In an amortized analysis, the time of a sequence of operations is averaged.

- Average does not mean averaging over a distribution of inputs.
- No probability is involved.
- We do mean average cost in the worst case.

We’ll look at 3 methods:
- aggregate analysis
- accounting method
- potential method
Aggregate Analysis

• We show that
 – For all n, a sequence of n operations takes worst-case \(T(n) \) in total.

• Thus,
 – In the worst case, the \textit{amortized cost} (average cost) per operation is therefore \(T(n)/n \).

Stack with Multi-Pop Operations

• Operations:
 – \texttt{push} \((S, x)\).
 – \texttt{pop} \((S)\).
 – \texttt{multipop} \((S, k)\):

 \[
 \text{while } (S \neq \emptyset \text{ \& } k > 0) \text{ do} \\
 \hspace{1cm} \text{pop}(S), \ k = k - 1
 \]

• Worst case Complexity for a sequence of n operations.
 – At most \(n \) pushes.
 – Each object can be popped only once, hence, at most \(n \) pops, including those in multi-pop.
 – Therefore, total cost = \(O(n) \), and average = \(O(n)/n = O(1) \).
Binary Counters

- k-bit binary counter $A[0 \ldots k-1]$ of bits,
 - $A[0]$ is the least significant bit, and $A[k-1]$ is the most significant bit.
 - Counts upward from 0.
 - Value of counter is: $\sum_{i=0}^{k-1} A[i] 2^i$
 - To increment:
 - **increment** (A, k)

 while $(i < k \& A[i] = 1)$ do

 $A[i] = 0$
 $i = i + 1$

 if $(i < k)$ then
 $A[i] \leftarrow 1$

- Cost of increment = Θ(# of flipped bits).

Tzachi (Isaac) Rosen

<table>
<thead>
<tr>
<th>Value</th>
<th>Counter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 0 0 1 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0 0 1 1 0</td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0 0 1 1 1</td>
</tr>
<tr>
<td>8</td>
<td>0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 0 1 0 0 1</td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 0 1 0 1 0</td>
</tr>
<tr>
<td>11</td>
<td>0 0 0 0 1 0 1 1</td>
</tr>
<tr>
<td>12</td>
<td>0 0 0 0 1 1 0 0</td>
</tr>
<tr>
<td>13</td>
<td>0 0 0 0 1 1 0 1</td>
</tr>
<tr>
<td>14</td>
<td>0 0 0 0 1 1 1 0</td>
</tr>
<tr>
<td>15</td>
<td>0 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>16</td>
<td>0 0 0 1 0 0 0 0</td>
</tr>
</tbody>
</table>

Binary Counters

<table>
<thead>
<tr>
<th>bit</th>
<th>flips how often</th>
<th>times in n INCREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>1/2 the time</td>
<td>$[n/2]$</td>
</tr>
<tr>
<td>2</td>
<td>1/4 the time</td>
<td>$[n/4]$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>1/2^i the time</td>
<td>$[n/2^i]$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i \geq k$</td>
<td>never</td>
<td>0</td>
</tr>
</tbody>
</table>

Therefore, total # of flips = $\sum_{i=0}^{k-1} [n/2^i]$

< $\sum_{i=0}^{\infty} 1/2^i$

= $n \left(\frac{1}{1 - 1/2} \right)$

= $2n$.

Therefore, n INCREMENTS costs $O(n)$.

Tzachi (Isaac) Rosen
Accounting Method

- Assign different charges to different operations.
 - Some are charged more than actual cost, some are charged less.
 - **Amortized cost** = amount we charge.
 - When amortized cost > actual cost, store the difference on a credit object.
 - Use credit later to pay for operations whose actual cost > amortized cost.
 - Need credit to never go negative.

Let $c_i = \text{actual cost of } i\text{th operation}$.

\[
\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i \quad \text{for all sequences of } n \text{ operations.}
\]

Total credit stored = $\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$.

Tzachi (Isaac) Rosen
Stack with Multi-Pop Operations

Stack

<table>
<thead>
<tr>
<th>operation</th>
<th>actual cost</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k, s)</td>
<td>0</td>
</tr>
</tbody>
</table>

Intuition: When pushing an object, pay $2.

- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Therefore, total amortized cost, = $O(n)$, is an upper bound on total actual cost.

Binary Counters

Binary counter

Charge 2 to set a bit to 1.

- 1 pays for setting a bit to 1.
- 1 is prepayment for flipping it back to 0.
- Have 1 of credit for every 1 in the counter.
- Therefore, credit ≥ 0.

