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Abstract. We present a segmentation-free method to retrieve keywords
from degraded historical documents. The proposed method works directly
on the gray scale representation and does not require any pre-processing
to enhance document images. The document images are subdivided into
overlapping patches of varying sizes, where each patch is described by
the bag-of-visual-words descriptor. The obtained patch descriptors are
hashed into several hash tables using kernelized locality-sensitive hashing
scheme for efficient retrieval. In such a scheme the search for a keyword
is reduced to a small fraction of the patches from the appropriate entries
in the hash tables. Since we need to capture the handwriting variations
and the availability of historical documents is limited, we synthesize a
small number of samples from the given query to improve the results of
the retrieval process.

We have tested our approach on historical document images in Hebrew
from the Cairo Genizah collection, and obtained impressive results.
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1 Introduction

An ongoing considerable effort for digitizing historical manuscripts have pro-
duced huge datasets. Since the documents are represented as images, it is essen-
tial to provide a search and retrieve engine that simplify and accelerate accessing
and processing the manuscripts. Current Optical Character Recognition (OCR)
systems perform badly when applied to degraded historical documents, which
leaves keyword spotting technique as a practical alternative [15]. In keyword
spotting, the retrieval is performed on the image domain, and the aim is to
locate regions in the image that are similar to the keyword query image.

The majority of word spotting approaches require the input to be segmented,
at least to the text line level [6,10,13,15–17]. However, in addition to the phys-
ical degradations, many handwritten documents exhibit varying line slopes and
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touching characters. Segmentation of such documents often results in united or
split words, and loss of ascenders and descenders. This in turn influences the
results of the subsequent search algorithms. We believe that the results of key-
word retrieval can be improved by employing segmentation-free approach.

In this paper we present a segmentation-free scheme to efficiently retrieve
keywords in gray scale historical documents. The scheme integrates bag-of-
visual-words representation (BoVW) [4] with kernelized locality-sensitive hash-
ing (KLSH) [11] and does not require any pre-processing image enhancement.
While the BoVW with KLSH have been used for object retrieval in computer
vision domain [11], this is the first time such scheme is applied for segmentation-
free text retrieval in document images.

In an off-line stage each document image is (logically) subdivided into over-
lapping patches of several sizes. The patches are described by a BoVW model,
and the obtained descriptors are hashed into several hash tables. The kernelized
locality-sensitive hash functions ensure, with high probability, that descriptors
of visually similar patches are placed into the same entry. Thus, we pre-compute
the hash entries for all the patches in our input images.

To search for a given query keyword, we generate its BoVW descriptor and
obtain the hash indices of the generated descriptor in each of the hash tables. The
data items from the corresponding entries are retrieved as candidates and are
searched to obtain the best matches. The search is fast due to the fact that the
subset of candidate patches is relatively small. Since the availability of historical
documents is limited and we need to capture the handwriting variations, we
synthesize a small number of samples from the given query to improve the results
of the retrieval process.

The presented scheme was tested on a set of Hebrew historical documents
from the Cairo Genizah collection1, which are highly degraded. Given that our
input images are not binarized, slant corrected or segmented, the results we get
are very impressive.

2 Related Work

Gatos and Pratikakis [7] presented a segmentation free word spotting approach
that applies binarization and skew correction, and then computes block-based
image descriptors for template matching. Rusinol et al. [18] introduced a patch-
based framework, where each document is split into a set of equal size overlap-
ping patches, and is represented by a feature-by-patch matrix. The patches are
described using bag-of-visual-words model over the extracted SIFT descriptors.
The feature-by-patch matrix is further refined by applying a latent semantic
indexing technique. Dovgalecs et al. [5] also utilized patch-based framework.
First, they evaluate a distance between the features of the query and each
patch. Then, the best results are filtered using longest weighted profile algorithm.
1 The Cairo Genizah (http://www.genizah.org/) is one of the largest collections of

Hebrew medieval manuscripts in the world. It contains a huge amount of documents
written between the 9th and 19th centuries AD.

http://www.genizah.org/
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Almazán et al. [1] represented documents with a grid of HOG descriptors, which
are compressed with Product Quantization in order to save the memory space.
Exemplar SVM is used to learn a better representation of the keyword queries,
and the regions most similar to the query are located using sliding window.

Keyword retrieval usually deals with searching a large number of items. To
make large-scale search efficient, commonly an approximate nearest-neighbor
(ANN) search technique is applied. However, most of the ANN algorithms suffer
from the curse of dimensionality. Indyk and Motwani [8] presented a locality-
sensitive hashing (LSH) technique to implement an efficient NN search on a large
collection of high dimensional items. The main idea of LSH is to use several hash
functions (with their corresponding hash tables) that hash similar items to the
same entry with high probability. The same hash functions are used to calculate
entry indices for a query, and only the items from these entries are further
searched. Kumar et al. [12] incorporated LSH for spotting words in a collection
of printed documents. The preprocessed documents are segmented into words,
which are represented by a combination of scalar, profile and structural features.
A Discrete Fourier Transform is applied to feature vectors and the obtained final
descriptors are hashed into the hash tables. Saabni and Bronstein [19] describe
the segmented word parts by multi angular descriptors. They use the boost-
map algorithm for embedding the feature space with the DTW measurement
to a Euclidean space. This embedding allows subsequent use of LSH for finding
k-nearest neighbors of a query image. Then, the candidate images are compared
to the query using the DTW distance.

