sp(v) as divided
into two disjoint subsets T (v) and X(v), Sp(v) = T (v) ∪ X(v). The set T (v) is
called the set of the tree edges of the vertex v, and the set X(v) is called the set
of the cross edges of the vertex v. During the execution the algorithm constructs
implicitly a tree cover of the graph. The edges of this tree cover are (implicitly)
maintained in the sets T (v). In addition, the spanner will also contain some
edges that connect different trees of the tree cover; these edges are (implicitly)
maintained in the sets X(v). Each edge e that is (implicitly) inserted into the
set T (v) will also be labeled by a label of v at the time of the insertion. An
insertion of an edge e = (v, u) into the set T (v) will cause v to change its label
to the label of u plus n, that is P (u)+ n. The edge e will also be labeled by this
label.

In addition, for every vertex v a table M(v) is maintained. These tables are
initially empty. Each table M(v) is used to store all the base values of levels
P such that there exists at least one neighbor z of v that was labeled by P at
some point of the execution of the algorithm, and such that the edge (v, z) was
inserted into the set X(v) at that point of the execution.
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The algorithm itself is very simple. It iteratively invokes the Procedure
Read Edge on every edge of the stream, until the stream is exhausted. At this
point it outputs the set

⋃
v Sp(v) =

⋃
v T (v)∪

⋃
v X(v) as the resulting spanner.

The Procedure Read Edge accepts as input an edge e = (u, v) that it is sup-
posed to “read”. The procedure finds the endpoint x of the edge e that has a
greater label P (x) (with respect to the order relation �). Suppose without loss
of generality that x = u, i.e., P (u) � P (v). Then the procedure tests whether
P (u) is a selected label. If it is, the edge e is inserted into the set of tree edges
T (v) of v, and v adapts the label P (u) + n. If P (u) is not a selected label, then
the procedure tests whether the base value B(P (u)) of the label P (u) is stored
in the table M(v). If it is not, then the edge e is inserted into the set X(v) of
the cross edges of v, and the label of v does not change. If P (u) is already stored
in M(v) then nothing needs to be done.

The pseudo-code of the Procedure Read Edge is provided below. Its main
difference from the description above is that the sets X(v) and T (v) are not
maintained explicitly, but rather instead there is just one set Sp(v) maintained.
The reason for this difference is that we aim to present the simplest version of
the algorithm for which we can prove the desired bounds. However, it is more
convenient to reason about the sets X(v) and T (v) explicitly, rather than about
the set Sp(v) as a whole, and thus in the analysis we will analyze the version
of the algorithm that maintains the sets T (v) and X(v) explicitly. (It is obvious
that the two versions are equivalent.)

Algorithm 1. The streaming algorithm for constructing a sparse (2t − 1)-
spanner, and Procedure Read Edge(e = (u, v)).

1. For all the edges e of the input stream
invoke Read Edge(e)

2. Let u be the vertex s.t. P (u) � P (v)
3. If (P (u) is a selected label) then

P (v) ← P (u) + n
Sp(v) ← Sp(v) ∪ {e}

else if (B(P (u)) 	∈ M(v)) then
M(v) ← M(v) ∪ {B(P (u))}
Sp(v) ← Sp(v) ∪ {e}

end-if

The set T (v) (resp., X(v)) is the set of edges inserted into the set Sp(v) on line
4 (resp., 7) of the Procedure Read Edge. We will say that an edge e is inserted
into T (v) (resp., X(v)) if it is inserted into Sp(v) on line 4 (resp., 7) of the
algorithm.

Note that the Procedure Read Edge is extremely simple, and the only oper-
ations that might require a super-constant time are lines 5 and 6, which require
testing a membership of an element in a data structure, and an insertion of an
element into the data structure if it is not there already. These operations can
be implemented very efficiently in a general scenario via a balanced search tree,
or a hash table. Moreover, we will also show later that with high probability,
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the size of each table is quite small, specifically Õ(n1/t), and thus, in our setting
these operations can be implemented even more efficiently.

2.2 The Size of the Spanner

We start with showing that the resulting spanner is sparse. For this end we show
that both sets

⋃
v∈V T (v) and

⋃
v∈V X(v) are sparse.

Lemma 2. For every vertex v ∈ V , |T (v)| ≤ t − 1.

