Probabilistic and Bayesian Analytics

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Andrew W. Moore Professor

School of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm

awm@cs.cmu.edu
412-268-7599

Probability

- The world is a very uncertain place
- 30 years of Artificial Intelligence and Database research danced around this fact
- And then a few AI researchers decided to use some ideas from the eighteenth century

What we're going to do

- We will review the fundamentals of probability.
- It's really going to be worth it
- In this lecture, you'll see an example of probabilistic analytics in action: Bayes Classifiers

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- $\mathrm{A}=$ The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola

Probabilities

- We write $\mathrm{P}(\mathrm{A})$ as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

 worlds

Its area is 1

$P(A)=$ Area of reddish oval

The Axioms of Probability

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Where do these axioms come from? Were they "discovered"?
Answers coming up later.

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

These Axioms are Not to be

Trifled With

- There have been attempts to do different methodologies for uncertainty
- Fuzzy Logic
- Three-valued logic
- Dempster-Shafer
- Non-monotonic reasoning
- But the axioms of probability are the only system with this property:
If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

Theorems from the Axioms

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

From these we can prove:

$$
P(\operatorname{not} A)=P(\sim A)=1-P(A)
$$

- How?

Side Note

- I am inflicting these proofs on you for two reasons:

1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics in depth
2. Suffering is good for you

Another important theorem

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

From these we can prove:

$$
P(A)=P(A \wedge B)+P(A \wedge \sim B)
$$

- How?

Multivalued Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}\right.$, .. $\left.v_{k}\right\}$
- Thus...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

An easy fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
P\left(A=v_{1} \vee A=v_{2} \vee A=v_{i}\right)=\sum_{j=1}^{i} P\left(A=v_{j}\right)
$$

An easy fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
P\left(A=v_{1} \vee A=v_{2} \vee A=v_{i}\right)=\sum_{j=1}^{i} P\left(A=v_{j}\right)
$$

- And thus we can prove

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

Another fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
P\left(B \wedge\left[A=v_{1} \vee A=v_{2} \vee A=v_{i}\right]\right)=\sum_{j=1}^{i} P\left(B \wedge A=v_{j}\right)
$$

Another fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
P\left(B \wedge\left[A=v_{1} \vee A=v_{2} \vee A=v_{i}\right]\right)=\sum_{j=1}^{i} P\left(B \wedge A=v_{j}\right)
$$

- And thus we can prove

$$
P(B)=\sum_{j=1}^{k} P\left(B \wedge A=v_{j}\right)
$$

Elementary Probability in Pictures
 - $P(\sim A)+P(A)=1$

Elementary Probability in Pictures - $P(B)=P(B \wedge A)+P(B \wedge \sim A)$

Elementary Probability in Pictures

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

Elementary Probability in Pictures
 $$
P(B)=\sum_{j=1}^{k} P\left(B \wedge A=v_{j}\right)
$$

Conditional Probability

- $P(A \mid B)=$ Fraction of worlds in which B is true that also have A true

H = "Have a headache"
F = "Coming down with
Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 5050 chance you'll have a headache."

Conditional Probability

H = "Have a headache"
F = "Coming down with
Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$\mathrm{P}(\mathrm{H} \mid \mathrm{F})=$ Fraction of flu-inflicted worlds in which you have a headache
= \#worlds with flu and headache
\#worlds with flu
= Area of "H and F" region
Area of "F" region
$=P\left(H^{\wedge} F\right)$
$P(F)$

Definition of Conditional Probability

$$
P(A / B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

Corollary: The Chain Rule

$P(A \wedge B)=P(A / B) P(B)$

Probabilistic Inference

H = "Have a headache"
F = "Coming down with
Flu"

$$
\begin{aligned}
& P(H)=1 / 10 \\
& P(F)=1 / 40 \\
& P(H \mid F)=1 / 2
\end{aligned}
$$

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Probabilistic Inference

H = "Have a headache"
$\mathrm{F}=$ "Coming down with
Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \wedge H)=\ldots$
$P(F \mid H)=\ldots$

Another way to understand the intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Trivial question: someone draws an envelope at random and offers to sell it to you. How much should you pay?

