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What is Natural Language Parsing
Why is Parsing Interesting?
Why is Parsing Hard?

Natural Language Parsing

Sentences in natural language have structure.
Linguists create Linguistic Theories for defining this
structure.
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Structure
Example 1: math

3*2+5*3

ADD

MUL

3 * 2

+ MUL

5 * 3

+

*

3 2

*

5 3
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Example 2: Language Data

Fruit flies like a banana

Constituency Structure Dependency Structure

S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

like

flies

Fruit

banana

a

Yoav Goldberg Parsing Natural Language with PCFGs



Introduction
PCFG Basics

Better PCFG Parsers
The End

What is Natural Language Parsing
Why is Parsing Interesting?
Why is Parsing Hard?

Structure
Example 2: Language Data

Fruit flies like a banana

Constituency Structure Dependency Structure

S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

like

flies

Fruit

banana

a

Yoav Goldberg Parsing Natural Language with PCFGs



Introduction
PCFG Basics

Better PCFG Parsers
The End

What is Natural Language Parsing
Why is Parsing Interesting?
Why is Parsing Hard?

Parsing

What is parsing?

Parsing is the task of assigning structure to a sentence.
You can think of it as a function from sentences to
structures.

Constituency Parsing

In this talk we concentrate on Constituency Parsing:
mapping from sentences to trees with labeled nodes and
the sentence words at the leaves.
I discuss only binary-branching trees.

Not a big restriction: binarizing trees is easy.
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What is Natural Language Parsing
Why is Parsing Interesting?
Why is Parsing Hard?

Why is Parsing Interesting?

It’s a first step towards understanding a text.
Many other language tasks use sentence structure as their
input.
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Why is parsing hard?
Ambiguity

Fat people eat candy
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What is Natural Language Parsing
Why is Parsing Interesting?
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Why is parsing hard?
Real Sentences are long. . .

“Former Beatle Paul McCartney today was ordered to pay
nearly $50M to his estranged wife as their bitter divorce battle
came to an end . ”

“Welcome to our Columbus hotels guide, where you’ll find
honest, concise hotel reviews, all discounts, a lowest rate
guarantee, and no booking fees.”
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Language and Context Free Grammars
Parsing with CFGs
Choosing a good tree

Context Free Grammars

a simple grammar

S→ NP VP
NP→ Adj Noun
NP→ Det Noun
VP→ Vb NP
-
Adj→ fruit
Noun→ flies
Vb→ like
Det→ a
Noun→ banana
Noun→ tomato
Adj→ angry
. . .

Example
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Parsing with CFGs

Let’s assume. . .
Let’s assume natural language is generated by a CFG.
. . . and let’s assume we have the grammar.
Then parsing is easy: given a sentence, find the chain of
derivations starting from S that generates it.
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Parsing with CFGs

Let’s assume. . .
Let’s assume natural language is generated by a CFG.
. . . and let’s assume we have the grammar.
Then parsing is easy: given a sentence, find the chain of
derivations starting from S that generates it.

Problem
Natural Language is NOT generated by a CFG.

Solution
We assume really hard that it is.
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Parsing with CFGs

Let’s assume. . .
Let’s assume natural language is generated by a CFG.
. . . and let’s assume we have the grammar.
Then parsing is easy: given a sentence, find the chain of
derivations starting from S that generates it.

Problem
We don’t have the grammar.

Solution
We’ll ask a genius linguist to write it!
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Parsing with CFGs

Let’s assume. . .
Let’s assume natural language is generated by a CFG.
. . . and let’s assume we have the grammar.
Then parsing is easy: given a sentence, find the chain of
derivations starting from S that generates it.

Problem
Real grammar: hundreds of possible derivations per
sentence.

Solution
No problem! We’ll choose the best one. (soon)
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Obtaining a Grammar

Let a genius linguist write it
Hard. Many rules, many complex interactions.
Genius linguists don’t grow on trees !

