## Lectures 5: Statistical inference

Statistical Methods for Natural Language Processing Fredrik Engström

February 14, 2011

## Summary of lecture 4

- $H[X]=E\left[\log \frac{1}{p x}\right]$.
- $H(X, Y)=E\left[\frac{1}{\log p(X, y)}\right]$
- $H(Y \mid X)=\sum_{x} p(X) H(Y \mid X=x)$
- $H(X, Y)=H(X)+H(Y \mid X)$


## Mutual information

## Definition

$$
\begin{gathered}
I(X ; Y)=H(X)-H(X \mid Y) \\
I(X ; Y)=\sum_{x, Y} p(x, y) \log \frac{p(x, y)}{p_{X}(x) p_{Y}(y)} \\
I(X ; Y)=E\left[\log \frac{p(x, y)}{p_{X}(x) p_{Y}(y)}\right]=E\left[\log \frac{p(x \mid y)}{p_{X}(x)}\right] \\
I(X ; Y)=0 \text { iff } X \text { and } Y \text { are independent } \\
I(X ; X)=H(X)
\end{gathered}
$$

## Cross entropy

## Definition

The cross-entropy between $p$ and $q$ is

$$
\sum_{x} p(x) \log \frac{1}{q(x)}
$$

Often $p$ is the true distribution of some variable $X$ and $q$ is a model of $p$.

## Statistical inference

Given a random variable $X$ we say that a sequence of $\left(X_{1}, \ldots, X_{k}\right)$ of independent random variables, each with the same distribution as $X$, is a sample of $X$.
A sequence of values $\left(x_{1}, \ldots, x_{k}\right)$ such that $X_{i}=x_{i}$ in some experiment is called a statistical material.
Examples: Dice rolling.
Statistical inference: Draw general conclusions (about a population) from a small sample.

## Maximum likelihood

- Two bowls of red and white marbles.
- Bowl 1: 10 red and 10 white.
- Bowl 2: 20 red.

Example: Dice from above. n-grams.
Given some statistical material $x_{1}, \ldots, x_{k}$ and some parameters $\theta$.

$$
P\left(x_{1}, \ldots, x_{k} \mid \theta\right)=\prod P_{\theta}\left(X_{i}=x_{i}\right)
$$

Maximum likelihood estimation (MLE): choose $\theta$ to maximize $P\left(x_{1}, \ldots, x_{k} \mid \theta\right)$.Smoothing:

- "add one" / Laplace's law: add one to frequency function to get some probabilities even for non appearing tokens.
- "add one half" / Jeffreys-Perks law: add one half to frequency function.
Example: bigrams.


## Bayesian updating

- Two bowls of red and white marbles.
- Bowl 1: 10 red and 10 white.
- Bowl 2: 20 red.

Picks bowl 1 with probability $p=\frac{9}{10}$.
Example: Hit-and-run.

$$
P(H \mid E)=\frac{P(E \mid H)}{P(E)} P(H)
$$

- Prior probability: $P(H)$
- Posterior probability: $P(H \mid E)$

Choose $\theta$ maximizing

$$
P\left(\theta \mid x_{1}, \ldots, x_{k}\right)=\frac{P\left(x_{1}, \ldots, x_{k} \mid \theta\right) P(\theta)}{P\left(x_{1}, \ldots, x_{k}\right)}
$$

Bayes decision: Choose $s$ if $P(s \mid d) \geq P\left(s^{\prime} \mid d\right)$ for $s^{\prime} \neq s$.

## Summary

- $I(X ; Y)=H(X)-H(X \mid Y)$
- The cross-entropy between $p$ and $q$ is

$$
\sum_{x} p(x) \log \frac{1}{q(x)}
$$

- MLE: Maximize $P\left(x_{1}, \ldots, x_{k} \mid \theta\right)$
- Needs smoothing with sparse data.
- Bayesian: Maximize $P\left(\theta \mid x_{1}, \ldots, x_{k}\right)$. Same as maximizing $P\left(x_{1}, \ldots, x_{k} \mid \theta\right) P(\theta)$

