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Part-of-Speech Tagging

Part-of-Speech Tagging

» Given a word sequence wj - - - wp,, determine the corresponding
part-of-speech (tag) sequence t; - - - tm.

» Probabilistic view of the problem:
argmaxy,..t,, P(t1 -+ tm | wi -+ wp) =

P(t;---t. )P t1---t
arg maxg...t,, (t m)P(wy - wm | ty m) —

P(wi - - - Wm)

argmaxy,..t,, P(t1 -+ tm)P(W1 -+ Wi | t1 -+ tm)
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Part-of-Speech Tagging

Independence Assumptions

» Contextual model: Tags are dependent only on n — 1 preceding
tags (tag n-grams, n-classes):

HP ti | tio(n—1)" " ti-1)

i=1
For biclass models (n = 2),

m
=[Pt
i=1

» Lexical model: Word forms are dependent only on their own
part-of-speech:
m
P(Wl'--Wm | t1-‘~tm) :HP(W,' | t,')
i=1
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For biclass models (n = 2),
argmaxy, .., P(t1- - tm)P(Wi - Wi | 1+ tm) =
argmaxe,..t,, [ Lmq P(ti | tic1) [1my P(wi | t) =

arg maxg, ...t H?;l P(t,' | t,'_l)P(W,' | t,') =
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Example

» Tagging the can smells using the triclass model:

P(dt nn vb | the can smells) = P(dt| # #)- P(nn | # dt)-
P(vb | dt nn) - P(the | dt)-
P(can | nn) - P(smells | vb)

» Compare:

P(can|vb) > P(can|nn)
P(smells | vb) > P(smells | nn)
P(nn | # dt) >> P(vb |+ dt)
P(vb |dt nn) > P(nn|dtnn) (?)
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Hidden Markov Models 1

» Markov models are probabilistic finite automata that are used
for many kinds of (sequential) disambiguation tasks such as:
1. Speech recognition
2. Spell checking
3. Part-of-speech tagging
4. Named entity recognition

» A (discrete) Markov model runs through a sequence of states

emitting signals. If the state sequence cannot be determined

from the sequence of emitted signals, the model is said to be
hidden.
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Hidden Markov Models 2

» A Markov model consists of five elements:

1. A finite set of states Q = {s!,. k}

2. A finite signal alphabet ¥ = {o ,om}

3. Initial probabilities P(s) (for every s e Q) defining the
probability of starting in state s.

4. Transition probabilities P(s’ | s/) (for every (s',s/) € Q?)
defining the probability of going from state s/ to state s'.

5. Emission probabilities P(o | s) (for every (o,s) € £ x Q)
defining the probability of emitting symbol ¢ in state s.
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Hidden Markov Models 3

» State transitions are assumed to be independent of everything
except the current state:

n

P(sy---s,) = P(s1) H P(si | si-1)

i=2

» Signal emissions are assumed to be independent of everything
except the current state:

n

P(si--sp,01---05) = P(s1) P(o1 | 1) [] P(si | si-1) P(oi | s7)
i=2
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Hidden Markov Models 4

> If we want, we can simplify things by adding a dummy state s°
such that P(s) = P(s | s°) (for every s € Q)

» State transitions:

n

P(si---sa) =[] P(si | si-1)
i=1
» Signal emissions:

n

P(si--sn01---00) = [[ Psi | si-1) P(oi | 57)
i=1
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Hidden Markov Models 5

» The probability of a signal sequence is obtained by summing
over all state sequences that could have produced that signal
sequence:

P(oy---0n) = Z H P(si | si-1) P(oi | si)

s1-.5p€Q" =1

» Problems for HMMs:
1. Optimal state sequence: argmaxs,...s, P(s1 -+ sp | 01+ 0p).
2. Signal probability: P(oy - 04). A
3. Parameter estimation: P(s), P(s;i | s;), P(c | s).
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HMM Tagging

» Contextual model:

1. The biclass model can be represented by a first-order Markov
model, where each state represents one tag; s; = t;

2. The triclass model can be represented by a second-order
Markov model, where each state represents a pair of tags;
si = (ti, ti—1)

