• Internal (external)
 – All data are held in primary memory during the sorting process.

• Comparison Based
 – Based on pairwise comparisons.
 – Lower bound on running time is $\Omega(n\log n)$.

• In Place
 – Requires very little, $O(\log n)$, additional space.

• Stable
 – Preserves the relative ordering of items with equal values.
• $\Omega(n)$ to examine all the input.
• All sorts seen so far are $\Omega(n \lg n)$.
• We’ll show that $\Omega(n \lg n)$ is a lower bound for comparison sorts.
Lower Bounds for Comparison Sorts

• All possible flows of any comparison sort can be modeled by a decision tree.

• For example, the decision tree of insertion sort of 3 elements looks like:

• There are at least $n!$ leaves, because every permutation appears at least once.
Lower Bounds for Comparison Sorts

• Theorem:
 – Any decision tree that sorts n elements has height $\Omega(n \lg n)$.

• Proof:
 – The number of leaves $l \geq n!$
 – Any binary tree of height h has $\leq 2^h$ leaves.
 – Hence, $n! \leq l \leq 2^h$
 – Take logs: $h \geq \lg(n!)$
 – Use Stirling’s approximation: $n! > (n/e)^n$
 – We get:
 \[
 h \geq \lg(n/e)^n \\
 = n \lg(n/e) \\
 = n \lg n - n \lg e \\
 = \Omega(n \lg n).
 \]
Lower Bounds for Comparison Sorts

• Lemma:
 – Any binary tree of height \(h \) has \(\leq 2^h \) leaves.

• Proof:
 – By induction on \(h \).
 – Basis:
 • \(h = 0 \).
 • Tree is just one node, which is a leaf.
 • \(2^h = 1 \).
 – Inductive step:
 • Assume true for height \(= h - 1 \).
 • Reduce all leaves and get a tree of height \(h - 1 \)
 • Make the tree full
 • Then, extend the tree of height \(h - 1 \) by adding to each leaf two son leaves.
 • You get a tree with at least many leaves as the original tree
 • Each leaf becomes parent to two new leaves.
 • \(\# \text{ of leaves for height } h = 2 \cdot (\# \text{ of leaves for height } h - 1) \)
 \(\leq 2 \cdot 2^{h-1} \) (ind. hypothesis)
 \(= 2^h \).
Sorting in Linear Time

- Non-comparison sorts.
- Counting Sort
- Radix Sort
- Bucket Sort
Counting Sort

• Input:
 – $A[1 \ldots n]$, where $A[j] \in \{0, \ldots, k\}$ for $j = 1, \ldots, n$.
 – Array A and values n and k are given as parameters.

• Output:
 – $B[1 \ldots n]$, sorted.
 – B is assumed to be already allocated and is given as a parameter.

• Auxiliary storage:
 – $C[0 \ldots k]$
Counting Sort

- **Complexity**: $\Theta(n + k)$, which is $\Theta(n)$ if $k = O(n)$.
Counting Sort

• How big a k is practical?
 – 32-bit values? No.
 – 16-bit? Probably not.
 – 8-bit? Maybe, depending on n.
 – 4-bit? Yes (unless n is really small).
Counting Sort

- Counting sort is **stable**
 - Keys with same value appear in same order in output as they did in input
 - Because of how the last loop works.
Radix Sort

radixSort \((A, d)\)

for \((i = 1 \text{ to } d)\) do

use a stable sort to sort array \(A\) on digit \(i\)
Radix Sort

• **Complexity:**

 – Assume that we use counting sort as the intermediate sort.
 – $\Theta(n + k)$ per pass (digits in range $0, \ldots , k$).
 – d passes.
 – $\Theta(d(n + k))$ total.
 – If $k = O(n)$, time = $\Theta(dn)$.
Radix Sort

• **Notations:**
 – n words.
 – b bits/word.
 – Break into r-bit digits.
 • Have \(d = \lceil b/r \rceil \).
 – Use counting sort, \(k = 2^r \).
 – Example:
 • 32-bit words, 8-bit digits.
 • \(b = 32, r = 8, d = 32/8 = 4, k = 2^8 = 256 \).

• **Complexity:**
 – \(\Theta((b/r) \cdot (n + 2^r)) \).
Radix Sort

• How to choose \(r \)?
 – Balance \(b/r \) and \(n + 2^r \).
 – Choosing \(r \approx \log n \) gives us \(\Theta(b/\log n \cdot (n + n)) = \Theta((b/\log n) \cdot n) \).
 – If we choose \(r < \log n \), then
 • \(b/r > b/ \log n \), and \(n + 2^r \) term doesn’t improve.
 – If we choose \(r > \log n \), then
 • \(n + 2^r \) term gets big.
 • For instance: \(r = 2 \log n \Rightarrow 2^r = 2^{2 \log n} = (2^{\log n})^2 = n^2 \).

