Hash tables
Two events \(A, B \) are independent if

\[
\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]
\]

Conditional probability:

\[
\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}
\]

The expectation of a (discrete) random variable \(X \) is

\[
E[X] = \sum_k k \cdot \Pr[X = k]
\]

In particular, if the values of \(X \) are 0 or 1, then

\[
E[X] = \Pr[X = 1].
\]
Union bound: For events A_1, \ldots, A_k,

$$\Pr \left[\bigcup_{i=1}^{k} A_i \right] \leq \sum_{i=1}^{k} \Pr[A_i]$$

Linearity of expectation: For random variables X_1, \ldots, X_k,

$$E \left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} E[X_i]$$
A dictionary is a data-structure that stores a set S of elements, where each element x has a field $x.key$, and supports the following operations:

- **Search(S, k)** Return an element $x \in S$ with $x.key = k$
- **Insert(S, x)** Add x to S.
- **Delete(S, x)** Delete x from S.

We will assume that
- The keys are from $U = \{0, \ldots, u - 1\}$.
- The keys are distinct.
Direct addressing

- S is stored in an array $T[0..m − 1]$. The entry $T[k]$ contains a pointer to the element with key k, if such element exists, and NULL otherwise.
- **Search**(T, k): return $T[k]$.
- **Insert**(T, x): $T[x.key] ← x$.
- **Delete**(T, x): $T[x.key] ←$ NULL.
- What is the problem with this structure?
In order to reduce the space complexity of direct addressing, map the keys to a smaller range \(\{0, \ldots m − 1\} \) using a hash function.

There is a problem of collisions (two or more keys that are mapped to the same value).

There are two ways to handle collisions:

- Chaining
- Open addressing
Let $h : U \rightarrow \{0, \ldots, m - 1\}$ be a hash function ($m < u$).

S is stored in a table $T[0..m - 1]$ of linked lists. The element $x \in S$ is stored in the list $T[h(x.key)]$.

$\text{Search}(T, k)$: Search the list $T[h(k)]$.

$\text{Insert}(T, x)$: Insert x at the head of $T[h(x.key)]$.

$\text{Delete}(T, x)$: Delete x from $T[h(x.key)]$.

$S = \{6, 9, 19, 26, 30\}$

$m = 5$, $h(x) = x \mod 5$
Assumption of simple uniform hashing: any element is equally likely to hash into any of the m slots, independently of where other elements have hashed into.

The above assumption is true when the keys are chosen uniformly and independently at random (with repetitions), and the hash function satisfies $|\{k \in U : h(k) = i\}| = u/m$ for every $i \in \{0, \ldots, m-1\}$.

We want to analyze the performance of hashing under the assumption of simple uniform hashing. This is the balls into bins problem.

Suppose we randomly place n balls into m bins. Let X be the number of balls in bin 1.

The time complexity of a random search in a hash table is $\Theta(1 + X)$.

Hash tables
Let $\alpha = n/m$.

Claim

$E[X] = \alpha$.

Proof.

Let l_j be a random variable which is 1 if the j-th ball is in bin 1, and 0 otherwise. $X = \sum_{j=1}^{n} l_j$, so

$$E[X] = E[\sum_{j=1}^{n} l_j] = \sum_{j=1}^{n} E[l_j] = \sum_{j=1}^{n} \Pr[l_j = 1] = n \cdot \frac{1}{m}$$
The distribution of X

Claim

$\Pr[X = r] \approx \frac{e^{-\alpha} \alpha^r}{r!}$. (i.e., X has approximately Poisson distribution).

Proof.

$\Pr[X = r] = \binom{n}{r} \left(\frac{1}{m}\right)^r \left(1 - \frac{1}{m}\right)^{n-r} = \frac{n(n-1)\cdots(n-r+1)}{r!} \frac{1}{m^r} \left(1 - \frac{1}{m}\right)^{n-r}$

If m and n are large, $n(n-1)\cdots(n-r+1) \approx n^r$ and $(1 - \frac{1}{m})^{n-r} \approx e^{-n/m}$. Thus, $\Pr[X = r] \approx \frac{e^{-n/m} (n/m)^r}{r!}$.

