Consider a lottery with 1000 tickets and the following prizes.

- 1 ticket wins 100$.
- 9 tickets win 10$ each.
- 90 tickets win 5$ each.
- The remaining tickets do not have prizes.

The cost of a ticket is 1$. Is it worthwhile to participate?

The sum of the prizes is

\[100 \cdot 1 + 10 \cdot 9 + 5 \cdot 90 + 0 \cdot 900 = 640 < 1000 \]

The average win is

\[\frac{100 \cdot 1 + 10 \cdot 9 + 5 \cdot 90 + 0 \cdot 900}{1000} = 0.64 < 1 \]
The previous computation can be done using probability theory.

- The probability to win 100$ is 1/1000.
- The probability to win 10$ is 9/1000.
- The probability to win 5$ is 90/1000.
- The probability to win 0$ is 900/1000.

The expected win is

\[
100 \cdot \frac{1}{1000} + 10 \cdot \frac{9}{1000} + 5 \cdot \frac{90}{1000} + 0 \cdot \frac{900}{1000} = 0.64
\]
A probability space is a pair \((\Omega, P)\) where
- \(\Omega\) is a set of outcomes. \(\Omega\) is called sample space.
- \(P : \Omega \rightarrow [0, 1]\) is a function that satisfies \(\sum_{x \in \Omega} P(x) = 1\). \(P\) is called probability measure.

An event is a subset of \(\Omega\).

For an event \(A \subseteq \Omega\), \(\Pr[A] = \sum_{x \in A} P(x)\).

Example

The lottery example can be modeled by the following probability space.
- \(\Omega = \{1, 2, \ldots, 1000\}\).
- \(P(x) = 1/1000\) for all \(x \in \Omega\).

\(A_1 = \{1\}\) (the event of winning 100$)
\(A_2 = \{2, 3, \ldots, 10\}\) (the event of winning 10$), etc.
\(\Pr[A_1] = 1/1000\), \(\Pr[A_2] = 9/1000\).
For every two events A, B,

$$\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \leq \Pr[A] + \Pr[B]$$

Therefore, for every events A_1, \ldots, A_k,

$$\Pr[A_1 \cup A_2 \cup \cdots \cup A_k] \leq \Pr[A_1] + \Pr[A_2] + \cdots + \Pr[A_k]$$
A random variable is a function $X : \Omega \rightarrow R$.

The expectation of a random variable X is

$$E[X] = \sum_{k} k \cdot \Pr[X = k].$$

Example

$$X(y) = \begin{cases}
100 & \text{if } y = 1 \\
10 & \text{if } 2 \leq y \leq 10 \\
5 & \text{if } 11 \leq y \leq 100 \\
0 & \text{otherwise}
\end{cases}$$

$$E[X] = 100 \cdot \frac{1}{1000} + 10 \cdot \frac{900}{1000} + 5 \cdot \frac{90}{1000} + 0 \cdot \frac{900}{1000} = 0.64$$
Suppose we toss a coin 3 times. What is the expected number of times it lands on “head”?

- $\Omega = \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}\}$
- $P(x) = 1/8$ for every $x \in \Omega$.
- Let $X(y) = \text{number of ‘H’s in } y$.
 - For example, $X(\text{HHH}) = 3$, $X(\text{HHT}) = 2$.
- $E[X] = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}$.

Skip lists
An indicator random variable for an event A is a random variable X such that

$$X(y) = \begin{cases}
1 & \text{if } y \in A \\
0 & \text{otherwise}
\end{cases}$$

If X is an indicator random variable for an event A,

$$E[X] = 0 \cdot \Pr[X = 0] + 1 \cdot \Pr[X = 1] = \Pr[A]$$
Theorem

For random variables X_1, \ldots, X_k, $E[\sum_{i=1}^k X_i] = \sum_{i=1}^k E[X_i]$.

Example

Suppose we toss a coin 3 times. What is the expected number of times it lands on “head”?

- Let $X = \text{number of times the coin lands on “head”}$.
- Let X_i be an indicator random variable for the event that the coin lands on “head” in the i-th toss.
- $X = X_1 + X_2 + X_3$, so

$$
E[X] = E[X_1] + E[X_2] + E[X_3] = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}
$$
A random variable X with binomial distribution with parameters n, p is the number of times a coin lands on “head” when the coin is tossed n times, and the probability to land on “head” is p.