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay?
Suppose it's red: How much should you pay?

Calculation...

More General Forms of Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$$
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
$$

More General Forms of Bayes Rule

$$
P\left(A=v_{i} \mid B\right)=\frac{P\left(B \mid A=v_{i}\right) P\left(A=v_{i}\right)}{\sum_{k=1}^{n_{A}} P\left(B \mid A=v_{k}\right) P\left(A=v_{k}\right)}
$$

Useful Easy-to-prove facts

$$
\begin{gathered}
P(A \mid B)+P(\neg A \mid B)=1 \\
\sum_{k=1}^{n_{A}} P\left(A=v_{k} \mid B\right)=1
\end{gathered}
$$

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Example: Boolean

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Example: Boolean

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, variables A, B, C

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

The Joint Distribution

Example: Boolean variables A, B, C
Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those numbers must sum to 1 .

| A | B | C | Prob |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0.30 |
| 0 | 0 | 1 | 0.05 |
| 0 | 1 | 0 | 0.10 |
| 0 | 1 | 1 | 0.05 |
| 1 | 0 | 0 | 0.05 |
| 1 | 0 | 1 | 0.10 |
| 1 | 1 | 0 | 0.25 |
| 1 | 1 | 1 | 0.10 |

Using the Joint

One you have the JD you can ask for the probability of any logical expression involving your attribute

Using the Joint

$\left.\begin{array}{|lllll|}\hline \text { gender } & \text { hours_worked } & \text { wealth } \\ \text { Female } & \text { v0:40.5- } & \text { poor } & 0.253122 \\ & & \text { rich } & 0.0245895 \\ & \text { v1:40.5+ } & \text { poor } & 0.0421768 \\ & & \text { rich } & 0.0116293 \\ \text { Male } & \text { v0:40.5- } & \text { poor } & 0.331313\end{array}\right]$
$P($ Poor Male $)=0.4654$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Using the Joint

| gender hours_worked wealth
 Female v0:40.5- poor 0.253122
 rich 0.0245895
 v1:40.5+ poor 0.0421768
 rich 0.0116293
 Male v0:40.5- poor 0.331313
 rich 0.0971295
 v1:40.5+ poor 0.134106
 rich 0.105933 |
| :--- | :--- | :--- | :--- | :--- |

$P($ Poor $)=0.7604$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Inference with the Joint

gender	hours_worked	wealth		
Female	v0:40.5-	poor	0.253122	
		rich	0.0245895	
	v1:40.5+	poor	0.0421768	
		rich	0.0116293	
Male	v0:40.5-	poor	0.331313	\square
		rich	0.0971295	\square
	v1:40.5+	poor	0.134106	\square
		rich	0.105933	

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{\text { rows matching } E_{1} \text { and } E_{2}}{\sum_{\text {rows matching } E_{2}} P(\text { row })}
$$

Inference with the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	p1:40.5+	poor	0.0421768
Male	vo:40.5-	poor	0.331313
	rich	0.0971295	
	v1:40.5+	poor	0.134106
	rich	0.105933	

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{\sum_{\text {rows matching } E_{1} \text { and } E_{2}} P(\text { row })}{\sum_{\text {rows matching } E_{2}} P(\text { row })}
$$

$$
P(\text { Male } \mid \text { Poor })=0.4654 / 0.7604=0.612
$$

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
- I've got a sore neck: how likely am I to have meningitis?
- I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
- I've got a sore neck: how likely am I to have meningitis?
- I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
- I've got a sore neck: how likely am I to have meningitis?
- I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?
- There's a thriving set of industries growing based around Bayesian Inference. Highlights are: Medicine, Pharma, Help Desk Support, Engine Fault Diagnosis

Where do Joint Distributions come from?