Hash tables
The maximum number of balls in a bin

Let Y be the maximum number of balls in some bin.

Claim

For $m = n$, $\Pr[Y \geq R] \leq \frac{1}{n^{1.5}}$, where $R = e \ln n / \ln \ln n$.

Proof.

Let X_i be the number of balls in bin i.

$$
\Pr[Y \geq r] \leq \sum_{i=1}^{n} \Pr[X_i \geq r] = n \cdot \Pr[X \geq r]
$$

$$
\Pr[X \geq r] \leq \binom{n}{r} \left(\frac{1}{n}\right)^r \leq \frac{n^r}{r!} \cdot \frac{1}{n^r} = \frac{1}{r!} \leq \left(\frac{e}{r}\right)^r
$$

where the last inequality is true since $e^r = \sum_{i=0}^{\infty} \frac{r^i}{i!} \geq \frac{r^r}{r!}$.
Proof (continued).

\[\Pr[Y \geq R] \leq n \cdot \left(\frac{e}{R} \right)^R \]

\[
= n \left(\frac{\ln \ln n}{\ln n} \right)^{e \ln n / \ln \ln n}
\]

\[
= e^{\ln n} \cdot e^{(\ln \ln \ln n - \ln \ln n) \cdot e \ln n / \ln \ln n}
\]

\[
= e^{- (e-1) \ln n + \ln n \cdot \frac{e \ln \ln n}{\ln \ln n}}
\]

\[
\leq e^{-1.5 \ln n} = \frac{1}{n^{1.5}}.
\]
We wish to maintain \(n = O(m) \) in order to have \(\Theta(1) \) search time.

This can be achieved by rehashing. Suppose we want \(n \leq m \). When the table has \(m \) elements and a new element is inserted, create a new table of size \(2m \) and copy all elements into the new table.

The cost of rehashing is \(\Theta(n) \).
Universal hash functions

Definition
A collection \(\mathcal{H} \) of hash functions is a **universal** if for every pair of distinct keys \(x, y \in U \), \(\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{2}{m} \).

Example
Let \(p \) be a prime number larger than \(u \).
\[
f_{a,b}(x) = ((ax + b) \mod p) \mod m
\]
\(\mathcal{H}_{p,m} = \{ f_{a,b} | a \in \{1, 2, \ldots, p - 1\}, b \in \{0, 1, \ldots, p - 1\} \} \)
Universal hash functions

Theorem

Suppose that \(\mathcal{H} \) is a universal collection of hash functions. If a hash table for \(S \) is built using a randomly chosen \(h \in \mathcal{H} \), then for every \(k \in U \), the expected time of \(\text{Search}(S, k) \) is \(\Theta(1 + n/m) \).

Proof.

Let \(X = \text{length of } T[h(k)] \).

\[
X = \sum_{y \in S} l_y \text{ where } l_y = 1 \text{ if } h(y.\text{key}) = h(k) \text{ and } l_y = 0 \text{ otherwise.}
\]

\[
E[X] = E \left[\sum_{y \in S} l_y \right] = \sum_{y \in S} E[l_y] = \sum_{y \in S} \Pr_{h \in \mathcal{H}} [h(y.\text{key}) = h(k)] \\
\leq 1 + n \cdot \frac{2}{m}.
\]
Under the assumption of simple uniform hashing, the expected time of a search is $\Theta(1 + \alpha)$ time.

If $\alpha = \Theta(1)$, and under the assumption of simple uniform hashing, the worst case time of a search is $\Theta(\log n / \log \log n)$, with probability at least $1 - 1/n^{\Theta(1)}$.

If the hash function is chosen from a universal collection at random, the expected time of a search is $\Theta(1 + \alpha)$.

The worst case time of insert is $\Theta(1)$ if there is no rehashing.
Interpreting keys as natural numbers

- How can we convert floats or ASCII strings to natural numbers?
- An ASCII string can be interpreted as a number in base 128.