Amortized cost of INCREMENT:

- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized cost \leq 2.
- For n operations, amortized cost = $O(n)$.
Potential Method

• Like the accounting, but credit stored with the entire structure.
 – Accounting method stores credit with specific objects.
 – Potential method stores potential in the data structure as a whole.
 – Can release potential to pay for future operations.
 – Most flexible of the amortized analysis methods.

Tzachi (Isaac) Rosen

\[D_i = \text{data structure after } i\text{th operation} \]
\[D_0 = \text{initial data structure} \]

• Define a potential function \(\Phi: D \rightarrow \mathbb{R} \)

• Let
 – \(c_i = \text{actual cost of } i\text{th operation} \)

• Define
 – amortized cost of \(i\text{th operation} \)
 \[\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \]
 \[= c_i + \Delta \Phi(D_i) \]
 \(\Delta \Phi(D_i) \): increase in potential due to \(i\text{th operation} \)

Tzachi (Isaac) Rosen
Potential Method

Total amortized cost \[= \sum_{i=1}^{n} \tilde{c}_i \]
\[= \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) \]
(teleseoping sum: every term other than \(D_0\) and \(D_n\)
is added once and subtracted once)
\[= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0). \]

If we require that \(\Phi(D_i) \geq \Phi(D_0)\) for all \(i\), then the amortized cost is always an upper bound on actual cost.
In practice: \(\Phi(D_0) = 0\), \(\Phi(D_i) \geq 0\) for all \(i\).

Stack with Multi-Pop Operations

\[\Phi = \# \text{ of objects in stack}\]
\[= \# \text{ of S1 bills in accounting method}\]

\(D_0 = \text{empty stack} \Rightarrow \Phi(D_0) = 0.\)

Since \# of objects in stack is always \(\geq 0\), \(\Phi(D_i) \geq 0 = \Phi(D_0)\) for all \(i\).

<table>
<thead>
<tr>
<th>operation</th>
<th>actual cost</th>
<th>(\Delta \Phi)</th>
<th>amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>((s + 1) - s = 1)</td>
<td>1 + 1 = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>where (s = # \text{ of objects initially})</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>((s - 1) - s = -1)</td>
<td>1 - 1 = 0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>(k' = \min(k, s))</td>
<td>((s - k') - s = -k')</td>
<td>(k' - k' = 0)</td>
</tr>
</tbody>
</table>

Therefore, amortized cost of a sequence of \(n\) operations = \(O(n)\).
Binary Counters

\(\Phi = b_i = \# \) of 1’s after \(i \)th INCREMENT

Suppose \(i \)th operation resets \(t \) bits to 0.
\(c_i \leq t_i + 1 \) (resets \(t_i \) bits, sets \(\leq 1 \) bit to 1)

- If \(b_i = 0 \), the \(i \)th operation reset all \(k \) bits and didn’t set one, so
 \(b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} - t_i \).
- If \(b_i > 0 \), the \(i \)th operation reset \(t_i \) bits, set one, so
 \(b_i = b_{i-1} - t_i + 1 \).

Either way, \(b_i \leq b_{i-1} - t_i + 1 \).

Therefore,
\[
\Delta \Phi(D_i) \leq (b_{i-1} - t_i + 1) - b_{i-1} = 1 - t_i .
\]
\[
\hat{c}_i = c_i + \Delta \Phi(D_i) \\
\leq (t_i + 1) + (1 - t_i) = 2 .
\]

If counter starts at 0, \(\Phi(D_0) = 0 \).

Therefore, amortized cost of \(n \) operations = \(O(n) \).

Dynamic Tables

- Description
 - A table, maybe a hash table.
 - Don’t know in advance how many objects will be stored in it.
 - When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
 - When it gets sufficiently small, might want to reallocate with a smaller size.
Dynamic Tables

• Goals
 – $O(1)$ amortized time per operation.
 – Unused space always \leq constant fraction of allocated space.

 • Load factor $\alpha = \frac{\text{num}}{\text{size}}$, where

 – num = # items stored
 – size = allocated size.

 • If size = 0, then num = 0. Call $\alpha = 1$.

 • Never allow $\alpha > 1$.

 • Keep $\alpha >$ a constant fraction.