- Idea One: Expert Humans
- Idea Two: Simpler probabilistic facts and some algebra
Example: Suppose you knew

$$
\begin{array}{ll}
P(A)=0.7 & P\left(C \mid A^{\wedge} B\right)=0.1 \\
& P\left(C \mid A^{\wedge} \sim B\right)=0.8 \\
P(B \mid A)=0.2 & P\left(C \mid \sim A^{\wedge} B\right)=0.3 \\
P(B \mid \sim A)=0.1 & P\left(C \mid \sim A^{\wedge} \sim B\right)=0.1
\end{array}
$$

Then you can automatically compute the JD using the chain rule

$$
\begin{gathered}
P\left(A=x^{\wedge} B=y^{\wedge} C=z\right)= \\
P\left(C=z \mid A=x^{\wedge} B=y\right) P(B=y \mid A=x) P(A=x)
\end{gathered}
$$

In another lecture:
Bayes Nets, a
systematic way to do this.

Where do Joint Distributions come from?

- Idea Three: Learn them from data!

Prepare to see one of the most impressive learning algorithms you'll come across in the entire course....

Learning a joint distribution

Build a JD table for your attributes in which the probabilities are unspecified

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	$?$
0	0	1	$?$
0	1	0	$?$
0	1	1	$?$
1	0	0	$?$
1	0	1	$?$
1	1	0	$?$
1	1	1	$?$

Fraction of all records in which A and B are True but C is False

The fill in each row with
$\hat{P}($ row $)=\frac{\text { records matching row }}{\text { total number of records }}$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	$\mathbf{0 . 2 5}$
1	1	1	0.10

Example of Learning a Joint

- This Joint was obtained by learning from three attributes in the UCI "Adult"
Census
Database

gender	hours_worked	wealth			
Female	v0:40.5-	poor	0.253122		
		rich	0.0245895	\square	
	v1:40.5+	poor	0.0421768	\square	
		rich	0.0116293	\square	
Male	v0:40.5-	poor	0.331313	\square	
		rich	0.0971295	\square	
		v1:40.5+	poor	0.134106	\square
		rich	0.105933		

[Kohavi 1995]

Where are we?

- We have recalled the fundamentals of probability
- We have become content with what JDs are and how to use them
- And we even know how to learn JDs from data.

Density Estimation

- Our Joint Distribution learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a Probability

Density Estimation

- Compare it against the two other major kinds of models:

Evaluating Density Estimation

Test-set criterion for estimating performance on future data* \qquad

Test set Accuracy

Evaluating a density estimator

- Given a record \mathbf{x}, a density estimator M can tell you how likely the record is:

$$
\hat{P}(\mathbf{x} \mid M)
$$

- Given a dataset with R records, a density estimator can tell you how likely the dataset is:
(Under the assumption that all records were independently generated from the Density Estimator's JD)
$\hat{P}($ dataset $\mid M)=\hat{P}\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2} \ldots \wedge \mathbf{x}_{R} \mid M\right)=\prod_{k=1} \hat{P}\left(\mathbf{x}_{k} \mid M\right)$

A small dataset: Miles Per Gallon

192
Training
Set
Records

mpg	modelyear	maker
good	75to78	asia
bad	70to 74	america
bad	75to78	europe
bad	70to74	america
bad	70to74	america
bad	70to74	asia
bad	70to74	asia
bad	75to78	america
:	:	:
:	:	:
:	:	:
bad	70to 74	america
good	79to83	america
bad	75to78	america
good	79to83	america
bad	75to78	america
good	79to83	america
good	79to83	america
bad	70to74	america
good	75to78	europe
bad	75to78	europe

From the UCI repository (thanks to Ross Quinlan)

A small dataset: Miles Per Gallon

192
Training Set Records

A small dataset: Miles Per Gallon

Log Probabilities

Since probabilities of datasets get so small we usually use log probabilities

$\log \hat{P}(\operatorname{dataset} \mid M)=\log \prod_{k=1}^{R} \hat{P}\left(\mathbf{x}_{k} \mid M\right)=\sum_{k=1}^{R} \log \hat{P}\left(\mathbf{x}_{k} \mid M\right)$

