Lectures 4: Information theory

Statistical Methods for Natural Language Processing Fredrik Engström

February 9, 2011

Summary of lecture 3

- Random variable $X: \Omega \rightarrow \mathbb{R}$.
- Expected value/mean: $E[X]=\sum x p(x)$.
- Joint and conditional: $p(x \mid y)=p(x, y) / p_{Y}(y)$.
- Independence: $p(x, y)=p_{X}(x) p_{Y}(y)$.
- Variance: $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- Binomial coefficients: $\binom{n}{k}$
- Distributions: Uniform / Binomial.

Binomial distribution

Let say we have an alphabet of five letters. How many words of length three are there?

$$
5^{3}
$$

How many words of length three without repetition are there?

$$
5 \cdot 4 \cdot 3=\frac{5!}{2!}
$$

How many "bags" consisting of three different letters are there?

$$
\begin{aligned}
\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} & =\frac{5!}{2!\cdot 3!}=\binom{5}{3} \\
\binom{n}{k} & =\frac{n!}{(n-k)!k!}
\end{aligned}
$$

Binomial distribution cont.

Example: Coin tosses (number of heads). Fair/Unfair coin.

$$
\begin{gathered}
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E[X]=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p \\
\operatorname{Var}[X]=\sum_{k=0}^{n}(k-n p)^{2} \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p(1-p)
\end{gathered}
$$

Huffman coding

Problem: Code the following message into 0 and 1 such that it has as small length as possible. (Compression) go go gophers Eight characters (including space).

char	code	binary
g	0	000
o	1	001
p	2	010
h	3	011
e	4	100
r	5	101
s	6	110
space	7	111

000001111000001111000001010011100101110
$13 \cdot 3=39$ bits

Huffman coding, cont.

Idea: More frequent letters get shorter codes. Three: g o. Two: space. The rest are singular.

char	binary
g	10
o	11
p	0100
h	0101
e	0110
r	0111
s	000
space	001

1011001101100110110100010101100111000
37 bits

Huffman coding, cont.

Huffman coding, cont.

$$
P(X=a)=\frac{1}{8}, P(X=b)=\frac{1}{8}, P(X=c)=\frac{1}{4}, P(X=d)=\frac{1}{2}
$$

char	binary
a	000
b	001
c	01
d	1

Average number of bits per letter:

$$
\frac{1}{8} 3+\frac{1}{8} 3+\frac{1}{4} 2+\frac{1}{2} 1=\frac{7}{4}=1.75
$$

Observe that the number of bits in the code is $\log \frac{1}{p}$, where p is the probability.

$$
\sum_{x} p(x) \log \frac{1}{p(x)}=E\left[\log \frac{1}{p}\right]
$$

Huffman coding is optimal.

Entropy

Intuition: Entropy = Information content.
Example: 4-sided die fair/unfair.

Definition

The entropy of a random variable X is

$$
H[X]=E\left[\log \frac{1}{p_{X}}\right] .
$$

Example: n-sided die. Determined.
If $p(x)=\frac{1}{2^{k}}$ then the average number of bits per letter in Huffman coding $=H(p)$.

Joint and conditional entropy

Definition

$$
H(X, Y)=E\left[\frac{1}{\log p(x, y)}\right]
$$

Definition

$$
H(Y \mid X)=\sum_{x} p(x) H(Y \mid X=x)
$$

Chain rule: $H(X, Y)=H(X)+H(Y \mid X)$.

$$
H(Y \mid X)=H(X, Y)-H(X)
$$

Summary

- $H[X]=E\left[\log \frac{1}{p_{X}}\right]$.
- $H(X, Y)=E\left[\frac{1}{\log p(x, y)}\right]$
- $H(Y \mid X)=\sum_{x} p(x) H(Y \mid X=x)$
- $H(X, Y)=H(X)+H(Y \mid X)$

