Hash tables
A **dictionary** is a data-structure that stores a set of elements where each element has a unique **key**, and supports the following operations:

- **Search**\((S, k)\) Return the element whose key is \(k\).
- **Insert**\((S, x)\) Add \(x\) to \(S\).
- **Delete**\((S, x)\) Remove \(x\) from \(S\).

- Assume that the keys are from \(U = \{0, \ldots, u - 1\}\).
Direct addressing

- S is stored in an array $T[0..u - 1]$. The entry $T[k]$ contains a pointer to the element with key k, if such element exists, and NULL otherwise.

- **SEARCH(T, k):** return $T[k]$.

- **INSERT(T, x):** $T[x.key] \leftarrow x$.

- **DELETE(T, x):** $T[x.key] \leftarrow \text{NULL}$.

- What is the problem with this structure?
In order to reduce the space complexity of direct addressing, map the keys to a smaller range \(\{0, \ldots, m - 1\} \) using a hash function.

There is a problem of collisions (two or more keys that are mapped to the same value).

There are several methods to handle collisions.
- Chaining
- Open addressing
Hash table with chaining

- Let $h : U \rightarrow \{0, \ldots, m - 1\}$ be a hash function ($m < u$).
- S is stored in a table $T[0..m-1]$ of linked lists. The element $x \in S$ is stored in the list $T[h(x\text{.key})]$.
- **Search**(T, k): Search the list $T[h(k)]$.
- **Insert**(T, x): Insert x at the head of $T[h(x\text{.key})]$.
- **Delete**(T, x): Delete x from the list containing x.

$S = \{6, 9, 19, 26, 30\}$

$m = 5$, $h(x) = x \mod 5$
• Assumption of simple uniform hashing: any element is equally likely to hash into any of the \(m \) slots, independently of where other elements have hashed into.

• The above assumption is true when the keys are chosen uniformly and independently at random (with repetitions), and the hash function satisfies
\[
|\{k \in U : h(k) = i\}| = u/m \text{ for every } i \in \{0, \ldots, m - 1\}.
\]

• We want to analyze the performance of hashing under the assumption of simple uniform hashing. This is the balls into bins problem.

• Suppose we randomly place \(n \) balls into \(m \) bins. Let \(X \) be the number of balls in bin 1.

• The time complexity of a random search in a hash table is \(\Theta(1 + X) \).
The expectation of X

- Each ball has probability $1/m$ to be in bin 1.
- The random variable X has binomial distribution with parameters n and $1/m$.
- Therefore, $E[X] = n/m$.
The distribution of X

Claim

$$\Pr[X = r] \approx \frac{e^{-\alpha} \alpha^r}{r!},$$

where $\alpha = n/m$ (i.e., X has approximately Poisson distribution).

Example

If $\alpha = 1$,

- $\Pr[X = 0] \approx 0.368$
- $\Pr[X = 1] \approx 0.368$
- $\Pr[X = 2] \approx 0.184$
- $\Pr[X = 3] \approx 0.061$
- $\Pr[X = 4] \approx 0.015$
- $\Pr[X = 5] \approx 0.003$
- $\Pr[X = 6] \approx 0.0005$
- $\Pr[X = 7] \approx 0.00007$

Hash tables
The distribution of X

Claim

$\Pr[X = r] \approx \frac{e^{-\alpha} \alpha^r}{r!}$, where $\alpha = n/m$ (i.e., X has approximately Poisson distribution).

Proof.

$$\Pr[X = r] = \binom{n}{r} \left(\frac{1}{m}\right)^r \left(1 - \frac{1}{m}\right)^{n-r}$$

$$= \frac{n(n-1) \cdots (n-r+1)}{r!} \frac{1}{m^r} \left(1 - \frac{1}{m}\right)^{n-r}$$

If m and n are large, $n(n-1) \cdots (n-r+1) \approx n^r$ and $(1 - \frac{1}{m})^{n-r} \approx e^{-n/m}$. Thus, $\Pr[X = r] \approx \frac{e^{-n/m}(n/m)^r}{r!}$.

Hash tables
Suppose that $n = m = 10^6$. Most bins contain 0–3 balls.

The probability that a specific bin contains at least 8 balls is ≈ 0.000009.

However, it is very likely that some bin will contain 8 balls.