An easier way - ask a linguist to grow trees
Ask a linguist to annotate sentences with tree structure.
(This need not be a genius – Smart is enough.)
Then extract the rules from the annotated trees.

Treebanks
English Treebank: 40k sentences, manually annotated
with tree structure.
Hebrew Treebank: about 5k sentences
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Treebank Sentence Example

( (S
(NP-SBJ

(NP (NNP Pierre) (NNP Vinken) )
(, ,)
(ADJP

(NP (CD 61) (NNS years) )
(JJ old) )

(, ,) )
(VP (MD will)
(VP (VB join)

(NP (DT the) (NN board) )
(PP-CLR (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))
(NP-TMP (NNP Nov.) (CD 29) )))

(. .) )) Yoav Goldberg Parsing Natural Language with PCFGs
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Supervised Learning from a Treebank

((fruit/ADJ flies/NN) (like/VB
(a/DET banana/NN)))(time/NN (flies/VB (like/IN

(an/DET (arrow/NN))))). . . . . . . . .
. . . . . . . . .
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From CFG to PCFG

Choosing the best tree

English is NOT generated from CFG⇒ It’s generated by a
PCFG!
PCFG: probabilistic context free grammar. Just like a CFG,
but each rule has an associated probability.
All probabilities for the same LHS sum to 1.
Multiplying all the rule probs in a derivation gives the
probability of the derivation.
We want the tree with maximum probability.
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PCFG Example

a simple PCFG
1.0 S→ NP VP
0.3 NP→ Adj Noun
0.7 NP→ Det Noun
1.0 VP→ Vb NP
-
0.2 Adj→ fruit
0.2 Noun→ flies
1.0 Vb→ like
1.0 Det→ a
0.4 Noun→ banana
0.4 Noun→ tomato
0.8 Adj→ angry

Example

S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
1∗0.3∗0.2∗0.7∗1.0∗0.2∗1∗1∗0.4 =
0.0033
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Parsing with PCFG
So parsing is. . .

Parsing with a PCFG is finding the most probable
derivation for a given sentence.
This can be done quite efficiently with dynamic
programming (the CKY algorithm)

Obtaining the probabilitles
The same way we obtained the rules: we estimate them
from the Treebank.
P(LHS → RHS) = count(LHS→RHS)

count(LHS→♦)

This is called “Relative Frequency”.
(we probably need to add smoothing to get better
estimations, but let’s ignore it for this talk)
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So we know how to parse

Too bad this doesn’t really work
Parsing this way yield pretty bad results (around 60-70% of
the common measure)
Main reasons:

language is not really generated by PCFGs.
This is probably not how humans process language.

Secondary reason: Treebank derived grammars are not
very good.

Solutions
We need to get better grammars.
We do it by encoding some context into the grammar.

Yoav Goldberg Parsing Natural Language with PCFGs



Introduction
PCFG Basics

Better PCFG Parsers
The End

Language and Context Free Grammars
Parsing with CFGs
Choosing a good tree

So we know how to parse

Too bad this doesn’t really work
Parsing this way yield pretty bad results (around 60-70% of
the common measure)
Main reasons:

language is not really generated by PCFGs.
This is probably not how humans process language.

Secondary reason: Treebank derived grammars are not
very good.

Solutions
We need to get better grammars.
We do it by encoding some context into the grammar.

Yoav Goldberg Parsing Natural Language with PCFGs



Introduction
PCFG Basics

Better PCFG Parsers
The End

Language and Context Free Grammars
Parsing with CFGs
Choosing a good tree

So we know how to parse

Too bad this doesn’t really work
Parsing this way yield pretty bad results (around 60-70% of
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Lexicalization
Grammar Refinement
Automatic Grammar Refinement
Discriminative Reranking

1 Problem with context-freeness

S

NP

Nn

I

VP

Vb

ate

NP

Nn

Pizza

PP

Prep

with

NP

Nn

tomatoes

S

NP

Nn

I

VP

VP

Vb

ate

NP

Nn

Pizza

PP

Prep

with

NP

Nn

friends

A PCFG Can’t choose between these two structures!
After the word level, the sentences look the same..
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Lexicalization
Grammar Refinement
Automatic Grammar Refinement
Discriminative Reranking