3 The Methodology

The schematic overview of the presented method is depicted in Fig. 1. For our
input images we pre-compute a data structure of hash tables, where document
patches are stored according to their descriptors. Given a query keyword q, initial
candidates similar to q are retrieved from the data structure and are further
processed to obtain the final results. To capture the handwriting variations and
overcome the problem of limited available samples, we synthesize a small number
of various instances from the given query to improve the retrieval process.

3.1 Extracting the Patch Descriptors

The presented method begins with calculating dense SIFT descriptors on a regu-
lar grid of 5 pixels imposed over the image, similar to [5,18]. At each grid vertex
three descriptors, which correspond to three spatial sizes, are calculated. These
sizes are chosen with respect to the font dimensions, which are automatically
approximated using the technique developed in our lab [3]. Descriptors with low
magnitude are ignored, as such descriptors usually correspond to non-text areas.
Once the descriptors are calculated, they are quantized into n clusters using the
k-means algorithm.
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Fig. 1. The overview of the on-line and off-line stages of the presented scheme

Next, we subdivide each document into overlapping patches, sampled every
p pixels in x and y directions. Previous approaches adopted equal size patches
[5,18]. We chose to extract patches of several widths at each location, to take
into account different word lengths. Each patch is represented by the bag-of-
visual-words descriptors [4].

Let D = {w1, w2, . . . , wn} be a dictionary of visual words. The BoVW rep-
resentation is a vector v = (v1, v2, . . . , vn), where vi is the occurrence rate of
wi in the patch. Traditional BoVW representation does not take into account
spatial distribution of visual words, and to overcome this limitation we impose
2 × 2 grid over the patch, resulting in 4 equal cells. The BoVWs of each cell
are calculated and concatenated to generate the patch descriptor. This is similar
to spatial pyramid matching technique presented by Lazebnik et al. [14], except
that we use the highest pyramid level only.

3.2 Constructing the Data Structure

The aim of the data structure is to support fast search operations over a huge
number of high dimensional descriptors. To accelerate the search, we use the
LSH technique [8], which approximates k-nearest neighbors search on large col-
lections of high dimensional datasets. LSH consists of l hash tables T1, T2, ..., Tl

and l hash functions f1, f2, ..., fl. Each hash function projects the objects onto
randomly chosen low-dimensional Hamming space. The hash functions are con-
structed in such a way that the probability of the two objects to be hashed to the
same entry is strictly decreasing with the distance between them. As the total
number of entries may be large, to save memory space the non-empty entries
are compressed using standard hashing; i.e., there are two levels of hashing: the
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locality-sensitive hash functions in the first level and standard hash functions
in the second level. The main assumption of the LSH is that the data objects
come from Euclidean space and the distance function is Euclidean distance. In
our situation we are dealing with BoVW descriptors, which are histograms, and
the χ2 distance is an appropriate measure for comparing two histograms 2. Kulis
and Grauman [11] presented kernelized locality-sensitive hashing for k-nearest
neighbors searches over arbitrary kernel functions. Similar to standard LSH, the
hash functions are constructed using random projections, but the projections
are calculated using the kernel function and the sparse set of examples from the
collection itself. We use the KLSH with χ2-kernel, Kχ2 , as formulated in Eq. 1,
where V1 and V2 are two feature vectors and d is their dimension. Finally, the
extracted patch descriptors are hashed to each of the hash tables. We actually
store pointers to the descriptors and not the descriptors themselves.

Kχ2(V1, V2) = exp

(
1
2

d∑
i=1

(V1(i) − V2(i))
2

V1(i) + V2(i)

)
(1)

3.3 The Retrieval Process

To retrieve patches similar to a query image we obtain the descriptor of the query
(in the same manner as described in Section 3.1), calculate the hash indices for
the hash tables, and retrieve the items from the corresponding entries. The
retrieved items are ranked according to their χ2 distance from the query. Since
there are overlapping patches, from each set of patches overlapping more than
20% we pick only the patch with the smallest χ2 distance from the query, and
discard the rest. Finally, the top results are returned to the user.

Handwritten text is characterized by variations in size, slant, noise, etc. In
our previous research [16] we showed that employing multiple models for a
query can improve retrieval results. However, it is not always possible to get suf-
ficient number of samples for a given pattern in historical documents. Therefore,
we synthesize additional samples from the original query by applying limited
resizing, slant change, dilation, erosion, and adding noise (the noise is generated
according to the degradation model [9]). After generating additional samples of
the query, we proceed as is described above, except that we calculate indices for
all the samples of the query in each hash table. We define the distance between
a patch and the samples to be the average χ2 distance between the patch and
each of the samples.