Theorem

If $m = \Theta(n)$ then the size of the largest bin is $\Theta(\log n / \log \log n)$ with probability at least $1 - 1/n^{\Theta(1)}$.
We wish to maintain \(n = O(m) \) in order to have \(\Theta(1) \) search time. This can be achieved by rehashing. Suppose we want \(n \leq m \). When the table has \(m \) elements and a new element is inserted, create a new table of size \(2m \) and copy all elements into the new table.

\[
h(x) = x \mod 5
\]

\[
h'(x) = x \mod 10
\]
We wish to maintain \(n = O(m) \) in order to have \(\Theta(1) \) search time.

This can be achieved by rehashing. Suppose we want \(n \leq m \). When the table has \(m \) elements and a new element is inserted, create a new table of size \(2m \) and copy all elements into the new table.

The cost of rehashing is \(\Theta(n) \).
Universal hash functions

- **Random** keys + fixed hash function (e.g. mod)
 \[\Rightarrow \text{The hashed keys are random numbers.} \]

- A fixed set of keys + **random** hash function (selected from a universal set)
 \[\Rightarrow \text{The hashed keys are semi-random numbers.} \]
Definition

A collection \mathcal{H} of hash functions is a universal if for every pair of distinct keys $x, y \in U$, $\Pr_{h \in H}[h(x) = h(y)] \approx \frac{1}{m}$.

Example

Let p be a prime number larger than u.

$f_{a, b}(x) = ((ax + b) \mod p) \mod m$

$\mathcal{H}_{p, m} = \{ f_{a, b} | a \in \{1, 2, \ldots, p - 1\}, b \in \{0, 1, \ldots, p - 1\} \}$
Universal hash functions

Theorem

Suppose that \mathcal{H} is a universal collection of hash functions. If a hash table for S is built using a randomly chosen $h \in \mathcal{H}$, then for every $k \in U$, the expected time of $\text{Search}(S, k)$ is $\Theta(1 + n/m)$.

Proof.

Let $X = \text{length of } T[h(k)]$.

$X = \sum_{y \in S} I_y$ where $I_y = 1$ if $h(y.\text{key}) = h(k)$ and $I_y = 0$ otherwise.

$$E[X] = E \left[\sum_{y \in S} I_y \right] = \sum_{y \in S} E[I_y] = \sum_{y \in S} \Pr_{h \in \mathcal{H}} [h(y.\text{key}) = h(k)]$$

$$\approx 1 + n \cdot \frac{1}{m}.$$
Under the assumption of simple uniform hashing, the expected time of a search is $\Theta(1 + \alpha)$ time.

If $\alpha = \Theta(1)$, and under the assumption of simple uniform hashing, the worst case time of a search is $\Theta(\log n / \log \log n)$, with probability at least $1 - 1/n^{\Theta(1)}$.

If the hash function is chosen from a universal collection at random, the expected time of a search is $\Theta(1 + \alpha)$.

The worst case time of insert is $\Theta(1)$ if there is no rehashing.
Interpreting keys as natural numbers

- How can we convert floats or ASCII strings to natural numbers?
- An ASCII string can be interpreted as a number in base 256.

Example

For the string CLRS, the ASCII values of the characters are C = 67, L = 76, R = 82, S = 83. So CLRS is
\[(67 \cdot 256^3) + (76 \cdot 256^2) + (82 \cdot 256^1) + (83 \cdot 256^0) = 1129075283.\]
Horner’s rule

- Horner’s rule:
 \[a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 = \]
 \[(\cdots ((a_d x + a_{d-1}) x + a_{d-2}) x + \cdots)x + a_0. \]

- Example:
 \[67 \cdot 256^3 + 76 \cdot 256^2 + 82 \cdot 256^1 + 83 \cdot 256^0 = \]
 \[((67 \cdot 256 + 76) \cdot 256 + 82) \cdot 256 + 83 \]

- If \(d \) is large the value of \(y \) is too big.
- Solution: evaluate the polynomial modulo \(p \)

 1. \(y \leftarrow a_d \)
 2. \(\text{for } i = d - 1 \text{ to } 0 \)
 3. \(y \leftarrow a_i + xy \mod p \)
Rabin-Karp pattern matching algorithm

- Suppose we are given strings P and T, and we want to find all occurrences of P in T.
- The Rabin-Karp algorithm is as follows:

 Compute $h(P)$ for every substring T' of T of length $|P|$.

 if $h(T') = h(P)$ check whether $T' = P$.
- The values $h(T')$ for all T' can be computed in $\Theta(|T|)$ time using rolling hash.