- $\Omega = \text{all H/T strings of length } n$.
- $P(y) = p^k(1 - p)^{n-k}$ where k in the number of ‘H’s in y.
- $X(y) = \text{number of ‘H’s in } y$.

Theorem

$E[X] = np$.
A random variable X with geometric distribution is the number of coin tosses when a coin is tossed until the first “head”.

- $\Omega = \{H, \text{TH}, \text{TTH}, \ldots\}$.
- $P(H) = \frac{1}{2}$, $P(\text{TH}) = \frac{1}{4}$, $P(\text{TTH}) = \frac{1}{8}$, \ldots
- $X(y) = \text{length of } y$.

Theorem

$E[X] = 2$.

$$E[X] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \cdots = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$+ \frac{1}{4} + \frac{1}{8} + \cdots \frac{1}{2}$$

$$+ \frac{1}{8} + \cdots \frac{1}{4}$$

...
A dynamic set ADT is a structure that stores a set of elements. Each element has a (unique) key and satellite data. The structure supports the following operations.

Search\((S, k)\) Return the element whose key is \(k\) (return NULL if no element has key \(k\)).

Insert\((S, x)\) Add \(x\) to \(S\).

Delete\((S, x)\) Remove \(x\) from \(S\) (the operation receives a pointer to \(x\)).

Minimum\((S)\) Return the element in \(S\) with smallest key.

Maximum\((S)\) Return the element in \(S\) with largest key.

Successor\((S, x)\) Return the element in \(S\) with smallest key that is larger than \(x.key\).

Predecessor\((S, x)\) Return the element in \(S\) with largest key that is smaller than \(x.key\).
Skip list is an implementation of dynamic set with the following complexities:

- Search, Insert: $\Theta(\log n)$ expected.
- Delete: $\Theta(1)$ expected.
- Minimum, Maximum, Successor, Predecessor: $\Theta(1)$ (worst case).
A skip list for a set S consists of sorted linked lists S_0, S_1, \ldots, S_h such that:

- Each list S_i contains dummy elements $-\infty$ and ∞.
- S_0 contains all the elements of S.
- S_i is a sublist of S_{i-1}.
- S_h contains only the elements $-\infty$ and ∞.

![Diagram of a skip list](image-url)
Skip list

- Each node stores 4 pointers: next, prev, below, above.
- The structure stores a pointer $S.topleft$ to the first element in S_h.
- For efficient Minimum/Maximum, the structure stores pointers to the first/last element in S_0.

![Diagram of Skip List]
Find

\[\text{FIND}(S, k) \]

1. \(p \leftarrow S\text{.topleft} \)
2. \(\textbf{while } p\text{.below} \neq \text{NULL} \)
3. \(p \leftarrow p\text{.below} \)
4. \(\textbf{while } p\text{.next.key} \leq k \)
5. \(p \leftarrow p\text{.next} \)
6. \(\textbf{return } p \quad // \; p\text{.key} \; \text{is largest key that is } \leq k \)
Find

Find(S, k)

1. \(p \leftarrow S\).topleft
2. while \(p\).below \(\neq \) NULL
3. \(p \leftarrow p\).below
4. while \(p\).next.key \(\leq \) k
5. \(p \leftarrow p\).next
6. return \(p \) // \(p\).key is largest key that is \(\leq \) k

Find(S, 50)
Find

FIND(S, k)

1. $p \leftarrow S\.topleft$
2. while $p\.below \neq \text{NULL}$
3. $p \leftarrow p\.below$
4. while $p\.next\.key \leq k$
5. $p \leftarrow p\.next$
6. return p // $p\.key$ is largest key that is $\leq k$

Skip lists
Find

\[\text{FIND}(S, k) \]

1. \(p \leftarrow S.\text{topleft} \)
2. while \(p.\text{below} \neq \text{NULL} \)
3. \(p \leftarrow p.\text{below} \)
4. while \(p.\text{next}.\text{key} \leq k \)
5. \(p \leftarrow p.\text{next} \)
6. return \(p \) // \(p.\text{key} \) is largest key that is \(\leq k \)
Find

\[\textbf{FIND}(S, k)\]