• Example:
 – To sort \(2^{16} \) 32-bit numbers,
 – Use \(r = \log 2^{16} = 16 \) bits.
 – Get \(b/r = 2 \) passes.
Radix Sort

• Compare radix sort to merge and quicksort:
 – 1 million \(2^{20}\) 32-bit integers.
 – Radix sort: \(32/20 = 2\) passes.
 – Merge sort/quicksort: \(\lg n = 20\) passes.

• Remember, though, that each radix sort “pass” is really 2 passes
 – one to take census, and one to move data.
Radix Sort

• Not a comparison sort:
 – We gain information about keys by means other than direct comparison of two keys.
 – Use keys as array indices.
Bucket Sort

• Assumes the input is
 – Generated by a random process that distributes elements uniformly over \([0, 1)\).

• Then
 – Divide \([0, 1)\) into \(n\) equal-sized buckets.
 – Distribute the \(n\) input values into the buckets.
 – Sort each bucket.
 – Go through buckets in order, listing elements in each one.
Bucket Sort

• Input:
 – \(A[1 \ldots n] \), where \(0 \leq A[i] < 1 \) for all \(i \).

• Auxiliary array:
 – \(B[0 \ldots n – 1] \) of linked lists, each list initially empty.
Bucket Sort

```
BUCKET-SORT(A)
1   let B[0...n-1] be a new array
2   n = A.length
3   for i = 0 to n-1
4       make B[i] an empty list
5   for i = 1 to n
6       insert A[i] into list B[[n A[i]]]
7   for i = 0 to n-1
8       sort list B[i] with insertion sort
9   concatenate the lists B[0], B[1], ... , B[n-1] together in order
```
Bucket Sort

• Complexity:
 – All lines of algorithm except insertion sorting take \(\Theta(n) \) altogether.
 – If each bucket gets \(O(1) \) elements, the time to sort all buckets is \(O(n) \).
 – Hence, \(\Theta(n) \) altogether.

• Formally ...
Bucket Sort

- Define a random variable:
 - \(n_i \) = the number of elements placed in bucket \(B[i] \).
- Because insertion sort runs in quadratic time, bucket sort time is:

\[
T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)
\]

- Take expectations of both sides:

\[
E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \right]
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2) \right] \quad \text{(linearity of expectation)}
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \quad \text{(E[\alpha X] = \alpha E[X])}
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n) \quad \text{(E[n_i^2] = 2 - (1/n))}
\]

\[
= \Theta(n) + O(n)
\]

\[
= \Theta(n)
\]
Bucket Sort

• Claim:

\[E[n_i^2] = 2 - \frac{1}{n} \] for \(i = 0, \ldots, n - 1 \).

• Proof:

– Define indicator random variables:

\[X_{ij} = I\{ A[j] \text{ falls in bucket } i \} \]

\[\Pr\{ A[j] \text{ falls in bucket } i \} = \frac{1}{n} \]

\[n_i = \sum_{j=1}^{n} X_{ij} \]
Bucket Sort

• Then,

\[
E[n_i^2] = E \left[\left(\sum_{j=1}^{n} X_{ij} \right)^2 \right] \\
= E \left[\sum_{j=1}^{n} X_{ij}^2 + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} X_{ij} X_{ik} \right] \\
= \sum_{j=1}^{n} E[X_{ij}^2] + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} E[X_{ij} X_{ik}] \quad \text{(linearity of expectation)}
\]
Bucket Sort

• Now,

\[
E[X_{ij}^2] = 0^2 \cdot \Pr\{A[j] \text{ doesn’t fall in bucket } i\} + 1^2 \cdot \Pr\{A[j] \text{ falls in bucket } i\}
\]
\[
= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n}
\]
\[
= \frac{1}{n}
\]

• Since for \(j \neq k \), \(X_{ij} \) and \(X_{ik} \) are independent

\[
E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]
\]
\[
= \frac{1}{n} \cdot \frac{1}{n}
\]
\[
= \frac{1}{n^2}
\]
Bucket Sort

• Therefore:

\[
E[n_i^2] = \sum_{j=1}^{n} \frac{1}{n} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \frac{1}{n^2}
\]

\[
= n \cdot \frac{1}{n} + 2 \left(\frac{n}{2} \right) \frac{1}{n^2}
\]

\[
= 1 + 2 \cdot \frac{n(n - 1)}{2} \cdot \frac{1}{n^2}
\]

\[
= 1 + \frac{n - 1}{n}
\]

\[
= 1 + 1 - \frac{1}{n}
\]

\[
= 2 - \frac{1}{n}
\]
Bucket Sort

• Again, **not a comparison sort**.
 – Used a function of key values to index into an array.

• **This is a probabilistic analysis.**
 – We used probability to analyze an algorithm whose running time depends on the distribution of inputs.

• Different from **a randomized algorithm**, where
 – We use randomization to impose a distribution.

• If the input isn’t drawn from a uniform distribution on \([0, 1)\),
 – All bets are off, but the algorithm is still correct.