Example

Let $T = \text{BGUACC}$, $P = \text{GUAB}$, $T_1 = \text{BGUA}$, $T_2 = \text{GUAB}$.

$h(T_1) = (66 \cdot 256^3 + 71 \cdot 256^2 + 85 \cdot 256 + 65) \mod p$

$h(T_2) = (71 \cdot 256^3 + 85 \cdot 256^2 + 65 \cdot 256 + 67) \mod p$

$= (h(T_1) - 66 \cdot 256^3) \cdot 256 + 67 \mod p$
Applications

- **Data deduplication**: Suppose that we have many files, and some files have duplicates. In order to save storage space, we want to store only one instance of each distinct file.

- **Distributed storage**: Suppose we have many files, and we want to store them on several servers.
Let m denote the number of servers.

The simple solution is to use a hash function $h : U \rightarrow \{1, \ldots, m\}$, and assign file x to server $h(x)$.

The problem with this solution is that if we add a server, we need to do rehashing which will move most files between servers.
Suppose that the server have identifiers s_1, \ldots, s_m.

Let $h : U \rightarrow [0, 1]$ be a hash function.

For each server i associate a point $h(s_i)$ on the unit circle.

For each file f, assign f to the server whose point is the first point encountered when traversing the unit cycle anti-clockwise starting from $h(f)$.
Suppose that the server have identifiers \(s_1, \ldots, s_m \).

Let \(h : U \rightarrow [0, 1] \) be a hash function.

For each server \(i \) associate a point \(h(s_i) \) on the unit circle.

For each file \(f \), assign \(f \) to the server whose point is the first point encountered when traversing the unit cycle anti-clockwise starting from \(h(f) \).
When a new server $m + 1$ is added, let i be the server whose point is the first server point after $h(s_{m+1})$.

We only need to reassign some of the files that were assigned to server i.

The expected number of files reassignments is $n/(m + 1)$.
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element k, try inserting to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

INSERT(T, k)

1. $i = 0$ to $m - 1$
2. $j \leftarrow h(k) + i \mod m$
3. if $T[j] = \text{NULL}$ OR ...
4. $T[j] \leftarrow k$
5. return
6. error “hash table overflow”
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element k, try inserting to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

INSERT(T, k)

1. **for** $i = 0$ **to** $m - 1$
2. $j \leftarrow h(k) + i \mod m$
3. **if** $T[j] = \text{NULL}$ **OR** ...
4. $T[j] \leftarrow k$
5. **return**
6. **error** “hash table overflow”
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element \(k \), try inserting to \(T[h(k)] \). If \(T[h(k)] \) is not empty, try \(T[h(k) + 1 \mod m] \), then try \(T[h(k) + 2 \mod m] \) etc.

\text{INSERT}(T, k)

(1) \(\text{for } i = 0 \text{ to } m - 1 \)
(2) \(j \leftarrow h(k) + i \mod m \)
(3) \(\text{if } T[j] = \text{NULL } \text{OR } \ldots \)
(4) \(T[j] \leftarrow k \)
(5) \(\text{return} \)
(6) \(\text{error} \) “hash table overflow”
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element k, try inserting to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Insert(T,k)

1. for $i = 0$ to $m - 1$
2. $j \leftarrow h(k) + i \mod m$
3. if $T[j] = \text{NULL}$ OR …
4. $T[j] \leftarrow k$
5. return
6. error “hash table overflow”
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element k, try inserting to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Insert (T, k)

1. **for** $i = 0$ **to** $m - 1$
2. $j \leftarrow h(k) + i \mod m$
3. **if** $T[j] = \text{NULL}$ **or** ...
4. $T[j] \leftarrow k$
5. **return**
6. **error** “hash table overflow”

```markdown
insert(T, 19)
```
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element k, try inserting to $T[h(k)]$. If $T[h(k)]$ is not empty, try $T[h(k) + 1 \mod m]$, then try $T[h(k) + 2 \mod m]$ etc.

