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Summary of lecture 2

• P satisfies:
• 0 � P(A) � 1,
• P(Ω) = 1,
• P(A [ B) = P(A) + P(B) whenever A \ B = ;.

• P(AjB) = P(A \ B)=P(B)

• P(AjB) = P(BjA)P(A)=P(B).
• A and B are independent if P(A \ B) = P(A)P(B).
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Stochastic variables
Intuition: A variable depending on some random process.
Example: The sum of two dice. Number of letters in words.

Definition
A stochastic variable (or random variable) is a function from
the sample space Ω to R.

Given a stochastic variable X we can define the frequency
function or the probability mass function (pmf) p as follows:

p(x) = P(Ax);

where Ax is the event of all a:s such that X (a) = x .

pX (x) = P(X = x) = p(x):

Intuition: p(x) is the probability that X has value x .
Example: Rolling two dice.
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Expected value

Definition
The expected value of a random variable X is

E [X ] =
X
x2R

xp(x):

Digress: The summation sign.
Examples: Dice.
Assume Y = g(X ) then

E [Y ] = E [g(X )] =
X
y2R

ypY (y) =
X
x2R

g(x)pX (x)

Thus, for example E [5X ] = 5E [X ] and E [X + 5] = E [X ] + 5.
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Joint and conditional distributions
(X ;Y ) : Ω ! R2, almost a random variable. (Two dimensional.)

Definition

p(x ; y) = P(f! 2 Ω j X (!) = x and Y (!) = y g):

Example: Two dice. pos-tagged words.

Definition

p(x jy) =
p(x ; y)

pY (y)

E [X + Y ] = E [X ] + E [Y ]

Example: Roll two dice.
Lectures 3: Random variables Statistical Methods for Natural Language Processing Fredrik Engström



Independence

Definition
X and Y are independent if p(x ; y) = pX (x)pY (y).

I.e., iff P(X = x ;Y = y) = P(X = x)P(Y = y).
Example: The sum of two dice and the value of the first. Number
of letters and noun.
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Variance

Definition
The variance of a random variable X is

Var(X ) = E [(X � �)2];

where � = E [X ].

Intuition: The expected value of the (squared) distance from mean.
Example: Rolling one n-die (uniform distribution): E [X ] = 1+n

2
Var(X ) = n2

�1
12

Example: The sum of two dice.
Var(X ) = E [X 2] � E 2[X ].
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Binomial distribution
Let say we have an alphabet of five letters.
How many words of length three are there?

53

How many words of length three without repetition are there?

5 � 4 � 3 =
5!

2!

How many “bags” consisting of three different letters are there?

5 � 4 � 3
3 � 2 � 1

=
5!

2! � 3!
=

 
5
3

!

 
n
k

!
=

n!

(n � k)!k!
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Binomial distribution cont.

Example: Coin tosses (number of heads). Fair/Unfair coin.

pX (k) =

 
n
k

!
pk(1� p)n�k

E [X ] =
nX

k=0

k �

 
n
k

!
pk(1� p)n�k = np

Var[X ] =
nX

k=0

(k � np)2 �

 
n
k

!
pk(1� p)n�k = np(1� p)
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Summary

• Random variable X : Ω ! R.
• Expected value/mean: E [X ] =

P
xp(x).

• Joint and conditional: p(x jy) = p(x ; y)=pY (y).
• Independence: p(x ; y) = pX (x)pY (y).
• Variance: Var(X ) = E [(X � �)2].
• Binomial coefficients:

�n
k
�

• Distributions: Uniform / Binomial.
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