Example

For the string CLRS, the ASCII values of the characters are C = 67, L = 76, R = 82, S = 83. So CLRS is \((67 \cdot 128^3) + (76 \cdot 128^2) + (82 \cdot 128^1) + (83 \cdot 128^0) = 141,764,947.\)
Horner’s rule

- Horner’s rule:
 \[a_dx^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0 = (\cdots ((a_dx + a_{d-1})x + a_{d-2})x + \cdots)x + a_0.\]

- Code:

  ```
  y = a_d 
  for i = d - 1 to 0 
  y = a_i + xy 
  ```

- If \(d\) is large the value of \(y\) is too big.

- Solution: evaluate the polynomial modulo \(p\):

  ```
  y = a_d 
  for i = d - 1 to 0 
  y = (a_i + xy) \mod p 
  ```
Suppose we are given strings P and T, and we want to find all occurrences of P in T.

The Rabin-Karp algorithm is as follows:

- Compute $h(P)$ for every substring T' of T of length $|P|$.
- If $h(T') = h(P)$ check whether $T' = P$.

The values $h(T')$ for all T' can be computed in $\Theta(|T|)$ time using rolling hash.

Example

Let $T = \text{BGUCS}$ and $P = \text{GUC}$. Let $T_1 = \text{BGU}$, $T_2 = \text{GUC}$.

$$h(T_1) = (66 \cdot 128^2 + 71 \cdot 128 + 85) \mod p$$

$$h(T_2) = (71 \cdot 128^2 + 85 \cdot 128 + 67) \mod p$$

$$= (h(T_1) - 66 \cdot 128^2) \cdot 128 + 67 \mod p$$
Applications

- **Data deduplication**: Suppose that we have many files, and some files have duplicates. In order to save storage space, we want to store only one instance of each distinct file.

- **Distributed storage**: Suppose we have many files, and we want to store them on several servers.
Let m denote the number of servers.

The simple solution is to use a hash function $h : U \rightarrow \{1, \ldots, m\}$, and assign file x to server $h(x)$.

The problem with this solution is that if we add a server, we need to do rehashing which will move most files between servers.
Suppose that the server have identifiers \(s_1, \ldots, s_m \).

Let \(h : U \to [0, 1] \) be a hash function.

For each server \(i \) associate a point \(h(s_i) \) on the unit circle.

For each file \(f \), assign \(f \) to the server whose point is the first point encountered when traversing the unit cycle anti-clockwise starting from \(h(f) \).
Suppose that the server have identifiers s_1, \ldots, s_m.

Let $h : U \rightarrow [0, 1]$ be a hash function.

For each server i associate a point $h(s_i)$ on the unit circle.

For each file f, assign f to the server whose point is the first point encountered when traversing the unit cycle anti-clockwise starting from $h(f)$.
Distributed storage: Consistent hashing

- When a new server $m + 1$ is added, let i be the server whose point is the first server point after $h(s_{m+1})$.
- We only need to reassign some of the files that were assigned to server i.
- The expected number of files reassignments is $n/(m + 1)$.
Linear probing

- In the following, we assume that the elements in the hash table are keys with no satellite information.
- To insert an element \(k \), try to insert to \(T[h(k)] \).
 If \(T[h(k)] \) is not empty, try
 \(T[h(k) + 1 \mod m] \), then try
 \(T[h(k) + 2 \mod m] \) etc.
- Code:
  ```
  for i = 0, \ldots, m - 1
    j = h(k) + i \mod m
  if T[j] = NULL OR ...
    T[j] = k
  return error “hash table overflow”
  ```
Linear probing

- In the following, we assume that the elements in the hash table are keys with no satellite information.

- To insert an element \(k \), try to insert to \(T[h(k)] \).

 If \(T[h(k)] \) is not empty, try \(T[h(k) + 1 \text{ mod } m] \), then try \(T[h(k) + 2 \text{ mod } m] \) etc.

- Code:

  ```
  for i = 0, \ldots, m - 1
  j = h(k) + i \text{ mod } m
  if T[j] = NULL OR ...
    T[j] = k
  return error "hash table overflow"
  ```

Hash tables

0 1 2 3 4 14 5 6 7 8 9

insert(T,14)
Linear probing

- In the following, we assume that the elements in the hash table are keys with no satellite information.
- To insert an element k, try to insert to $T[h(k)]$.
 - If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.
- Code:
  ```
  for i = 0, \ldots, m - 1
  j = h(k) + i \mod m
  if T[j] = NULL OR ...
  j = h(k) + i \mod m
  T[j] = k
  return error “hash table overflow”
  ```
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert an element k, try to insert to $T[h(k)]$.