Tzachi (Isaac) Rosen

Dynamic Tables

• Consider only insertion.
 – When the table becomes full, double its size and reinsert all existing items.
 – Guarantees that $\alpha \geq 1/2$.
 – The actually insertion is always an elementary one.
Dynamic Tables

\[
\text{inset (} T, x) = \begin{cases}
T = \text{allocate table with 1 slot} & \text{if (size}(T) = 0) \\
T = \text{allocate table with 2 \cdot size}(T) \text{ slots} & \text{if (num}(T) = \text{size}(T)) \\
\text{insert all items in } T \text{ into } NT \\
\text{free } T \\
T = NT \\
\text{insert } x \text{ into } T
\end{cases}
\]

Initially, \(T \) is empty, so \(\text{num}(T) = \text{size}(T) = 0. \)

Aggregate Analysis

\(c_i = \text{actual cost of } i\text{th operation} \)

- If not full, \(c_i = 1. \)
- If full, have \(i - 1 \) items in the table at the start of the \(i\text{th operation}. \) Have to copy all \(i - 1 \) existing items, then insert \(i\text{th item} \Rightarrow c_i = i. \)

\[
c_i = \begin{cases}
i & \text{if } i - 1 \text{ is exact power of 2} \\
1 & \text{otherwise}
\end{cases}
\]

Total cost \[
\begin{align*}
\sum_{i=1}^{n} c_i \\
\leq n + \sum_{j=1}^{\lfloor \log_2 n \rfloor} 2^j \\
= n + \frac{2^\lfloor \log_2 n \rfloor + 1}{2 - 1} - 1 \\
< n + 2n \\
= 3n
\end{align*}
\]
Accounting Method

• Charge $3 per insertion of x.
 – $1 pays for x’s insertion.
 – $1 pays for x to be moved in the future.
 – $1 pays for some other item to be moved.

• Total cost = $O(3n)$

Potential Method

$\Phi(T) = 2 \cdot num[T] - size[T]$

• Initially, $num = size = 0 \Rightarrow \Phi = 0$.
• Just after expansion, $size = 2 \cdot num \Rightarrow \Phi = 0$.
• Just before expansion, $size = num \Rightarrow \Phi = num \Rightarrow$ have enough potential to pay for moving all items.

• Need $\Phi \geq 0$, always.
 Always have

 $size \geq \frac{num}{2} \Rightarrow \frac{1}{2} \cdot size \Rightarrow \Phi \leq \frac{1}{2} \cdot size$, always.

Tzachi (Isaac) Rosen
Potential Method

\[\text{num}_i = \text{num after } i\text{th operation}, \]
\[\text{size}_i = \text{size after } i\text{th operation}, \]
\[\Phi_i = \Phi \text{ after } i\text{th operation}. \]

- If no expansion:
 \[\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T] \]
 \[\text{size}_i = \text{size}_{i-1}, \]
 \[\text{num}_i = \text{num}_{i-1} + 1, \]
 \[c_i = 1. \]

 Then we have
 \[\tilde{c}_i = c_i + \Phi_i - \Phi_{i-1} \]
 \[= 1 + (2 \cdot \text{num}_i - \text{size}_i) - (2 \cdot \text{num}_{i-1} - \text{size}_{i-1}) \]
 \[= 1 + (2 \cdot \text{num}_i - \text{size}_i) - (2(\text{num}_i - 1) - \text{size}_i) \]
 \[= 1 + 2 \]
 \[= 3. \]

Tzachi (Isaac) Rosen

Potential Method

- If expansion:
 \[\text{size}_i = 2 \cdot \text{size}_{i-1}, \]
 \[\text{size}_{i-1} = \text{num}_{i-1} = \text{num}_i - 1, \]
 \[c_i = \text{num}_{i-1} + 1 = \text{num}_i. \]

 Then we have
 \[\tilde{c}_i = c_i + \Phi_i + \Phi_{i-1} \]
 \[= \text{num}_i + (2 \cdot \text{num}_i - \text{size}_i) - (2 \cdot \text{num}_{i-1} - \text{size}_{i-1}) \]
 \[= \text{num}_i + (2 \cdot \text{num}_i - 2(\text{num}_i - 1)) - (2(\text{num}_i - 1) - (\text{num}_i - 1)) \]
 \[= \text{num}_i + 2 - (\text{num}_i - 1) \]
 \[= 3. \]

Tzachi (Isaac) Rosen
Expansion and Contraction

• When α drops too low, contract the table.
 – Allocate a new, smaller one.
 – Copy all items.
• Still want
 – α bounded from below by a constant,
 – amortized cost per operation $= O(1)$.

Expansion and Contraction

• Double as before:
 – When inserting with $\alpha = 1$
 – After doubling, $\alpha = 1/2$.
• Halve size
 – When deleting with $\alpha = 1/4$
 – After halving, $\alpha = 1/2$.
• Thus, immediately after either expansion or contraction have
 – $\alpha = 1/2$.
• Always have
 – $1/4 \leq \alpha \leq 1$.