1. \(p \leftarrow S\text{.topleft}\)
2. \(\textbf{while } p\text{.below }\neq \text{ NULL}\)
3. \(p \leftarrow p\text{.below}\)
4. \(\textbf{while } p\text{.next.key }\leq k\)
5. \(p \leftarrow p\text{.next}\)
6. \(\textbf{return } p\quad // p\text{.key is largest key that is }\leq k\)

Diagram:

Find(S, 50)
Find

FIND(S, k)

1. \(p \leftarrow S\text{.topleft} \)
2. while \(p\text{.below} \neq \text{NULL} \)
3. \(p \leftarrow p\text{.below} \)
4. while \(p\text{.next}\text{.key} \leq k \)
5. \(p \leftarrow p\text{.next} \)
6. return \(p \) // \(p\text{.key} \) is largest key that is \(\leq k \)

Find(S,50)
Find

FIND\((S, k)\)

1. \(p \leftarrow S\).topleft
2. \textbf{while} \(p\).below \(\neq\) NULL
3. \(p \leftarrow p\).below
4. \textbf{while} \(p\).next.key \(\leq\) \(k\)
5. \(p \leftarrow p\).next
6. \textbf{return} \(p\) // \(p\).key is largest key that is \(\leq\) \(k\)

\[
\begin{array}{ccccccccc}
-\infty & & & & & & & & \infty \\
& & 17 & & & & & & \\
& & 17 & 20 & 25 & & & & \\
& & 17 & 20 & 25 & & & & \\
& 12 & 17 & 20 & 25 & 31 & 38 & 44 & 50 & \infty
\end{array}
\]

Find(S,50)
Search

\textbf{Search}(S, k)

(1) \(p \leftarrow \text{Find}(S, k) \)
(2) \textbf{if} \ p\text{.key} = k
(3) \hspace{1em} \textbf{return} \ p
(4) \textbf{else}
(5) \hspace{1em} \textbf{return} \ NULL
Insertion

Insert(S, x)

1. $p \leftarrow \text{FIND}(S, x.\text{key})$
2. Insert x after p
3. while random() < 1/2
4. while $p.\text{above} = \text{NULL}$
5. $p \leftarrow p.\text{prev}$
6. $p \leftarrow p.\text{above}$
7. Insert a copy y of x after p
8. if $p = S.\text{topleft}$ create a new top list

Skip lists

-∞ -∞ -∞ -∞ -∞ -∞ 17 20 25 31 38 39 44 50 55 ∞ 12 17 20 25 31 38 39 44 55 ∞ 17 25 55 ∞ 17 ∞ ∞ 20 20 20
Insertion

Insert(*S*, *x*)

1. \(p \leftarrow \text{FIND}(S, x.\text{key}) \)
2. Insert *x* after *p*
3. while random() < 1/2
4. \(\text{while } p.\text{above} = \text{NULL} \)
5. \(p \leftarrow p.\text{prev} \)
6. \(p \leftarrow p.\text{above} \)
7. Insert a copy *y* of *x* after *p*
8. if \(p = S.\text{topleft} \) crate a new top list
Insertion

Insert(S, x)

1. $p \leftarrow \text{FIND}(S, x\text{.key})$
2. Insert x after p
3. **while** random() $< 1/2$
4. **while** $p\text{.above} = \text{NULL}$
5. $p \leftarrow p\text{.prev}$
6. $p \leftarrow p\text{.above}$
7. Insert a copy y of x after p
8. **if** $p = S\text{.topleft}$ crate a new top list

Diagram of Skip lists
Insertion

$\text{INSERT}(S, x)$

1. $p \leftarrow \text{FIND}(S, x.\text{key})$
2. Insert x after p
3. while random() $< 1/2$
4. \hspace{1em} while $p.\text{above} = \text{NULL}$
5. \hspace{2em} $p \leftarrow p.\text{prev}$
6. \hspace{2em} $p \leftarrow p.\text{above}$
7. Insert a copy y of x after p
8. if $p = S.\text{topleft}$ create a new top list
Insertion

