The goal is to insert the new item into an existing leaf.

This is easy if the leaf has less than $2t - 1$ elements.

$\text{Insert}(T, 15)$

15 can be inserted to this leaf
The hard case is when the leaf has $2t - 1$ elements.

The solution is to perform the following step during the descend in the tree: Before entering a node, if the node has $2t - 1$ elements, perform node splitting on the node in order to reduce the number of elements.
Node splitting

- Let v be a node with $2t - 1$ elements. The node splitting operation on v replaces v with two nodes: one containing the $t - 1$ smallest elements of v, and another containing the $t - 1$ largest elements.
- The median element of v is moved to the parent of v. If v is the root, a new root is created.
If \(v \) is not the root, the parent of \(v \) has less than \(2t - 1 \) elements, so it is legal to move the median to the parent.
Example

```
10 30 50
2 4 8
t=2
12 20 30 60 65
Insert(T,9)
```
Example

Split node

Insert(T,9)

$\text{t}=2$

Diagram:

```
    10 30 50
   /    /    /
  2 4 8 12 20 30 60 65
```
Example

```
Example

10
2 4 8
t=2
12 20 30 60 65
Insert(T,9)
30
50
```

```
      30
     /   \
   10    50
  /   \  /   \
2 4 8 12 20 30 60 65
```
Example

Insert(T,9)

Split node

2 4 8 12 20 30 60 65

30

10 50

t=2

Insert(T,9)
Example

```
4,10
12 20 30 60 65
Insert(T,9)
30
50
2 8
t=2
```
Example

9 is added to the leaf

4,10
12 20 30 60 65

Insert(T,9)

30

2 8 9 12 20 30 60 65

9 is added to the leaf

Insert(T,9)

$\text{Insert}(T,9)$

$\text{t}=2$
Deletion

- The easy case is deleting an item from a leaf that has more than \(t - 1 \) elements.
- The hard cases are deleting an item from a leaf that has \(t - 1 \) elements, and deleting an item from an internal node.
- The following step is performed during the descend in the tree: Before entering a node \(v \), if \(v \) has \(t - 1 \) elements, perform shifting or merging in order to increase the number of elements.
If \(v \) has an immediate left sibling \(u \) and \(u \) has at least \(t \) elements:

1. Move the element in the parent of \(v \) that “separates” \(v \) and \(u \) to \(v \).
2. Move the maximum element of \(u \) to the parent of \(v \).
Otherwise, if \(v \) has an immediate right sibling \(w \), and \(w \) has at least \(t \) elements then

1. Move the element of the parent of \(v \) that “separates” \(v \) and \(w \) to \(v \).
2. Move the minimum element of \(w \) to the parent of \(v \).
If v has no immediate sibling with at least t elements:

1. Merge v with an immediate sibling.
2. Move the “separating element” from the parent of v to the new node.
Deleting an item

When reaching a node x that contains the element k we want to delete there are several cases:

- If x is a leaf, delete the element.
- If x is an internal node:
 - If the child y of x that contains the predecessor of k has at least t elements, delete the predecessor and put it in x instead of k.
 - If the child z of x that contains the successor of k has at least t elements, delete the successor and put it in x instead of k.
 - Otherwise, merge y and z, and recursively delete k from the merged node.
Example

```
t=3
delete(T,6)
```
delete(T, 6)

6 < 14 so the next node is the 1st child of the current node. This child has 3 > t − 1 elements, so no modification is needed.
Example

3 < 6 < 7 so the next node is the 2nd child of the current node. This child has $3 > t - 1$ elements, so no modification is needed.
Example

t=3
delete(T,6)
Example

The element 6 is deleted from the current node.
Example

t = 3

delete(T,11)
Example

11 < 14 so the next node is the 1st child of the current node. This child has $3 > t - 1$ elements, so no modification is needed.
11 is the 3rd item of the node.
The 4th child has $2 = t - 1$ elements, so we can’t replace 11 with its successor.
The 3rd child has $3 > t - 1$ so we replace 11 by its predecessor and delete the predecessor.
Example

\[t = 3 \]

\[\text{delete}(T, 11) \]

```
18 21
8 9 10 15 16 17 19 20 22 23 12 13 4 5 1 2
3 7 11
14
```

Diagram:
```
   14
  /   \
3 7 11 /   \
/     /
1 2    4 5 8 9 10 12 13 15 16 17 19 20 22 23
```

Red arrow points to node 11.
The element 10 is deleted from the current node.
The element 11 is replaced by 10.
Example

t=3
delete(T,7)
Example

$t = 3$
delete(T, 7)

7 < 14 so the next node is the 1st child of the current node. This child has 3 > $t - 1$ elements, so no modification is needed.
Example

11 is the 2nd item of the node. Both the 2nd and 3rd children of the node have $2 = t - 1$ elements. Therefore we merge these children and move 7 to the new node.
Example

t=3
delete(T,7)
The element 7 is deleted from the current node.
Example

t=3
delete(T,4)
Example

4 < 14 so the next node is the 1st child of the current node. This child has 2 > \(t - 1 \) elements, so a modification is needed. This child has no immediate sibling with more than 2 = \(t - 1 \) elements, so perform merging on this child and its sibling. The height of the tree decreases by 1.
Example

$t=3$
delete(T,4)

3 < 4 < 10 so the next node is the 2nd child of the current node.
This child has $4 > t - 1$ elements, so no modification is needed.
Example

t=3
delete(T,4)
Example

t=3

delete(T,4)

The element 4 is deleted from the current node.
Example

t=3
delete(T,2)
Example

t=3
delete(T,2)

2 < 3 so the next node is the 1st child of the current node. This child has \(2 = t - 1\) elements, so a modification is needed. The immediate sibling of this child has \(3 > t - 1\) elements, so we perform shifting.
Example

t=3
delete(T,2)
Example

t=3
delete(T,2)

The element 2 is deleted from the current node.