Lectures 4: Information theory

Statistical Methods for Natural Language Processing Fredrik Engström

February 9, 2011

Lectures 4: Information theory

Statistical Methods for Natural Language Processing Fredrik Engström

Summary of lecture 3

- Random variable $X : \Omega \to \mathbb{R}$.
- Expected value/mean: $E[X] = \sum xp(x)$.
- Joint and conditional: $p(x|y) = p(x, y)/p_Y(y)$.
- Independence: $p(x, y) = p_X(x)p_Y(y)$.
- Variance: $Var(X) = E[(X \mu)^2].$
- Binomial coefficients: $\binom{n}{k}$
- Distributions: Uniform / Binomial.

Binomial distribution

Let say we have an alphabet of five letters. How many words of length three are there?

5³

How many words of length three without repetition are there?

$$5 \cdot 4 \cdot 3 = \frac{5!}{2!}$$

How many "bags" consisting of three different letters are there?

$$\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = \frac{5!}{2! \cdot 3!} = \binom{5}{3}$$
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Lectures 4: Information theory

Statistical Methods for Natural Language Processing Fredrik Engström

Binomial distribution cont.

Example: Coin tosses (number of heads). Fair/Unfair coin.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$E[X] = \sum_{k=0}^{n} k \cdot {\binom{n}{k}} p^{k} (1-p)^{n-k} = np$$

$$\operatorname{Var}[X] = \sum_{k=0}^{n} (k - np)^2 \cdot \binom{n}{k} p^k (1 - p)^{n-k} = np(1 - p)$$

Huffman coding

Problem: Code the following message into 0 and 1 such that it has as small length as possible. (Compression) go go gophers Eight characters (including space).

char	code	binary
g	0	000
0	1	001
р	2	010
h	3	011
е	4	100
r	5	101
s	6	110
space	7	111

000001111000001111000001010011100101110 $13 \cdot 3 = 39$ bits

Huffman coding, cont.

Idea: More frequent letters get shorter codes. Three: g o. Two: space. The rest are singular.

char	binary
g	10
0	11
р	0100
h	0101
е	0110
r	0111
s	000
space	001

101100110110011011010010101100111000 37 bits

Huffman coding, cont.

Huffman coding, cont.

$$P(X = a) = \frac{1}{8}, P(X = b) = \frac{1}{8}, P(X = c) = \frac{1}{4}, P(X = d) = \frac{1}{2}.$$

char	binary
а	000
b	001
с	01
d	1

Average number of bits per letter:

$$\frac{1}{8}3 + \frac{1}{8}3 + \frac{1}{4}2 + \frac{1}{2}1 = \frac{7}{4} = 1.75$$

Observe that the number of bits in the code is $\log \frac{1}{p}$, where p is the probability.

$$\sum_{x} p(x) \log \frac{1}{p(x)} = E[\log \frac{1}{p}]$$

Huffman coding is optimal.

Entropy

Intuition: Entropy = Information content. Example: 4-sided die fair/unfair.

Definition

The **entropy** of a random variable X is

$$H[X] = E[\log \frac{1}{p_X}].$$

Example: *n*-sided die. Determined. If $p(x) = \frac{1}{2^k}$ then the average number of bits per letter in Huffman coding = H(p).

Joint and conditional entropy

Definition

$$H(X, Y) = E[\frac{1}{\log p(x, y)}]$$

Definition

$$H(Y|X) = \sum_{x} p(x)H(Y|X=x)$$

Chain rule: H(X, Y) = H(X) + H(Y|X).

$$H(Y|X) = H(X, Y) - H(X)$$

Summary

- $H[X] = E[\log \frac{1}{p_X}].$
- $H(X, Y) = E[\frac{1}{\log p(x,y)}]$
- $H(Y|X) = \sum_{x} p(x)H(Y|X=x)$
- H(X, Y) = H(X) + H(Y|X)