Insert(S, x)

1. $p \leftarrow \text{FIND}(S, x.\text{key})$
2. Insert x after p
3. while random() < 1/2
4. while $p.\text{above} = \text{NULL}$
5. $p \leftarrow p.\text{prev}$
6. $p \leftarrow p.\text{above}$
7. Insert a copy y of x after p
8. if $p = S.\text{topleft}$ create a new top list
Insertion

Insert(*S, x*)

1. \(p \leftarrow \text{FIND}(S, x.\text{key}) \)
2. Insert \(x \) after \(p \)
3. \textbf{while} \(\text{random}() < 1/2 \)
4. \textbf{while} \(p.\text{above} = \text{NULL} \)
5. \(p \leftarrow p.\text{prev} \)
6. \(p \leftarrow p.\text{above} \)
7. Insert a copy \(y \) of \(x \) after \(p \)
8. \textbf{if} \(p = S.\text{topleft} \) create a new top list

![Skip lists diagram](image-url)
Insertion

Insert(\(S, x\))

1. \(p \leftarrow \text{FIND}(S, x\text{.key})\)
2. Insert \(x\) after \(p\)
3. **while** \(\text{random()} < 1/2\)
4. **while** \(p\).above = NULL
5. \(p \leftarrow p\).prev
6. \(p \leftarrow p\).above
7. Insert a copy \(y\) of \(x\) after \(p\)
8. **if** \(p = S\).topleft crate a new top list
Delete(S, x)

1. **while** $x \neq \text{NULL}$
2. Remove x from its list
3. **if** the list becomes empty, delete the list
4. $x \leftarrow x.\text{above}$
DELETE(S, x)

1. **while** $x \neq \text{NULL}$
2. Remove x from its list
3. **if** the list becomes empty, delete the list
4. $x \leftarrow x$.above
Delete(S, x)

1. while $x \neq$ NULL
2. Remove x from its list
3. if the list becomes empty, delete the list
4. $x \leftarrow x$.above
The height of skip list

- Let S be a skip list with n elements.
- The probability that an element x is in the list S_i is $1/2^i$.
- The probability that S_i has at least one element (excluding $\pm \infty$) is at most $n \cdot 1/2^i$.
- The probability that $S_{3 \log n}$ has at least one element is at most $n/2^{3 \log n} = n/n^3 = 1/n^2$.
- The probability that $S_{3 \log n}$ doesn’t have elements is at least $1 - 1/n^2$.
- In other words, with high probability, the height of the skip list is $O(\log n)$.
Space complexity

- The expected space for the $\pm \infty$ elements is $O(\log n)$.
- The probability that an element x is in the list S_i is $1/2^i$.
- The size of S_i (excluding $\pm \infty$) has binomial distribution with parameters n and $1/2^i$.
- Therefore, $E[|S_i|] = 2 + n/2^i$.
- The expected size of the skip list is

$$\sum_{i=0}^{O(\log n)} \left(2 + \frac{n}{2^i}\right) \leq O(\log n) + n \sum_{i=0}^{\infty} \frac{1}{2^i} = O(\log n) + 2n$$

- The expected space of a skip list is $\Theta(n)$.

Skip lists
Time complexity – search/insertion

\textbf{FIND}(S, k)

1. \(p \leftarrow S\text{.topleft} \)
2. \(\textbf{while} \ p\text{.below} \neq \text{NULL} \)
3. \(p \leftarrow p\text{.below} \)
4. \(\textbf{while} \ p\text{.next}\text{.key} \leq k \)
5. \(p \leftarrow p\text{.next} \)
6. \(\textbf{return} \ p \)

- The expected number of iterations of the while loop in line 2 is \(O(\log n) \).
- The number of iterations of while loop in line 4 on one list \(S_i \) has geometric distribution, so the expected number of iterations is 2.
- The expected total number of iterations of the while loop in line 4 is \(O(\log n) \).
- The expected time is \(O(\log n) \).
The time of deletion is linear in the height of the tower of the deleted element.
The height of a tower has geometric distribution.
The expected height of a tower is 2.
The expected time of Delete is $\Theta(1)$.