A small dataset: Miles Per Gallon

Summary: The Good News

- We have a way to learn a Density Estimator from data.
- Density estimators can do many good things...
- Can sort the records by probability, and thus spot weird records (anomaly detection)
- Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc

- Ingredient for Bayes Classifiers (see later)

Summary: The Bad News

- Density estimation by directly learning the joint is trivial, mindless and dangerous

Jsing atest set

	Set Size	Log likelihood
Training Set	196	-466.1905
Test Set	196	-614.6157

An independent test set with 196 cars has a worse log likelihood
(actually it's a billion quintillion quintillion quintillion quintillion times less likely)
....Density estimators can overfit. And the full joint density estimator is the overfittiest of them all!

Overfitting Density Estimators

Jsing atest set

	Set Size	Log likelihood
Training Set	196	-466.1905
Test Set	196	-614.6157

The only reason that our test set didn't score -infinity is that my code is hard-wired to always predict a probability of at least one in 10^{20}

We need Density Estimators that are less prone to overfitting

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:
Assume that each attribute is distributed independently of any of the other attributes.

Independently Distributed Data

- Let $x[i]$ denote the /th field of record x.
- The independently distributed assumption says that for any $i, v, u_{1} u_{2 \ldots} u_{i-1} u_{i+1} \ldots u_{M}$

$$
\begin{aligned}
P\left(x[i]=v \mid x[1]=u_{1}, x[2]=u_{2}, \ldots x[i-1]\right. & \left.=u_{i-1}, x[i+1]=u_{i+1}, \ldots x[M]=u_{M}\right) \\
& =P(x[i]=v)
\end{aligned}
$$

- Or in other words, $x[i]$ is independent of $\{x[1], x[2], . . x[i-1], x[i+1], \ldots x[M]\}$
- This is often written as

$$
x[i] \perp\{x[1], x[2], \ldots x[i-1], x[i+1], \ldots x[M]\}
$$

A note about independence

- Assume A and B are Boolean Random Variables. Then

"A and B are independent"

if and only if

$$
P(A \mid B)=P(A)
$$

- "A and B are independent" is often notated as

$$
A \perp B
$$

Independence Theorems

- Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}) \quad$ - Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$
- Then $\mathrm{P}^{\left(\mathrm{A}^{\wedge} \mathrm{B}\right)}=$
- Then $P(B \mid A)=$

$$
=P(A) P(B)
$$

$$
=P(B)
$$

Independence Theorems

- Assume $P(A \mid B)=P(A) \quad$ - Assume $P(A \mid B)=P(A)$
- Then $\mathrm{P}(\sim \mathrm{A} \mid \mathrm{B})=$
- Then $P(A \mid \sim B)=$
$=P(A)$

Multivalued Independence

For multivalued Random Variables A and B,

$$
A \perp B
$$

if and only if

$$
\forall u, v: P(A=u \mid B=v)=P(A=u)
$$

from which you can then prove things like...

$$
\begin{gathered}
\forall u, v: P(A=u \wedge B=v)=P(A=u) P(B=v) \\
\forall u, v: P(B=v \mid A=v)=P(B=v)
\end{gathered}
$$

Back to Naïve Density Estimation

- Let $x[i]$ denote the i'th field of record x :
- Naïve DE assumes $x[i]$ is independent of $\{x[1], x[2], . . x[i-1], x[i+1], \ldots x[M]\}$
- Example:
- Suppose that each record is generated by randomly shaking a green dice and a red dice
- Dataset 1: $\mathrm{A}=$ red value, $\mathrm{B}=$ green value
- Dataset 2: $\mathrm{A}=$ red value, $\mathrm{B}=$ sum of values
- Dataset 3: $A=$ sum of values, $B=$ difference of values
- Which of these datasets violates the naïve assumption?

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P\left(A^{\wedge} \sim B^{\wedge} C^{\wedge} \sim D\right)$?