If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Code:

```c
for i = 0, \ldots, m - 1
    j = h(k) + i \mod m
    if T[j] = NULL OR ...
        T[j] = k
        return error "hash table overflow"
```

Hash tables
Linear probing

In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert an element k, try to insert to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Code:

```c
for i = 0, \ldots, m - 1
    j = h(k) + i \mod m
    if T[j] = NULL OR ...
        T[j] = k
    return error “hash table overflow”
```
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert an element k, try to insert to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Code:

```
for i = 0, \ldots, m - 1
    j = h(k) + i \mod m
    if T[j] = NULL OR ...
        T[j] = k
        return
error "hash table overflow"
```
Linear probing

- In the following, we assume that the elements in the hash table are keys with no satellite information.
- To insert an element k, try to insert to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.
- Code:

```c
for i = 0, \ldots, m - 1
    j = h(k) + i \mod m
    if T[j] = NULL OR ...
        T[j] = k
        return
error “hash table overflow”
```

insert(T,49)
Insert

How to perform Search?

search(T,55)
Search(T, k) is performed as follows:

\[
\text{for } i = 0, \ldots , m - 1 \\
\quad j = h(k) + i \mod m \\
\quad \text{if } T[j] = k \\
\quad \quad \text{return } j \\
\quad \text{if } T[j] = \text{NULL} \\
\quad \quad \text{return } \text{NULL} \\
\text{return } \text{NULL}
\]
Delete method 1: To delete element k, store in $T[h(k)]$ a special value DELETED.
Delete method 2: Erase \(k \) from the table (replace it by NULL) and also erase all the elements in the block of \(k \). Then, reinsert the latter elements to the table.
Delete method 2: Erase k from the table (replace it by NULL) and also erase all the elements in the block of k. Then, reinsert the latter elements to the table.
Delete method 2: Erase k from the table (replace it by NULL) and also erase all the elements in the block of k. Then, reinsert the latter elements to the table.
Open addressing is a generalization of linear probing.

Let
\[h : U \times \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\} \]
be a hash function such that
\(\{h(k, 0), h(k, 1), \ldots, h(k, m - 1)\} \) is a permutation of \(\{0, \ldots, m - 1\} \) for every \(k \in U \).

The slots examined during search/insert are \(h(k, 0) \), then \(h(k, 1) \), \(h(k, 2) \) etc.

In the example on the right,
\[h(k, i) = (h_1(k) + ih_2(k)) \mod 13 \]
where
\begin{align*}
 h_1(k) &= k \mod 13 \\
 h_2(k) &= 1 + (k \mod 11)
\end{align*}
Insertion is the same as in linear probing:

```
for i = 0, ..., m - 1
    j = h(k, i)
    if T[j] = NULL OR T[j] = DELETED
        T[j] = k
    return error “hash table overflow”
```

Deletion is done using delete method 1 defined above (using special value DELETED).
Double hashing

- In the double hashing method,
 \[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]
 for some hash functions \(h_1 \) and \(h_2 \).
- The value \(h_2(k) \) must be relatively prime to \(m \) for the entire hash table to be searched. This can be ensured by either
 - Taking \(m \) to be a power of 2, and the image of \(h_2 \) contains only odd numbers.
 - Taking \(m \) to be a prime number, and the image of \(h_2 \) contains integers from \(\{1, \ldots, m - 1\} \).
- For example,
 \[h_1(k) = k \mod m \]
 \[h_2(k) = 1 \mod m' \]
 where \(m \) is prime and \(m' < m \).
Assume uniform hashing: the probe sequence of each key is equally likely to be any of the $m!$ permutations of $\{0, \ldots, m - 1\}$.

Assuming uniform hashing and no deletions, the expected number of probes in a search is

- At most $\frac{1}{1 - \alpha}$ for unsuccessful search.
- At most $\frac{1}{\alpha} \ln \frac{1}{1 - \alpha}$ for successful search.