Proof. Each time an edge e = (v, u) is inserted into T (v), the label of v grows
from P (v) to P (u) + n. Moreover, note that P (u) ≥ P (v) for such an edge.
Consequently, the level of P (v) grows at least by 1. Hence at any given time
of an execution of the algorithm, L(P (v)) is an upper bound on the number of
edges currently stored in T (v). Since L(P (v)) never grows beyond t−1, it follows
that |T (v)| ≤ t − 1.

Consequently, the set
⋃

v T (v) contains at most n · (t − 1) edges, i.e.,

|
⋃

v∈V

T (v)| ≤ n · (t − 1) . (1)

We next argue that the set
⋃

v∈V X(v) is sparse as well. First, by Lemma 1,
the number of distinct labels of level t − 1 that occur during the algorithm
is, with high probability, O(n1/t · (t · log n)1−1/t). Fix a vertex v ∈ V . Since,
by line 5 of Algorithm 1 for each such a label P at most one edge (u, v) with
P (u) = P � P (v) is inserted into X(v), it follows that the number of edges (u, v)
with P (u) � P (v), L(P (u)) = t−1, inserted into X(v), is, with high probability,
at most O(n1/t · (t · log n)1−1/t).

For an index i ∈ [(t − 1)], let X(i)(v) denote the set of edges (u, v), with
L(P (u)) < t − 1, inserted into X(v) during the period of time that L(P (v)) was
equal to i.

Lemma 3. X(t−1)(v) = ∅.

Cardinalities of the sets X(i)(v), 0 ≤ i ≤ t − 2, are small as well. (Though these
sets may be not empty.)

Lemma 4. For every input sequence of edges (e1, e2, . . . , em) determined oblivi-
ously of the coin tosses of the algorithm, for every vertex v, and index i ∈ [(t−2)],
with high probability, |X(i)(v)| = O

(
n1/t · log1−1/t n

t1/t

)
.

We are now ready to state the desired upper bound on |
⋃

v∈V X(v)|.

Corollary 1. Under the assumption of Lemma 4, for every vertex v ∈ V , with
high probability, the overall number of edges inserted into X(v) is O(n1/t · (t ·
log n)1−1/t).
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We summarize the size analysis of the spanner constructed by Algorithm 1 with
the following corollary.

Corollary 2. Under the assumptions of Lemma 4, with high probability, the
spanner H constructed by the algorithm contains O(n1+1/t · (t · log n)1−1/t)
edges. Moreover, each table M(v), v ∈ V , stores, with high probability, at most
O(n1/t · (t · log n)1−1/t) values, and consequently, overall the algorithm uses
O(|H | · log n) = O(n1+1/t · t1−1/t · (log n)2−1/t) bits of space.

Proof. The resulting spanner is
(⋃

v∈V T (v) ∪
⋃

v∈V X(v)
)
. By the inequality

(1), |
⋃

v∈V T (v)| ≤ n·(t−1). By Corollary 1, with high probability, |
⋃

v∈V X(v)|
= O(n1+1/t · (t · log n)1−1/t), and so the first assertion of the corollary follows.

For the second assertion recall that a new value is added to M(v) only when
a new edge (u, v) is introduced into the set X(v). By Corollary 1, with high
probability, |X(v)| = O(n1/t · (t · log n)1−1/t), and therefore the same bound
applies for |M(v)| as well.

To calculate the overall size of the data structures used by the algorithms we
note that |

⋃
v∈V M(v)| ≤ |

⋃
v∈V X(v)| ≤ |

⋃
v∈V X(v)| + |

⋃
v∈V T (v)| =

O(|H |). Since each label and edge requires O(log n) bits to represent, the desired
upper bound on the size of the data structures follows.

2.3 The Stretch Guarantee of the Spanner

We next show that the subgraph constructed by the algorithm is a (2t − 1)-
spanner of the original graph G.

For an integer k ≥ 1, and a vertex v ∈ V , let Pk(v) denote the label of v,
P (v), before reading the kth edge of the input stream.

Lemma 5. Let v, v′ ∈ V be a pair of vertices such that there exist positive inte-
gers k, k′ ≥ 1 such that B(Pk(v)) = B(Pk′ (v′)). Then there exists a path of length
at most L(Pk(v)) + L(Pk′(v′)) between v and v′ in the (final) set

⋃
v∈V T (v).