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P\left(A^{\wedge} \sim B^{\wedge} C^{\wedge} \sim D\right)$?
$=P\left(A \mid \sim B^{\wedge} C^{\wedge} \sim D\right) P\left(\sim B^{\wedge} C^{\wedge} \sim D\right)$
$=P(A) P\left(\sim B^{\wedge} C^{\wedge} \sim D\right)$
$=P(A) P\left(\sim B \mid C^{\wedge} \sim D\right) P\left(C^{\wedge} \sim D\right)$
$=P(A) P(\sim B) P\left(C^{\wedge} \sim D\right)$
$=P(A) P(\sim B) P(C \mid \sim D) P(\sim D)$
$=P(A) P(\sim B) P(C) P(\sim D)$

Naïve Distribution General Case

- Suppose $x[1], x[2], \ldots x[M]$ are independently distributed.

$$
P\left(x[1]=u_{1}, x[2]=u_{2}, \ldots x[M]=u_{M}\right)=\prod_{k=1}^{M} P\left(x[k]=u_{k}\right)
$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- So we can do any inference
- But how do we learn a Naïve Density Estimator?

Learning a Naïve Density Estimator

$$
\hat{P}(x[i]=u)=\frac{\# \text { records in which } x[i]=u}{\text { total number of records }}
$$

Another trivial learning algorithm!

Contrast

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

Empirical Results: "Hopeless"

The "hopeless" dataset consists of 40,000 records and 21 Boolean attributes called $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \mathrm{u}$. Each attribute in each record is generated $50-50$ randomly as 0 or 1 .

Name	Model	Parameters	LogLike		
Model1	joint	submodel=gauss gausstype=general	-272625	$+/$	301.109
Model2	naive	submodel=gauss gausstype=general	-58225.6	$+/-0.554747$	

Average test set log probability during 10 folds of k-fold cross-validation*

Described in a future Andrew lecture

Despite the vast amount of data, "Joint" overfits hopelessly and does much worse

Empirical Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated $50-50$ randomly as 0 or $1 . D=A^{\wedge} \sim C$, except that in 10% of records it is flipped

Empirical Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated $50-50$ randomly as 0 or $1 . D=A \wedge \sim C$, except that in 10% of records it is flipped

Empirical Results: "MPG"

The "MPG" dataset consists of 392 records and 8 attributes

mpg	bad	0.602041
	good	0.397959
cylinders	3	0.0102041
	4	0.507653
	5	0.00765306
	6	0.211735
	8	0.262755
displacement	low	0.596939
	high	0.403061
horsepower	low	0.479592
	high	0.520408
weight	low	0.57398
	high	0.42602
acceleration	low	0.459184
	high	0.540816
modelyear	70 to 74	0.382653
	75 to 77	0.326531
	78 to83	0.290816
maker	america	0.625
	asia	0.201531
	europe	0.173469

Empirical Results: "MPG"

The "MPG" dataset consists of 392 records and 8 attributes

Empirical Results: "Weight vs. MPG"

Suppose we train only from the "Weight" and "MPG" attributes

Empirical Results: "Weight vs. MPG"

Suppose we train only from the "Weight" and "MPG" attributes

"Weight vs. MPG": The best that Naïve can do

"Naive"

Reminder: The Good News

- We have two ways to learn a Density Estimator from data.
- *In other lectures we'll see vastly more impressive Density Estimators (Mixture Models, Bayesian Networks, Density Trees, Kernel Densities and many more)
- Density estimators can do many good things...
- Anomaly detection
- Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc
- Ingredient for Bayes Classifiers

Bayes Classifiers

- A formidable and sworn enemy of decision trees

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_{y} and values $v_{11}, v_{21} \ldots v_{n r}$
- Assume there are m input attributes called $X_{1,}, X_{2}, \ldots X_{m}$
- Break dataset into n_{Y} smaller datasets called $D S_{1,} D S_{2,} \ldots D S_{n r}$
- Define $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} to model the input distribution among the $Y=v_{i}$ records.