Insert (T, k

1. **for** $i = 0$ **to** $m - 1$
2. $j \leftarrow h(k) + i \mod m$
3. **if** $T[j] = \text{NULL}$ **or** ...
4. $T[j] \leftarrow k$
5. **return**
6. **error** “hash table overflow”
In the following, we assume that the elements in the hash table are keys with no satellite information.

To insert element \(k \), try inserting to \(T[h(k)] \). If \(T[h(k)] \) is not empty, try \(T[h(k) + 1 \mod m] \), then try \(T[h(k) + 2 \mod m] \) etc.

INSERT\((T, k)\)

1. for \(i = 0 \) to \(m - 1 \)
2. \(j \leftarrow h(k) + i \mod m \)
3. if \(T[j] = \text{NULL} \) OR ...
4. \(T[j] \leftarrow k \)
5. return
6. error “hash table overflow”

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>1</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>
Search

\[
\text{Search}(T, k)
\]

1. for \(i = 0 \) to \(m - 1 \)
2. \(j \leftarrow h(k) + i \mod m \)
3. if \(T[j] = k \)
4. return \(j \)
5. if \(T[j] = \text{NULL} \)
6. return \(\text{NULL} \)
7. return \(\text{NULL} \)

search

\[
\text{search}(T, 55)
\]
Searching

SEARCH(T, k)

(1) **for** i = 0 **to** m − 1
(2) \(j \leftarrow h(k) + i \mod m \)
(3) **if** T[j] = k
(4) * return j
(5) **if** T[j] = NULL
(6) * return NULL
(7) * return NULL

search(T, 25)

Hash tables
Delete method 1: To delete element k, store in $T[h(k)]$ a special value DELETED.
Delete method 2: Erase k from the table (replace it by NULL) and also erase the consecutive block of elements following k. Then, reinsert the latter elements to the table.
Delete method 2: Erase k from the table (replace it by NULL) and also erase the consecutive block of elements following k. Then, reinsert the latter elements to the table.
Delete method 2: Erase k from the table (replace it by NULL) and also erase the consecutive block of elements following k. Then, reinsert the latter elements to the table.
Open addressing is a generalization of linear probing.

Let
\[h : U \times \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\} \]
be a hash function such that
\(\{h(k, 0), h(k, 1), \ldots h(k, m - 1)\} \) is a permutation of \(\{0, \ldots, m - 1\} \) for every \(k \in U \).

The slots examined during search/insert are \(h(k, 0) \), then \(h(k, 1), h(k, 2) \) etc.

In the example on the right,
\[h(k, i) = (h_1(k) + ih_2(k)) \mod 13 \]
where
\[h_1(k) = k \mod 13 \]
\[h_2(k) = 1 + (k \mod 11) \]
Open addressing

- Insertion is the same as in linear probing:

 \[\text{INSERT}(T, k) \]

 (1) \textbf{for} \ i = 0 \textbf{ to } m - 1

 (2) \ j \leftarrow h(k, i)

 (3) \textbf{if} \ T[j] = \text{NULL OR} \ T[j] = \text{DELETED}

 (4) \ T[j] \leftarrow k

 (5) \textbf{return}

 (6) \textbf{error} “hash table overflow”

- Deletion is done using delete method 1 defined above (using special value DELETED).
In the **double hashing** method,

\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

for some hash functions \(h_1 \) and \(h_2 \).

- The value \(h_2(k) \) must be relatively prime to \(m \) for the entire hash table to be searched. This can be ensured by either
 - Taking \(m \) to be a power of 2, and the image of \(h_2 \) contains only odd numbers.
 - Taking \(m \) to be a prime number, and the image of \(h_2 \) contains integers from \(\{1, \ldots, m-1\} \).

- For example,
 \[h_1(k) = k \mod m \]
 \[h_2(k) = 1 + (k \mod m') \]

where \(m \) is prime and \(m' < m \).
Assume **uniform hashing**: the probe sequence of each key is equally likely to be any of the \(m! \) permutations of \(\{0, \ldots m-1\} \).