The next lemma shows that the edge set H =
⋃

v∈V T (v) ∪
⋃

v∈V X(v) is a
(2t − 1)-spanner.

Lemma 6. Let e = (v, v′) ∈ E be an edge. Then there exists a path of length at
most 2t − 1 between v and v′ in the edge set H.

2.4 The Processing Time-per-Edge

To conclude the analysis of our streaming algorithm for constructing sparse span-
ners, we show that it has a very small processing time-per-edge. For this purpose
we now fill in a few implementation details that have so far been unspecified.
Specifically, on lines 5 and 6 of the Procedure Read Edge the algorithm tests
whether an element B belongs to a set M(v), and if it does not, the algorithm
inserts it there. The set M(v) is a subset of the universe [n], and by Corol-
lary 2, its size is, with high probability, O((t · log n)1−1/t · n1/t). Moreover, since
|M(v)| ≤ |X(v)|, it follows that |M(v)| ≤ deg(v).
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Let N = c · (t · log n)1−1/t · n1/t, for a sufficiently large constant c. (The
probability that |M(v)| ≤ c · (t · log n)1−1/t · n1/t for every vertex v ∈ V is at
least 1− 1

nc−2 . Hence choosing c = 4 is sufficient.) As a part of preprocessing the
algorithm computes a random hash function h : [n] → [N ]. Specifically, for each
number i ∈ [n], the algorithm picks a value j ∈ [N ] uniformly at random, and
sets h(i) = j. The table representation of this hash function is written down,
and is used throughout the execution of the algorithm for the tables M(v) for
all the vertices v ∈ V . This representation requires O(n · log n) space, and can
be computed in O(n) time during the preprocessing.

For every vertex v the algorithm maintains a hash table M(v) of size N . Every
base value B for which the algorithm needs to test its membership in M(v) on
line 5 of the Procedure Read Edge is hashed to h(B) using the hash function h.
To resolve collisions, for each entry of the hash table M(v) we use a dynamic
dictionary data structure of Beame and Fich [13] (with the dynamization result
of Andersson and Thorup [2]). This data structure maintains a dynamic set of

q keys from an arbitrary universe using O
(√

log q
log log q

)
time per update (inser-

tion or deletion) and membership queries. This completes the description of the
implementation details of the algorithm.

Note that the preprocessing of the algorithm requires O(n) time. In the full
version of this paper we show that implemented this way, the algorithm enjoys
an extremely low processing time-per-edge.

The properties of our streaming algorithm are summarized in the following
theorem.

Let λ(n) (respectively, σ(n)) denote the function
√

log log n
log(3) n

(resp.,
√

log n
log log n ).

Theorem 1. Let n, t, n ≥ t ≥ 1, be positive integers. Consider an execution
of our algorithm in the streaming model on an input (unweighted undirected)
n-vertex graph G = (V, E) such that both the graph and the ordering ρ of its
edges are chosen by a non-adaptive adversary obliviously of the coin tosses of
the algorithm. The algorithm constructs a (2t−1)-spanner H of the input graph.
The expected size of the spanner is O(t · n1+1/t) or the size of the spanner is
O((t · log n)1−1/t · n1+1/t) with high probability (depending on the choice of p;
in the first case the guarantee on the size that holds with high probability is
O(t · log n · n1+1/t)). The algorithm does so in one pass over the input stream,
and requires O(1) expected processing time-per-edge, O(λ(n)) processing time-
per-edge with high probability, and O(σ(deg (e))) processing time-per-edge in the
worst-case, for an edge e = (v, u). The space used by the algorithm is O(|H | ·
log n) = O(t1−1/t · log2−1/t n · n1/t) bits with high probability. The preprocessing
of the algorithm requires O(n) time.

Our algorithm can be easily adapted to construct a (2t − 1)(1 + ε)-spanners
for weighted graphs, for an arbitrary ε > 0. The size of the obtained spanner
becomes O(log(1+ε) ω̂ · (t · log n)1−1/t · n1+1/t), where ω̂ is the aspect ratio of
the network. The algorithm still works in one pass, and has the same processing
time-per-edge. This adaptation is achieved in a standard way (see, e.g., [20]), by
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constructing log(1+ε) ω̂ different spanners in parallel. For completeness, we next
overview this adaptation.