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_{y} and values $v_{11}, v_{21} \ldots v_{\text {nr }}$
- Assume there are m input attributes called $X_{1,}, X_{21} \ldots X_{m}$
- Break dataset into n_{y} smaller datasets called $D S_{1,} D S_{2,} \ldots D S_{n y}$
- Define $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} to model the input distribution among the $Y=v_{i}$ records.
- M_{i} estimates $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_{y} and values $v_{1}, v_{21} \ldots v_{n y}$
- Assume there are m input attributes called $X_{1 r}, X_{2 r} \ldots X_{m}$
- Break dataset into n_{y} smaller datasets called $D S_{1 r}, D S_{2 r} \ldots D S_{n y}$
- Define $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} to model the input distribution among the $Y=v_{i}$ records.
- M_{i} estimates $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=V_{i}\right)$
- Idea: When a new set of input values $\left(X_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}\right.$ $=u_{m}$) come along to be evaluated predict the value of Y that makes $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$ most likely

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)
$$

v
Is this a good idea?

How to build a Baes Classifier

- Assume you want to predict output Y which has arity n_{y} and values

$$
v_{1}, v_{2}, \ldots v_{n v}
$$

- Assume there are m input attribu
- Break dataset into n_{y} smaller dat
- Define $D S_{i}=$ Records in which Y
- For each $D S_{i}$, learn Density Estir

This is a Maximum Likelihood classifier.

It can get silly if some Y s are very unlikely

- M_{i} estimates $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=V_{i}\right)$
- Idea: When a new set of input values $\left(X_{1}=u_{1}, X_{2}=u_{21}, \ldots . X_{m}\right.$ $=u_{m}$) come along to be evaluated predict the value of Y that makes $\mathrm{P}\left(X_{1,}, X_{21} \ldots X_{m} / Y=V_{i}\right)$ most/fikely

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)
$$

Is this a good idea?

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_{y} and values

$$
v_{1}, v_{2}, \ldots v_{n v}
$$

- Assume there are m input attributes called
- Break dataset into n_{y} smaller datasets call
- Define $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} distribution among the $Y=v_{i}$ records.
- M_{i} estimates $P\left(X_{1}, X_{2}, \ldots X_{m} / Y=V_{i}\right)$
- Idea: When a new set of input value $\Lambda_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}$ $=u_{m}$) come along to be evaluate predict the value of Y that makes $\mathrm{P}\left(Y=v_{i} / X_{1}, X_{2}, \ldots X_{m}\right)$ most likely

$$
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)
$$

Is this a good idea?

Terminology

- MLE (Maximum Likelihood Estimator):

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)
$$

- MAP (Maximum A-Posteriori Estimator):

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)
$$

Getting what we need

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)
$$

Getting a posterior probability

$$
\begin{gathered}
P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right) \\
=\frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m}\right)} \\
=\frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{\sum_{j=1}^{n_{Y}} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v_{j}\right) P\left(Y=v_{j}\right)}
\end{gathered}
$$

Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$.
3. Estimate $\mathrm{P}\left(Y=v_{i}\right)$. as fraction of records with $Y=v_{i}$.
4. For a new prediction:

$$
\begin{aligned}
& Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right) \\
&= \operatorname{argmax} \\
& P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)
\end{aligned}
$$

Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$.
3. Estimate $\mathrm{P}\left(Y=v_{i}\right)$. as fraction of records
4. For a new prediction:

> We can use our favorite Density Estimator here.

$$
=\underset{v}{Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=\right.} \begin{aligned}
& \text { Right now we have two } \\
& \text { options: } \\
& \text { argmax } P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \left\lvert\, \begin{array}{l}
\text {-Joint Density Estimator } \\
\text { •Naïve Density Estimator }
\end{array}\right.\right.
\end{aligned}
$$

Joint Density Bayes Classifier

$Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)$
In the case of the joint Bayes Classifier this degenerates to a very simple rule:
ypredict $=$ the most common value of Y among records in which $X_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}=u_{m}$.

Note that if no records have the exact set of inputs X_{1} $=u_{1}, X_{2}=u_{2}, \ldots . X_{m}=u_{m}$ then $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$ $=0$ for all values of Y.