Expansion and Contraction

\[\Phi(T) = \begin{cases}
2 \cdot \text{num}(T) - \text{size}(T) & \text{if } \alpha \geq 1/2, \\
\text{size}(T)/2 - \text{num}(T) & \text{if } \alpha < 1/2.
\end{cases} \]

- If \(T \) empty, then \(\Phi = 0. \)
- \(\alpha \geq 1/2 \Rightarrow \text{num} \geq \frac{1}{2} \cdot \text{size} \Rightarrow 2 \cdot \text{num} \geq \text{size} \Rightarrow \Phi \geq 0. \)
- \(\alpha < 1/2 \Rightarrow \text{num} < \frac{1}{2} \cdot \text{size} \Rightarrow \Phi \geq 0. \)

Insert:
- If \(\alpha_{i-1} \geq 1/2 \), same analysis as before \(\Rightarrow \tilde{c}_i = 3. \)
- If \(\alpha_{i-1} < 1/2 \Rightarrow \text{no expansion (only occurs when } \alpha_{i-1} = 1). \)
- If \(\alpha_{i-1} < 1/2 \) and \(\alpha_i < 1/2: \)
 \[\tilde{c}_i = c_i + \Phi_i + \Phi_{i-1} \]
 \[= 1 + (\text{size}_i / 2 - \text{num}_i) - (\text{size}_{i-1} / 2 - \text{num}_{i-1}) \]
 \[= 1 + (\text{size}_i / 2 - \text{num}_i) - (\text{size}_{i-1} / 2 - (\text{num}_{i-1} - 1)) \]
 \[= 0. \]
- If \(\alpha_{i-1} < 1/2 \) and \(\alpha_i \geq 1/2: \)
 \[\tilde{c}_i = 1 + (2 \cdot \text{num}_i - \text{size}_i) - (\text{size}_{i-1} / 2 - \text{num}_{i-1}) \]
 \[= 1 + (2(\text{num}_{i-1} + 1) - \text{size}_{i-1}) - (\text{size}_{i-1} / 2 - \text{num}_{i-1}) \]
 \[= 3 \cdot \text{num}_{i-1} - \frac{3}{2} \cdot \text{size}_{i-1} + 3 \]
 \[= 3 \cdot \alpha_{i-1} \text{size}_{i-1} - \frac{3}{2} \cdot \text{size}_{i-1} + 3 \]
 \[< \frac{3}{2} \cdot \text{size}_{i-1} - \frac{3}{2} \cdot \text{size}_{i-1} + 3 \]
 \[= 3. \]
Expansion and Contraction

Delete:

• If $\alpha_{i-1} < 1/2$, then $\alpha_i < 1/2$.
 • If no contraction:
 \[
 \hat{c}_i = 1 + \frac{\text{size}_i}{2} - \text{num}_i - \frac{\text{size}_{i-1}}{2} - \text{num}_{i-1}
 \]
 \[
 = 1 + \frac{\text{size}_i}{2} - \text{num}_i - \frac{\text{size}_{i-1}}{2} - (\text{num}_i + 1)
 \]
 \[
 = 2.
 \]
 • If contraction:
 \[
 \hat{c}_i = \frac{\text{num}_i + 1}{2} + \frac{\text{size}_i}{2} - \text{num}_i - \frac{\text{size}_{i-1}}{2} - \text{num}_{i-1}
 \]
 move + delete
 \[
 = \frac{\text{size}_i}{2} = \frac{\text{size}_{i-1}}{4} = \frac{\text{num}_{i-1}}{2} = \text{num}_i + 1
 \]
 \[
 = \frac{\text{num}_i + 1}{2} + \frac{(\text{num}_i + 1) - \text{num}_i}{2} - ((2 \cdot \text{num}_i + 2) - (\text{num}_i + 1))
 \]
 \[
 = 1.
 \]

Tzachi (Isaac) Rosen

Expansion and Contraction

• If $\alpha_{i-1} \geq 1/2$, then no contraction.
 • If $\alpha_i \geq 1/2$:
 \[
 \hat{c}_i = 1 + (2 \cdot \text{num}_i - \text{size}_i) - (2 \cdot \text{num}_{i-1} - \text{size}_{i-1})
 \]
 \[
 = 1 + (2 \cdot \text{num}_i - \text{size}_i) - (2 \cdot \text{num}_i + 2 - \text{size}_i)
 \]
 \[
 = -1.
 \]
 • If $\alpha_i < 1/2$, since $\alpha_{i-1} \geq 1/2$, have
 \[
 \text{num}_i = \text{num}_{i-1} - 1 > \frac{1}{2} \cdot \text{size}_{i-1} - 1 = \frac{1}{2} \cdot \text{size}_i - 1.
 \]

Tzachi (Isaac) Rosen