Better Grammars 1: Lexicalization (adding words)

S/ate

NP/I

Nn

I

VP/ate

Vb

ate

NP/pizza

Nn

Pizza

PP/tomatoes

Prep

with

NP/tomatoes

Nn

tomatoes

S/ate

NP/I

Nn

I

VP/ate

VP/ate

Vb

ate

NP/pizza

Nn

Pizza

PP/friends

Prep

with

NP/friends

Nn

friends

Ah! Much better
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Discriminative Reranking

Better Grammars 1: Lexicalization (adding words)
Lexicalized Grammar

VP/ate → VP/ate PP/friends
VP/ate → VP/ate PP/tomatoes
NP/pizza → NP/pizza PP/friends
NP/pizza → NP/pizza PP/tomatoes

. . . but
Grammar is HUGE
Hard to estimate parameters (many rare or unseen events)

Fortunately. . .
Collins (1998), Charniak (1999) managed to do it.
Lexicalized Treebank grammars achieve accuracy of 88
parsing-measure
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Grammar is HUGE
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Better Grammars 2: non-lexical context

Apparently, we can do quite good without the words

Klein and Manning, standing on shoulders of Johnson,
Collins and others.
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Better Grammars 2: non-lexical context

Apparently, we can do quite good without the words

Klein and Manning, standing on shoulders of Johnson,
Collins and others.

1) Parent Annotation
S

NP-S

Nn-NP

I

VP-S

Vb-VP

ate

NP-VP

Nn-NP

Pizza

PP-NP

Prep-PP

with

NP-PP

Nn-NP

tomatoes

Yoav Goldberg Parsing Natural Language with PCFGs



Introduction
PCFG Basics

Better PCFG Parsers
The End

Lexicalization
Grammar Refinement
Automatic Grammar Refinement
Discriminative Reranking

Better Grammars 2: non-lexical context

Apparently, we can do quite good without the words

Klein and Manning, standing on shoulders of Johnson,
Collins and others.

2) Linguistically Motivated Tag Splits
AUX→ am | is | are | was | were | have | had | has AUX-HAVE→ have | had | has

AUX-BE→ am | is | are | was | were
IN→ while | as | if | that | for | of | in | from IN-CC→ while | as | if

IN-CM→ that | for
IN-PP→ of | in | from

CC→ and | but | & CC-1→ and
CC-2→ but
CC-3→ &
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Better Grammars 2: non-lexical context

Apparently, we can do quite good without the words

Klein and Manning, standing on shoulders of Johnson,
Collins and others.

3) Some other annotations
Mark any node dominating a verb.
Separate non-recursive NPs from regular NPs
Separate temporal (time) NPs from other NPs
etc, . . .
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Better Grammars 2: non-lexical context

Apparently, we can do quite good without the words

Klein and Manning, standing on shoulders of Johnson,
Collins and others.

3) Some other annotations
Mark any node dominating a verb.
Separate non-recursive NPs from regular NPs
Separate temporal (time) NPs from other NPs
etc, . . .

. . . and get an accuracy of 86.9 parsing-measure!
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Better Grammars 3: Automatic Grammar Refinement

Humans are quite good at refining the grammar. Computers. . .
are even better!

Petrov et al. 2006 (following Matsuzaki, 2005) – Automatic
grammar refinement.
Start with a grammar extracted from the Treebank.

Tiny: 98 non-terminal symbols. 4076 rules.
about 62 parsing-accuracy

Iteratively:
Split each symbol in 2 (e.g. NP⇒ NP1, NP2). Make splits
that maximize the likelihood of the Treebank.
Merge back “useless” splits to keep the grammar size
reasonable.
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Better Grammars 3: Automatic Grammar Refinement

. . . After 6 iterations (and a few days)
Big, but not huge: 1043 non-terminal symbols.