The edge weights can be scaled so that they are all greater or equal to 1
and smaller or equal to ω̂. All edges are partitioned logically into �log(1+ε) ω̂
categories, indexed i = 1, 2, . . . , �log(1+ε) ω̂, according to their weights, with the
category i containing the edges with weights greater of equal to (1 + ε)i−1 and
smaller than (1 + ε)i. When an edge e = (u, v) is read, it is processed according
to its category, and it is either inserted into the spanner for the edges of category
i, or discarded.

Obviously, after reading all the edges, we end up with �log(1+ε) ω̂ subgraphs,
with the ith subgraph being a (2t−1)(1+ε)-spanner for the edges of the category
i. Consequently, the union of all these edges is a (2t − 1)(1 + ε)-spanner for
the entire graph. The cardinality of this union is at most �log(1+ε) ω̂ times
the maximum cardinality of one of these subgraphs, which is, in turn, at most
O((t · log n)1−1/t · n1+1/t) with high probability.

3 A Centralized Dynamic Algorithm

Our streaming algorithm can be seen as an incremental dynamic algorithm for
maintaining a (2t − 1)-spanner of size O((t · log n)1−1/t · n1+1/t) for unweighted
graphs, where n is an upper bound on the number of vertices that are allowed
to appear in the graph.

The initialization of the algorithm is as follows. Given a graph G = (V, E),
we run our streaming algorithm with the edge set E, where the order in which
the edge set is read is arbitrary. As a result, the spanner, and the satellite data
structures {M(v),Sp(v) | v ∈ V } are constructed. This requires O(|E|) expected
time, O(|E|·λ(n)) time with high probability, and O(|E|·σ(Δ)) in the worst-case,
where Δ is the maximum degree of a vertex in G.

Each edge that is added to the graph is processed using our streaming algo-
rithm. The spanner and the satellite data structures are updated in expected
O(1) time-per-edge, O(λ(n)) time-per-edge with high probability, and O(σ(Δ))
time in the worst-case.

We next make the algorithm robust to decremental updates (henceforth,
crashes) as well. Note that for an edge e = (v, u) to become a T -edge (an edge of⋃

x∈V T (x)), it must hold that at the time that the algorithm reads the edge, the
greater of the two labels P (u) and P (v) (with respect to the order relation �)

is selected. The probability of a label to be selected is at most p =
(

t·log n
n

)1/t

if its level is smaller than t − 1, and is 0 otherwise. Hence the probability of e to
become a T -edge is at most p.

In the companion paper [16] it is shown that a crash of an edge e = (v, u) that
does not belong to

⋃
x∈V T (x) can be processed in expected time O(1). Moreover,

with high probability the processing of such a crash requires σ(h) time, where h =
max{deg(e), log n}. Since the entire spanner can be recomputed in expected time
O(|E|) by our algorithm, it follows that the expected decremental update time of



726 M. Elkin

our algorithm is O( |E|
n1/t · (t · logn)1/t). The size of the data structure maintained

by the incremental variant of the algorithm is O(t1−1/t ·(log n)2−1/t ·n1+1/t) bits,
and the fully dynamic algorithm maintains a data structure of size O(|E| · log n).

We summarize this discussion with a following corollary.

Corollary 3. For positive integer n, t, n ≥ t ≥ 1, the algorithm is a fully dy-
namic algorithm for maintaining (2t − 1)-spanners with expected O(t · n1+1/t)
number of edges (or O((t log n)1−1/t ·n1+1/t) edges with high probability, depend-
ing on the choice of p) for graphs with at most n vertices. If G = (V, E) is the ini-
tial graph, then the initialization of the algorithm requires O(|E|) expected time,
O(|E| ·λ(n)) time with high probability, and O(|E| ·σ(Δ)) in the worst-case. The
expected incremental update time of the algorithm is O(1), with high probability
it is O(λ(n)), and in the worst-case it is O(σ(deg (e))) (for an edge e that joins
the graph). The expected decremental update time is O( |E|

n1/t · (t · log n)1/t), and

with probability at least 1 −
(

t·log n
n

)1/t

the decremental update time is O(σ(h)),
where h = max{deg(e), log n}.

To our knowledge, this is the first fully dynamic algorithm for maintaining sparse
spanners for a wide range of values of the stretch parameter t with non-trivial
guarantees on both the incremental and decremental update times.
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