4 Experiments and Results

The proposed method was tested on 12 document images from the Cairo Genizah
collection, examples of which are presented in Fig. 2. The pages exhibit a variety
of degradations, such as smeared characters, bleed through, and stains.
2 Let H1 and H2 be two histograms with b bins. The χ2 distance is defined to be:

χ2(H1, H2) = 1
2

∑b
i=1

(H1(i)−H2(i))2

H1(i)+H2(i)
.
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Fig. 2. Samples of the document pages on which we performed our tests

To build the dictionary, we used one of the pages and have experimented
with dictionary sizes varying from 100 to 2000. The dictionary of sizes 400−500
performed best on our document set. The patches were extracted every 25 pixels,
and at each sample point we extracted patches of four sizes: 100 × 75, 135 × 75,
170× 75 and 205× 75 pixels (see Fig. 3a). The patches that did not contain any
visual word were automatically detected and discarded. The total number of the
extracted patches from all the 12 pages in our document set was 161952.

(a) (b) (c)

Fig. 3. (a) Examples of sampled patches; (b) The queries and corresponding retrieved
results. The topmost image in each column is the query word; (c) The synthetically
created images of two Hebrew words. The original image is the leftmost image in each
group. The synthetic samples are created by re-sizing, adding noise, slant, dilating and
eroding the original query.

The ground truth for the documents was manually built using the web-based
system developed in our lab [2]. We randomly chose 50 queries, and the presented
results were averaged over all the queries. The performance was evaluated in
terms of Mean Average Precision (MAP). A retrieved patch is considered true
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(a) (b)

Fig. 4. (a) The performance of KLSH with varying number of hash functions and
one sample per query. Percentage of the inspected patches versus the number of hash
functions used. As we see, less than 5% of the patches from the database are inspected,
even using 40 hash functions.

positive if it overlaps more than 50% with the bounding box of the relevant word
in the document.

In the first set of experiments we analyzed how the number of hash func-
tion influences the retrieval results, when one sample per query is used. For
this experiment, we varied the hash functions number from 5 to 40, and the
corresponding MAPs are presented in Fig. 4a. The best being 0.6 for 40 hash
functions. For comparison, the MAP of linear searches, which search over all
patches, is 0.6818. As can be noted, the performance of the KLSH gets close to
the results of linear search as the number of hash function increases. In contrast,
the percentage of the inspected patches is less than 5% of the entire database,
even when using 40 hash functions, as depicted in Fig. 4b. Due to the small
fraction of inspected patches, our method (with 40 hash functions) is 10 times
faster then the linear search. For comparison, we have downloaded the code pro-
vided by Almazán et al. [1] and used the same evaluation protocol. The results
of [1] with the best configuration tuned for our documents is 0.5508. For the
time being we do not compare run-time as our code still runs on Matlab and is
not optimized.

Fig. 3b illustrates some retrieval results for four queries, using 30 hash func-
tions and one query sample. The query is the topmost image in each column. As
seen, the obtained results are promising for documents that have not undergone
any image enhancement. Sometimes false positive words are retrieved (see the
last two words in the leftmost column in Fig. 3b).

In the second set of experiments, we synthesized additional samples for each
query and checked the influence of the number of samples on the performance.
Fig. 3c illustrates examples of synthetic samples for two Hebrew words. The
image on the left in each example is the original image, and to right of the
original are its synthetically created samples. We ran experiments with 5, 10, 15
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(a) (b)

Fig. 5. (a) The performance results using 5, 10, 15 and 20 samples per query; (b)
Percentage of the inspected patches for varying number of samples

and 20 samples. Fig. 5a illustrates the corresponding MAPs for varying number
of hash functions. We can observe a significant improvement in precision rate
from 5 samples (in comparison to using one sample). On the other hand, we
do not observe further improvement when we increase the number of samples
above 10. This might indicate that it is enough to use 10 samples. In addition,
we noticed that using small number of samples per query can compensate for the
need for a large number of hash tables. For example, the results with 10 samples
and 10 hash tables even slightly better than the results with one sample and 40
hash functions. Finally, Fig. 5b illustrates the influence of the number of samples
on the number of the inspected patches. As seen, the fraction of the inspected
patches grows rapidly with the number of samples. However, it seems that 10
samples per query and 20 hash function give the reasonable trade-off between
the accuracy and the number of searched patches, which is still less than 15% of
the database.

5 Conclusions and Future Work

In this paper we presented a segmentation-free approach to spot keywords in
degraded handwritten historical documents. The method does not require
binarization or any other image enhancement. We integrate the BoVW rep-
resentation with kernalized locality-sensitive hashing to create the input data
structure of hash tables and descriptors for the patches of varying size in docu-
ment images. We showed that, almost without compromising accuracy, we search
less that 5% of the patches even when 40 hash functions are used. Furthermore,
we demonstrated that additional synthetically generated samples of the query
improve the retrieval results and reduce the need for a large number of hash
functions. We found that 20 hash functions suffice when we use 10 samples of
the query. While our experiments focus on Hebrew handwritten historical doc-
uments, the scheme is general and can be applied to historical documents in
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other languages. At future research we plan to inspect the influence of spatial
pyramid co-occurrence [20] incorporated into BoVW and to perform tests on
public document collections of handwritten historical documents.
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