3. In both cases, transition probabilities represent contextual
probabilities.

» Lexical model:

1. Signals represented word forms; o; = w;

2. Emission probabilities represent lexical probabilities;
P(O’,‘ | S,') = P(W,' | 1.',')

3. (to written as # for biclass model)
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Example: First-Order HMM

P(vb|dt)
P(dt|#) N P(nn|dt) X P(vb|nn)
© () ()
P(the|dt) P(can|nn) P(can|vb)
P(smells|nn) P(smells|vb)
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Parameter Estimation

» Two different methods for estimating probabilities (lexical and
contextual):
1. Supervised learning: Probabilities can be estimated using
frequency counts in a (manually) tagged training corpus.
2. Unsupervised learning: Probabilities can be estimated from an
untagged training corpus using expectation-maximization.

» Experiments have shown that supervised learning yields
superior results even with limited amounts of training data.

Part of Speech Tagging



Part-of-Speech Tagging

Supervised Learning

» Maximum likelihood estimation:
1. Contextual probabilities:

~ C(ti_oti_1t;
Pt = G
2. Lexical probabilities:
A C(w,t
P(w|t)= —é(t))

» Maximum likelihood estimates need to be smoothed because
of sparse data (cf. language modeling).
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Supervised Learning Algorithm

for all tags t/ do
for all tags t* do

(tk ‘ tj) Cc(?tj))

end for
end for
for all tags t/ do

for all words w' go do

w':t)

P(w! | ) = Cee2)
end for

end for
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Supervised Learning

Second tag
First tag | AT BEZ | IN NN VB | PER | Y
AT 0 0 0 48636 | 0 19 48 655
BEZ 1973 |0 426 187 0 38 2624
IN 43322 | 0 1325 | 17314 | 0 185 62146
NN 1067 | 3720 | 42470 | 11773 | 614 | 21392 | 81036
VB 6072 42 4758 1476 129 | 1522
PER 8016 | 75 4656 | 1329 | 954 | 0 15030

5 C(PER AT
» P(AT | PER) = (C(PER ) — 806 _ (5333
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Supervised Learning

AT BEZ IN NN VB PER
bear 0 0 0 10 43 0
is 0 10065 | 0 0 0 0
move 0 0 0 36 133 0
on 0 0 5484 0 0 0
president 0 0 0 382 0 0
progress 0 0 0 108 4 0
the 0 0 0 0 0 0
. 0 0 0 0 0 48809
total (all words) | 120991 | 10065 | 130534 | 134171 | 20976 | 49267

> P(bear | NN) = <Biqf) — 20 — 0.7453 - 10~
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Computing probabilities, example

Compute and compare the following two probabilities:
» P(AT NN BEZ IN AT NN | The bear is on the move.)
» P(AT NN BEZ IN AT VB | The bear is on the move.)
For this, we need P(AT | PER), P(NN | AT), P(BEZ | NN),
P(IN | BEZ), P(AT | IN), and P(PER | NN), P(bear | NN),
P(is | BEZ), P(on | IN), P(the | AT), P(move | NN), P(move | VB)

wn

We assume that the sentence is preceded by “.".
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Smoothing for Part-of-Speech Tagging

» Contextual probabilities are structurally similar to n-gram
probabilities in language modeling and can be smoothed using
the same methods.

» Smoothing of lexical probabilities breaks down into two
sub-problems:

1. Known words are usually handled with standard methods.
2. Unknown words are often treated separately to take into
account information about suffixes, capitalization, etc.
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Viterbi Tagging

» HMM tagging amounts to finding the optimal path (state
sequence) through the model for a given signal sequence.

» The number of possible paths grows exponentially with the
length of the input.

» The Viterbi algorithm is a dynamic programming algorithm
that finds the optimal state sequence in polynomial time.