Assuming uniform hashing and no deletions, the expected number of probes in a search is

- At most \(\frac{1}{1-\alpha} \) for unsuccessful search.
- At most \(\frac{1}{\alpha} \ln \frac{1}{1-\alpha} \) for successful search.
Comparison of hash table methods – Search

Successful Lookup

- Chained Hashing
- Linear Probing

Clock Cycles vs. log n

Hash tables
Comparison of hash table methods – Search

Unsuccessful Lookup

- Cuckoo
- Two-Way Chaining
- Chained Hashing
- Linear Probing

Hash tables
Comparison of hash table methods – Insert

![Graph showing comparison of hash table methods: Cuckoo, Two-Way Chaining, Chained Hashing, Linear Probing. The x-axis represents \(\log n \) and the y-axis represents clock cycles. The graph shows the performance of each method as \(\log n \) increases.]
Comparison of hash table methods – Delete

Hash tables
Suppose we want to implement blocking of malicious web pages in a web browser.

Assume we have a list of 10,000,000 malicious pages.

We can store all pages in a hash table, but this requires a large amount of memory.

Bloom filter is an implementation of static dictionary that uses small amount of memory.

For a query key that is in the set, the Bloom filter always returns a positive answer.

For a query key that is not in the set, the Bloom filter can return either a negative answer, or a positive answer (false positive).
Blocking malicious web pages

- Suppose that the list of malicious pages is stored in a Bloom filter.
- For a query URL, if the answer is negative, we know that the URL is not a malicious page.
- If the answer is positive, we do not know the correct answer. In this case, we get the answer from a server.
- We want a small probability for a false positive.
• Suppose we want to store a set S.
• We use an array A of size m initialized to 0.
• We then choose a hash function h, and set $A[h(x)] \leftarrow 1$ for every $x \in S$.
• For a query y, if $A[h(y)] = 0$, we know that $y \not\in S$.
• If $A[h(y)] = 1$, either y is in S or not.

$S = \{15, 32\}$
$h(y) = y \mod 10$
Suppose we want to store a set S.

We use an array A of size m initialized to 0.

We then choose a hash function h, and set $A[h(x)] ← 1$ for every $x ∈ S$.

For a query y, if $A[h(y)] = 0$, we know that $y ∉ S$.

If $A[h(y)] = 1$, either y is in S or not.

$$x_1 = 15$$

$S = \{15, 32\}$

$$h(y) = y \mod 10$$
Bloom filter — simple version

- Suppose we want to store a set S.
- We use an array A of size m initialized to 0.
- We then choose a hash function h, and set $A[h(x)] ← 1$ for every $x ∈ S$.
- For a query y, if $A[h(y)] = 0$, we know that $y ∉ S$.
- If $A[h(y)] = 1$, either y is in S or not.

$$x_2 = 32 \quad x_1 = 15$$

$S = \{15, 32\}$

$$h(y) = y \mod 10$$
Suppose we want to store a set S.

We use an array A of size m initialized to 0.

We then choose a hash function h, and set $A[h(x)] \leftarrow 1$ for every $x \in S$.

For a query y, if $A[h(y)] = 0$, we know that $y \notin S$.

If $A[h(y)] = 1$, either y is in S or not.

$x_2 = 32 \quad y = 27 \quad x_1 = 15$

$S = \{15, 32\}$

$h(y) = y \mod 10$
Bloom filter — simple version

- Suppose we want to store a set S.
- We use an array A of size m initialized to 0.
- We then choose a hash function h, and set $A[h(x)] \leftarrow 1$ for every $x \in S$.
- For a query y, if $A[h(y)] = 0$, we know that $y \notin S$.
- If $A[h(y)] = 1$, either y is in S or not.

\[x_2 = 32 \quad y = 35 \quad x_1 = 15 \]

\[
\begin{array}{cccccccccc}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

$S = \{15, 32\}$

$h(y) = y \mod 10$
Probability of false positive

- Assume simple uniform hashing: any element is equally likely to hash into any of the m slots, independently of where other elements have hashed into.
- For fixed i, the probability that $A[i] = 0$ is $p = (1 - 1/m)^n$.
- For $y \notin S$, the probability that $A[h(y)] = 1$ is $1 - p$.

$x_2 = 32 \quad y = 35 \quad x_1 = 15$

```
0 0 1 0 0 1 0 0 0 0
```

$p = (1 - \frac{1}{10})^2 = 0.81$

$1 - p = 0.19$
Reducing the false positive probability

- We choose k hash functions h_1, h_2, \ldots, h_k, and set $A[h_j(x)] \leftarrow 1$ for $j = 1, 2, \ldots, k$, for every $x \in S$.
- For a query y, if $A[h_j(y)] = 0$ for some j, we know that $y \not\in S$.
- If $A[h_j(y)] = 1$ for all j, either y is in S or not.

