Lectures 3: Random variables

Statistical Methods for Natural Language Processing Fredrik Engström

February 7, 2011

Summary of lecture 2

- P satisfies:
- $0 \leq P(A) \leq 1$,
- $P(\Omega)=1$,
- $P(A \cup B)=P(A)+P(B)$ whenever $A \cap B=\emptyset$.
- $P(A \mid B)=P(A \cap B) / P(B)$
- $P(A \mid B)=P(B \mid A) P(A) / P(B)$.
- A and B are independent if $P(A \cap B)=P(A) P(B)$.

Stochastic variables

Intuition: A variable depending on some random process.
Example: The sum of two dice. Number of letters in words.

Definition

A stochastic variable (or random variable) is a function from the sample space Ω to \mathbb{R}.

Given a stochastic variable X we can define the frequency function or the probability mass function (pmf) p as follows:

$$
p(x)=P\left(A_{x}\right)
$$

where A_{x} is the event of all a:s such that $X(a)=x$.

$$
p_{X}(x)=P(X=x)=p(x)
$$

Intuition: $p(x)$ is the probability that X has value x.
Example: Rolling two dice.

Expected value

Definition

The expected value of a random variable X is

$$
E[X]=\sum_{x \in \mathbb{R}} x p(x)
$$

Digress: The summation sign.
Examples: Dice.
Assume $Y=g(X)$ then

$$
E[Y]=E[g(X)]=\sum_{y \in \mathbb{R}} y p_{Y}(y)=\sum_{x \in \mathbb{R}} g(x) p_{X}(x)
$$

Thus, for example $E[5 X]=5 E[X]$ and $E[X+5]=E[X]+5$.

Joint and conditional distributions

$(X, Y): \Omega \rightarrow \mathbb{R}^{2}$, almost a random variable. (Two dimensional.)

Definition

$$
p(x, y)=P(\{\omega \in \Omega \mid X(\omega)=x \text { and } Y(\omega)=y\}) .
$$

Example: Two dice. pos-tagged words.

Definition

$$
p(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}
$$

$$
E[X+Y]=E[X]+E[Y]
$$

Example: Roll two dice.

Independence

Definition

X and Y are independent if $p(x, y)=p_{X}(x) p_{Y}(y)$.
I.e., iff $P(X=x, Y=y)=P(X=x) P(Y=y)$.

Example: The sum of two dice and the value of the first. Number of letters and noun.

Variance

Definition

The variance of a random variable X is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

where $\mu=E[X]$.
Intuition: The expected value of the (squared) distance from mean.
Example: Rolling one n-die (uniform distribution): $E[X]=\frac{1+n}{2}$
$\operatorname{Var}(X)=\frac{n^{2}-1}{12}$
Example: The sum of two dice.
$\operatorname{Var}(X)=E\left[X^{2}\right]-E^{2}[X]$.

Binomial distribution

Let say we have an alphabet of five letters. How many words of length three are there?

$$
5^{3}
$$

How many words of length three without repetition are there?

$$
5 \cdot 4 \cdot 3=\frac{5!}{2!}
$$

How many "bags" consisting of three different letters are there?

$$
\begin{aligned}
\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} & =\frac{5!}{2!\cdot 3!}=\binom{5}{3} \\
\binom{n}{k} & =\frac{n!}{(n-k)!k!}
\end{aligned}
$$

Binomial distribution cont.

Example: Coin tosses (number of heads). Fair/Unfair coin.

$$
\begin{gathered}
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E[X]=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p \\
\operatorname{Var}[X]=\sum_{k=0}^{n}(k-n p)^{2} \cdot\binom{n}{k} p^{k}(1-p)^{n-k}=n p(1-p)
\end{gathered}
$$

Summary

- Random variable $X: \Omega \rightarrow \mathbb{R}$.
- Expected value/mean: $E[X]=\sum x p(x)$.
- Joint and conditional: $p(x \mid y)=p(x, y) / p_{Y}(y)$.
- Independence: $p(x, y)=p_{X}(x) p_{Y}(y)$.
- Variance: $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- Binomial coefficients: $\binom{n}{k}$
- Distributions: Uniform / Binomial.