» Running time is O(ms?), where m is the length of the input
and s is the number of states in the model.
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Viterbi algorithm

5o(PERIOD) = 1.0
So(t) = 0.0 for t £PERIOD
for i:=0to n—1step 1do
for all tags ¢/ do
§i41 = maxy<k<7[0i(t%) X P(¢ | %) x P(wjp1 | ¥)]
Vi1 = argmaxi<x<7[0i(t4) x P(¢/ | t°) x P(wis1 | )]
end for
end for
Xp = argmaxi<j<T Sa(t)

© 0N TR n

10: for j:=n—1to 1 step —1 do
11 X =it (Xjr)
12: end for

s
w

CP(E5, LK) = 0, (5
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Tagset (part of full tagset) with indices

t1=AT

t2=BEZ

t3=IN

t*=NN

t°=VB
t9=PERIOD (PER)

vV V. vV v v Y
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Viterbi algorithm: first induction iteration

i:=0
for all tags ¢/ do do
01 = maxlgksr[éo(tk) X P(tj ’ tk) X P(Wl | tj)]
1 = argmaxi<k<7[0i(¢F) x P(H | t4) x P(wy | ¢/)]
end for

We have t! =AT.
First tag:

t = AT

51 = maXlSkST[(SO(tk) X P(AT ‘ tk) X P(W]_ ’ AT)]
1 := arg maxi<k<7[60(tK) X P(AT | t5) x P(wy | AT)]
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Unsupervised Learning

» Expectation-Maximization (EM) is a method for
approximating optimal probability estimates :
1. Guess an estimate 6.
2. Expectation: Compute expected frequencies based on training
data and current value of 6.
3. Maximization: Adjust 6 based on expected frequencies.
4. lterate steps 2 and 3 until convergence.

» Special case for HMM known as the Baum-Welch algorithm.

» Problem: Local maxima.
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Example: Expectation-Maximization 1

» Lexicon:
the dt
car nn
can nn vb
» Training corpus:
the can
the car

» |nitial estimates:

P(nn|dt) = P(vb|dt) = 0.5
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Example: Expectation-Maximization 2

Expectation Maximization
E[C(nn|dt)] = 1.5
E[C(vb|dt)] = 0.5
P(nn|dt) = 0.75
P(vb|dt) = 0.25
E[C(nn|dt)] = 1.75
E[C(vb|dt)] = 0.25
P(nn|dt) = 0.875
P(vb|dt) = 0.125
E[C(nn|dt)] = 1.875
E[C(vb|dt)] = 0.125
P(nn|dt) = 0.9375
P(vb|dt) = 0.0625
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Statistical Evaluation

» Many aspects of natural language processing systems can be
evaluated by performing series of (more or less controlled)
experiments.

» The results of such experiments are often quantitative
measurements which can be summarized and analyzed using
statistical methods.

» Evaluation methods are (in principle) independent of whether
the systems evaluated are statistical or not.
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Emprical Evaluation of Accuracy

» Most natural language processing systems make errors even
when they function perfectly.

» Accuracy can be tested by running systems on representative
samples of inputs.

» Three kinds of statistical methods are relevant:

1. Descriptive statistics: Measures
2. Estimation: Confidence intervals
3. Hypothesis testing: Significant differences
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Test Data

» Requirements on test data set:

1. Distinct from any training data
2. Unbiased (random sample)
3. As large as possible

» These requirements are not always met.

» Testing may be supervised or unsupervised depending on
whether the test data set contains solutions or not.

» Gold standard: Solutions provided by human experts.
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Descriptive Statistics

» Descriptive measures such as sample means and proportions
are used to summarize test results.

» Examples:
n
1. Accuracy rate (percent correct): %Zx,-
i=1

. true positives
2. Recall: = .
true positives+false negatives
true positives
true positives+false positives

n
4. Logprob: %Zlog2 P(x;)
i=1

3. Precision:
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Example 1: Language Modeling

» Evaluation of language models as such are always unsupervised
(no gold standards for string probabilities).
» Evaluation measures:

1. Corpus probability
2. Corpus entropy (logprob)
3. Corpus perplexity
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Example 2: PoS Tagging and WSD

» Supervised evaluation with gold standard is the norm.
» Evaluation measures:

1. Percent correct
2. Recall
3. Precision
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Example 3: Syntactic Parsing

» Supervised evaluation with gold standard (treebank).
» Evaluation measures:

1. Percent correct

2. Labeled/bracketed recall

3. Labeled/bracketed precision
4. Zero crossing
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