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

$S = \{15, 32\}$

$k = 3$
Reducing the false positive probability

- We choose k hash functions h_1, h_2, \ldots, h_k, and set $A[h_j(x)] \leftarrow 1$ for $j = 1, 2, \ldots, k$, for every $x \in S$.
- For a query y, if $A[h_j(y)] = 0$ for some j, we know that $y \not\in S$.
- If $A[h_j(y)] = 1$ for all j, either y is in S or not.

$S = \{15, 32\}$

$k = 3$
Reducing the false positive probability

- We choose k hash functions h_1, h_2, \ldots, h_k, and set $A[h_j(x)] \leftarrow 1$ for $j = 1, 2, \ldots, k$, for every $x \in S$.
- For a query y, if $A[h_j(y)] = 0$ for some j, we know that $y \notin S$.
- If $A[h_j(y)] = 1$ for all j, either y is in S or not.

$x_2 = 32$

h_3

h_1 h_2

h_2 h_1 h_3

$x_1 = 15$

$S = \{15, 32\}$

$k = 3$
Reducing the false positive probability

- We choose k hash functions h_1, h_2, \ldots, h_k, and set $A[h_j(x)] \leftarrow 1$ for $j = 1, 2, \ldots, k$, for every $x \in S$.
- For a query y, if $A[h_j(y)] = 0$ for some j, we know that $y \notin S$.
- If $A[h_j(y)] = 1$ for all j, either y is in S or not.

$$x_2 = 32 \quad y = 27 \quad x_1 = 15$$

$S = \{15, 32\}$

$k = 3$
Reducing the false positive probability

- We choose k hash functions h_1, h_2, \ldots, h_k, and set $A[h_j(x)] \leftarrow 1$ for $j = 1, 2, \ldots, k$, for every $x \in S$.
- For a query y, if $A[h_j(y)] = 0$ for some j, we know that $y \notin S$.
- If $A[h_j(y)] = 1$ for all j, either y is in S or not.

$x_2 = 32 \quad y = 35 \quad x_1 = 15$

$S = \{15, 32\}$
$k = 3$
For fixed i, the probability that $A[i] = 0$ is
$$p = \left(1 - \frac{1}{m}\right)^{kn}.$$
For $y \notin S$, the probability that $A[h(y)] = 1$ is $(1 - p)^k$.

$x_2 = 32$ $y = 35$ $x_1 = 15$

$$p = \left(1 - \frac{1}{10}\right)^6 \approx 0.531$$
$$(1 - p)^3 \approx 0.103$$
For the previous example \((n = 2, m = 10)\):

- For \(k = 1\), \(p = 0.81\), \((1 - p)^1 \approx 0.19\).
- For \(k = 2\), \(p \approx 0.656\), \((1 - p)^2 \approx 0.118\).
- For \(k = 3\), \(p \approx 0.531\), \((1 - p)^3 \approx 0.103\).
- For \(k = 4\), \(p \approx 0.430\), \((1 - p)^4 \approx 0.105\).
- For \(k = 5\), \(p \approx 0.349\), \((1 - p)^5 \approx 0.117\).
Optimizing the probability of false positive

Let $f(k)$ be the probability of false positive.

$$p = (1 - 1/m)^{kn} \approx e^{-kn/m}$$

$$f(k) = (1 - p)^k \approx (1 - e^{-kn/m})^k = e^{k \cdot \ln(1 - e^{-kn/m})}$$

Minimizing $f(k)$ is equivalent to minimizing $g(k) = k \cdot \ln(1 - e^{-kn/m})$.

$$\frac{dg}{dk} = \ln(1 - e^{-kn/m}) + \frac{kn}{m} \frac{e^{-kn/m}}{1 - e^{-kn/m}}.$$

The minimum of $g(k)$ is when $dg/dk = 0 \implies k = \frac{m}{n} \ln 2$.

The minimum of $f(k)$ is $\approx 0.6185^{m/n}$.

Example: For $m = 8n$, $\frac{m}{n} \ln 2 \approx 5.55$. $f(5) \approx 0.0217$, $f(6) \approx 0.0216$.

Bloom Filter