BB[α] tree — definition

- Let $\text{size}(v)$ be the number of nodes in the subtree of v.
- A node v is of bounded balance α if
 \[
 \text{size}(v.\text{left}) \geq \lfloor \alpha \cdot \text{size}(v) \rfloor \quad \text{and} \quad \text{size}(v.\text{right}) \geq \lfloor \alpha \cdot \text{size}(v) \rfloor
 \]
- A BB[α] tree ($\alpha < 0.5$) is a binary search tree such that every node v is of bounded balance α.
- The height of a BB[α] tree with n nodes is at most $\log_{1/(1-\alpha)} n$.

\[
\alpha = \frac{1}{3}
\]
To insert an element to a BB[\(\alpha \)] tree, insert it as a new leaf. Let \(v \) be the highest node that is not of bounded balance \(\alpha \). If \(v \) exists, replace the subtree of \(v \) by a balanced tree containing the same elements.
The time complexity is \(\Theta(\log n + \text{size}(v)) \), which is \(\Theta(n) \) in the worst case.
To insert an element to a BB[α] tree, insert it as a new leaf. Let v be the highest node that is not of bounded balance α. If v exists, replace the subtree of v by a balanced tree containing the same elements.

The time complexity is $\Theta(\log n + \text{size}(v))$, which is $\Theta(n)$ in the worst case.
Insertion

- To insert an element to a BB[α] tree, insert it as a new leaf. Let v be the highest node that is not of bounded balance α. If v exists, replace the subtree of v by a balanced tree containing the same elements.
- The time complexity is $\Theta(\log n + \text{size}(v))$, which is $\Theta(n)$ in the worst case.

$\alpha = 1/3$
Amortized complexity

- The actual cost of an insert operation is
 \(\text{depth}(u) + \text{size}(w) \), where \(u \) is the new leaf, and \(w \) is the
 node whose subtree was replaced (\(\text{depth}(u) \) is the depth
 after the first stage).

Claim

The amortized cost of insert is
\[
(1 + \frac{1}{1-2\alpha}) \log_{1/(1-\alpha)} n + O(1).
\]

- Let \(\Delta_v = |\text{size}(v.\text{left}) - \text{size}(v.\text{right})| \).
- We keep the following invariant: Every node \(v \) with
 \(\Delta_v \geq 2 \) stores \(\frac{1}{1-2\alpha} \Delta_v \) dollars.
- For the first stage of an insert operation, we use at most
 \(\log_{1/(1-\alpha)} n \) charged dollars to pay for the cost \(\text{depth}(u) \).
 We also put \(\frac{1}{1-2\alpha} \) dollars in each node \(v \) whose \(\Delta_v \) value
 increased. This uses at most \(\frac{1}{1-2\alpha} \log_{1/(1-\alpha)} n \) charged
 dollars.
Amortized complexity

The figure below shows the Δ_v values. Each node with $\Delta_v \geq 2$ stores $3\Delta_v$ dollars.
Amortized complexity

The figure below shows the Δ_v values. Each node with $\Delta_v \geq 2$ stores $3\Delta_v$ dollars. After the insertion, we need to add 3 dollars to the root and to the left child of the root.
To pay for the second stage of an insert operation, we use the dollars stored in \(w \) if \(\text{size}(w) \geq \frac{1}{1 - 2\alpha} \) (if \(\text{size}(w) < \frac{1}{1 - 2\alpha} \) we use the charged dollars).

Since \(w \) is not of bounded balance \(\alpha \) after the first stage, either

\[
\text{size}(w.\text{left}) \leq \lfloor \alpha \cdot \text{size}(w) \rfloor - 1 \leq \alpha \cdot \text{size}(w) - 1 \\
\text{size}(w.\text{right}) \geq \text{size}(w) - (\alpha \cdot \text{size}(w) - 1) - 1
\]

or vice versa.

Thus,

\[
\Delta_w \geq (1 - 2\alpha) \cdot \text{size}(w) + 1 \geq 2
\]

so \(w \) contains at least \(\text{size}(w) - \frac{1}{1-2\alpha} = \text{size}(w) - O(1) \) dollars.