# Lectures 2-6: The mathematical stuff 

Statistical Methods for Natural Language Processing Fredrik Engström

February 3, 2011

## Presentation

Fredrik Engström
email: fredrik.engstrom@gu.se phone: 031 - 7866335

- Lecture 2: Basic probability theory
- Lecture 3: Bayesian updating + Random variables
- Lecture 4: Random variabels + Information theory
- Exercise session 1:
- Lecture 5: Statistical inference
- Lecture 6: (Hidden) Markov chains
- Exercise session 2:


## Preliminary example: The hit-and-run

- Two taxi companies, one with green and one with blue cars.
- $85 \%$ of all the taxi cars are blue.
- A person witnesses a hit-and-run accident involving a taxi car.
- The witness observes a green car.
- Turns out that the witness has a reliability of $80 \%$ of determining the right color of a car.

What is the probability that the car was green?

## Set theory

See http://en.wikipedia.org/wiki/Set_(mathematics).

- A set is a collection of objects (abstract or concrete).
- Examples: $\{5,32,9\}$, $\{$ hej, vem, $j \mathrm{ag}\}$.
- $a \in A$
- Unordered. Without repetitions. $\{5,32,9\}=\{32,9,32,5,9\}$
- Subset
- Union
- Intersection
- Emptyset
- Set difference / Complement
- Singletons not equal to its element.
- disjoint union and partition


## Probabilities properly

- $\Omega$ is the sample set. (Set of outcomes.)
- Events are subsets of $\Omega$.
- A probability function $P$ assigns probabilities to events.
- $P(A)$ is the probability of the event $A$.
- $P$ has to be such that:
- $0 \leq P(A) \leq 1$ for every event $A$.
- $P(\Omega)=1$
- $P(A \cup B)=P(A)+P(B)$ if $A$ and $B$ are disjoint, i.e., $A \cap B=\emptyset$.
(The axioms of a probability function.)
Examples: Two coin tosses. A man with two children.


## Conditional probabilities

## Definition

If $P(B) \neq 0$ then

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)}
$$

$$
P(A \mid B) P(B)=P(A \cap B)=P(B \mid A) P(A)
$$

## Theorem (Bayes theorem)

If $P(A) \neq 0$ then

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

## Dependence / Independence

Intuition: Two events $A$ and $B$ are independent if the probability of $A$ does not depend on whatever assuming $B$ or not:

$$
P(A \mid B)=P(A)
$$

## Definition

$A$ and $B$ are independent if $P(A \cap B)=P(A) P(B)$.
(This definition works even for $P(A)=P(B)=0$.)
Example: pos-tagged words. Rolling a die.

## Summary

- $P$ satisfies:
- $0 \leq P(A) \leq 1$,
- $P(\Omega)=1$,
- $P(A \cup B)=P(A)+P(B)$ whenever $A \cap B=\emptyset$.
- $P(A \mid B)=P(A \cap B) / P(B)$
- $P(A \mid B)=P(B \mid A) P(A) / P(B)$.
- $A$ and $B$ are independent if $P(A \cap B)=P(A) P(B)$.