90.2 parsing-accuracy!
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Better Grammars 3: Automatic Grammar Refinement

Is it lexicalized?
Yes, but not much.
Every POS category can be split into at most 64
sub-categories.
So there may be 64 kinds of Nouns, 64 kinds of Verbs, etc.
This catches the distinctions between
comes,goes,drives (somewhere)
and
gives,takes,sells (something, someone)
but does not solve the Pizaa case.
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VBZ

VBZ-0 gives sells takes

VBZ-1 comes goes works

VBZ-2 includes owns is

VBZ-3 puts provides takes

VBZ-4 says adds Says

VBZ-5 believes means thinks

VBZ-6 expects makes calls

VBZ-7 plans expects wants

VBZ-8 is ’s gets

VBZ-9 ’s is remains

VBZ-10 has ’s is

VBZ-11 does Is Does

NNP

NNP-0 Jr. Goldman INC.

NNP-1 Bush Noriega Peters

NNP-2 J. E. L.

NNP-3 York Francisco Street

NNP-4 Inc Exchange Co

NNP-5 Inc. Corp. Co.

NNP-6 Stock Exchange York

NNP-7 Corp. Inc. Group

NNP-8 Congress Japan IBM

NNP-9 Friday September August

NNP-10 Shearson D. Ford

NNP-11 U.S. Treasury Senate

NNP-12 John Robert James

NNP-13 Mr. Ms. President

NNP-14 Oct. Nov. Sept.

NNP-15 New San Wall

JJS

JJS-0 largest latest biggest

JJS-1 least best worst

JJS-2 most Most least

DT

DT-0 the The a

DT-1 A An Another

DT-2 The No This

DT-3 The Some These

DT-4 all those some

DT-5 some these both

DT-6 That This each

DT-7 this that each

DT-8 the The a

DT-9 no any some

DT-10 an a the

DT-11 a this the

CD

CD-0 1 50 100

CD-1 8.50 15 1.2

CD-2 8 10 20

CD-3 1 30 31

CD-4 1989 1990 1988

CD-5 1988 1987 1990

CD-6 two three five

CD-7 one One Three

CD-8 12 34 14

CD-9 78 58 34

CD-10 one two three

CD-11 million billion trillion

PRP

PRP-0 It He I

PRP-1 it he they

PRP-2 it them him

RBR

RBR-0 further lower higher

RBR-1 more less More

RBR-2 earlier Earlier later

IN

IN-0 In With After

IN-1 In For At

IN-2 in for on

IN-3 of for on

IN-4 from on with

IN-5 at for by

IN-6 by in with

IN-7 for with on

IN-8 If While As

IN-9 because if while

IN-10 whether if That

IN-11 that like whether

IN-12 about over between

IN-13 as de Up

IN-14 than ago until

IN-15 out up down

RB

RB-0 recently previously still

RB-1 here back now

RB-2 very highly relatively

RB-3 so too as

RB-4 also now still

RB-5 however Now However

RB-6 much far enough

RB-7 even well then

RB-8 as about nearly

RB-9 only just almost

RB-10 ago earlier later

RB-11 rather instead because

RB-12 back close ahead

RB-13 up down off

RB-14 not Not maybe

RB-15 n’t not also
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Squeezing it a bit more

Now what?
Automatically refined grammars are almost the best we
can do
How do we improve upon that?

Observation: all decisions are quite localized. The process
does not look at complete trees. . .
Output k-best parses. Rank them based on tree-global
features (usually using machine learning).

This is the current state-of-the-art in parsing technology
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can do
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Output k-best parses. Rank them based on tree-global
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This is the current state-of-the-art in parsing technology
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So now you know how to parse (sort-of)
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Discussion

World’s best parsers work while hardly relying on words!
Either words are not very important. . . or we are not using
them correctly
⇒ lot’s of room for improvement. . . :)
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Thanks

Thanks
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