In that case we just have to guess Y's value

Joint BC Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated $50-50$ randomly as 0 or $1 . D=A^{\wedge} \sim C$, except that in 10% of records it is flipped

Joint BC Results: "All Irrelevant"

The "all irrelevant" dataset consists of 40,000 records and 15 Boolean attributes called a,b,c,d..o where a,b,c are generated 50-50 randomly as 0 or $1 . v$ (output) $=1$ with probability $0.75,0$ with prob 0.25

Name	Model	Parameters	FracRight		
Model1	bayesclass	density=joint submodel=gauss gausstype=general	$0.70425 \quad+/-0.00583537$		
			$. \quad . \quad$		

Naïve Bayes Classifier

$Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)$
In the case of the naive Bayes Classifier this can be simplified:

$$
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P(Y=v) \prod_{j=1}^{n_{Y}} P\left(X_{j}=u_{j} \mid Y=v\right)
$$

Naïve Bayes Classifier

$Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)$
v
In the case of the naive Bayes Classifier this can be simplified:

$$
\begin{aligned}
& \quad Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P(Y=v) \prod_{j=1}^{n_{v}} P\left(X_{j}=u_{j} \mid Y=v\right) \\
& \text { Technical Hint: }
\end{aligned}
$$

If you have 10,000 input attributes that product will underflow in floating point math. You should use logs:

$$
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}}\left(\log P(Y=v)+\sum_{j=1}^{n_{v}} \log P\left(X_{j}=u_{j} \mid Y=v\right)\right)
$$

BC Results: "XOR"

The "XOR" dataset consists of 40,000 records and 2 Boolean inputs called a and b, generated $50-50$ randomly as 0 or 1 . c (output) $=a$ XOR b

Naive BC Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated $50-50$ randomly as 0 or $1 . D_{d=0}^{=}=A^{\wedge} \sim C$, except that in 10% of records it is flipped

Naive BC Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated $50-50$ randomly as 0 or $1 . \mathrm{D}=\mathrm{A}^{\wedge} \sim \mathrm{C}$, except that in 10% of records it is flipped
d values: 01
This result surprised Andrew until he had thought about it a little

Name	Model	Parameters	FracRight			dataset. denote p dark sha
Model1	bayesclass	density=joint submodel=gauss gausstype=general	0.90065	+/-	0.00301897	
Model2	bayesclass	density=naive submodel=gauss gausstype=general	0.90065		0.00301897	

BC Results: "MPG": 40 records

| Name | Model | Parameters | FracRight | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Model1 | bayesclass | | | |
| | density=joint
 submodel=gauss
 gausstype=general | 0.725 | $+/-114333$ | |
| Model2 | | | | |

More Facts About Bayes Classifiers

- Many other density estimators can be slotted in*.
- Density estimation can be performed with real-valued inputs*
- Bayes Classifiers can be built with real-valued inputs*
- Rather Technical Complaint: Bayes Classifiers don't try to be maximally discriminative---they merely try to honestly model what's going on*
- Zero probabilities are painful for Joint and Naïve. A hack (justifiable with the magic words "Dirichlet Prior") can help*.
- Naïve Bayes is wonderfully cheap. And survives 10,000 attributes cheerfully!

What you should know

- Probability
- Fundamentals of Probability and Bayes Rule
- What's a Joint Distribution
- How to do inference (i.e. P(E1|E2)) once you have a JD
- Density Estimation
- What is DE and what is it good for
- How to learn a Joint DE
- How to learn a naïve DE

What you should know

- Bayes Classifiers
- How to build one
- How to predict with a BC
- Contrast between naïve and joint BCs

Interesting Questions

- Suppose you were evaluating NaiveBC, JointBC, and Decision Trees
- Invent a problem where only NaiveBC would do well
- Invent a problem where only Dtree would do well
- Invent a problem where only JointBC would do well
- Invent a problem where only NaiveBC would do poorly
- Invent a problem where only Dtree would do poorly
- Invent a problem where only JointBC would do poorly

