A Scalable Content-Addressable Network

Sylvia Ratnasamy' Paul Francis®

Mark Handley? Richard Karp!?

Scott Shenker?

I Dept. of Electrical Eng. & Comp. Sci.
University of California, Berkeley
Berkeley, CA, USA

ABSTRACT

Hash tables — which map “keys” onto “values” — are an esdenti¢ding
block in modern software systems. We believe a similar fionetity would
be equally valuable to large distributed systems. In thjgepawe intro-
duce the concept of a Content-Addressable Network (CAN)distabuted
infrastructure that provides hash table-like functiotyalbn Internet-like
scales. The CAN is scalable, fault-tolerant and completelfrorganizing,
and we demonstrate its scalability, robustness and loswidgt properties
through simulation.

1. INTRODUCTION

A hash table is a data structure that efficiently maps “keyddo
“values” and serves as a core building block in the implement
tion of software systems. We conjecture that many largéestia-
tributed systems could likewise benefit from hash tabletionel-
ity. We use the ternContent-Addressable Netwofi€AN) to de-
scribe such a distributed, Internet-scale, hash table.

Perhaps the best example of current Internet systems thit co
potentially be improved by a CAN are the recently introdupedr-
to-peer file sharing systems such as Napster [14] and Gay&!|
In these systems, files are stored at the end user machinas)(pe
rather than at a central server and, as opposed to the tnzaliti
client-server model, files are transferred directly betweeers.
These peer-to-peer systems have become quite popular.telaps
was introduced in mid-1999 and, as of December 2000, the soft
ware has been down-loaded by 50 million users, making it the
fastest growing application on the Web. New file sharingesyst
such as Scour, FreeNet, Ohaha, Jungle Monkey, and MojaNatio
have all been introduced within the last year.

While there remains some (quite justified) skepticism aftoet
business potential of these file sharing systems, we belleie
rapid and wide-spread deployment suggests that there gr@rim
tant advantages to peer-to-peer systems. Peer-to-paegnsiémr-
ness huge amounts of resources - the content advertisaagthro

2ACIRI
AT&T Center for Interb®esearch at ICSI
Berkeley, CA, USA

hardware, bandwidth, or rack space. As such, peer-to-pgeatfar-
ing may lead to new content distribution models for appiara
such as software distribution, file sharing, and static wesftent
delivery.

Unfortunately, most of the current peer-to-peer desigesnat
scalable. For example, in Napster a central server stoednth
dex of all the files available within the Napster user comrtuni
To retrieve a file, a user queries this central server usiegd
sired file’s well known name and obtains the IP address of a use
machine storing the requested file. The file is then downddati-
rectly from this user machine. Thus, although Napster ugEea
to-peer communication model for the actual file transfeg, pho-
cess of locating a file is still very much centralized. Thiskesit
both expensive (to scale the central directory) and vulrergince
there is a single point of failure). Gnutella goes a stephierriand
de-centralizes the file location process as well. Users inatéla
network self-organize into an application-level mesh onclvire-
quests for a file are flooded with a certain scope. Floodingverye
request is clearly not scalable [7] and, because the floduisgo
be curtailed at some point, may fail to find content that isiact
ally in the system. We started our investigation with thestjion:
could one make a scalable peer-to-peer file distributioteay? We
soon recognized that central to any peer-to-peer systeheimt
dexing scheme used to map file names (whether well known or dis
covered through some external mechanism) to their locétidine
system. That is, the peer-to-peer file transfer processhisrémtly
scalable, but the hard part is finding the peer from whom troenet
the file. Thus, a scalable peer-to-peer system requirebgatery
least, a scalable indexing mechanism. We call such indesyisg
tems Content-Addressable Networks and, in this paper,gs®p
particular CAN design.

However, the applicability of CANs is not limited to peerto
peer systems. CANs could also be used in large scale storage
management systems such as OceanStore [10], Farsite], an
Publius [13]. These systems all require efficient insertiod re-

Napster has been observed to exceed 7 TB of storage on a sing|él’ieva| of content in a large distributed storage infrastane; a scal-

day! without requiring centralized planning or huge investnsent

! Private communication with Yin Zhang and Vern Paxson

Permission to make digital or hard copies of all or part o8 tiiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGCOMM'01,August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/000855.00.

able indexing mechanism is an essential component of suaft an
frastructure. In fact, as we discuss in Section 5, the OceseS
system already includes a CAN in its core design (although th
OceanStore CAN, based on Plaxton’s algorithm[15], is sonagw
different from what we propose here).

Another potential application for CANs is in the constroctiof
wide-area name resolution services that (unlike the DN8puale
ple the naming scheme from the name resolution processbihere
enabling arbitrary, location-independent naming schemes

Our interest in CANs is based on the belief that a hash table-
like abstraction would give Internet system developers\agful
design tool that could enable new applications and comratinit

models. However, in this paper our focus is not on the use MI€A
but on their design. In [17], we describe, in some detail, jpossi-
ble application, which we call a “grass-roots” content idisttion
system, that leverages our CAN work.

Intuitively, routing in a Content Addressable Network wety
following the straight line path through the Cartesian spiom
source to destination coordinates.

A CAN node maintains a coordinate routing table that holds th

As we have said, CANs resemble a hash table; the basic oper-IP address and virtual coordinate zone of each of its imntedia

ations performed on a CAN are the insertion, lookup and aelet
of (key,value) pairs. In our design, the CAN is composed ofiyna
individual nodes. Each CAN node stores a chunk (calledra of
the entire hash table. In addition, a node holds informagibout

a small number of “adjacent” zones in the table. Requess®(in
lookup, or delete) for a particular key are routed by intediate
CAN nodes towards the CAN node whose zone contains that key.
Our CAN design is completely distributed (it requires nonfioof
centralized control, coordination or configuration), st¥é (nodes
maintain only a small amount of control state that is indejeen
of the number of nodes in the system), and fault-tolerantiéso
can route around failures). Unlike systems such as the DNB or
routing, our design does not impose any form of rigid hiehnaral
naming structure to achieve scalability. Finally, our destan be
implemented entirely at the application level.

In what follows, we describe our basic design for a CAN in Sec-
tion 2, describe and evaluate this design in more detail atiGe3
and discuss our results in Section 4. We discuss related imork
Section 5 and directions for future work in Section 6.

2. DESIGN

First we describe our Content Addressable Network in itstmos
basic form; in Section 3 we present additional design feattinat
greatly improve performance and robustness.

Our design centers around a virtuadimensional Cartesian co-
ordinate space on@torus? This coordinate space is completely
logical and bears no relation to any physical coordinatéesysAt
any point in time, theentire coordinate space is dynamically par-
titioned among all the nodes in the system such that everg nod
“owns” its individual, distinct zone within the overall spa For
example, Figure 1 shows a 2-dimensioftall] x [0, 1] coordinate
space partitioned between 5 CAN nodes.

This virtual coordinate space is used to store (key,valagjsp
as follows: to store a pairK,,V1), key K, is deterministically
mapped onto a poinP in the coordinate space using a uniform
hash function. The corresponding (key,value) pair is thenes
at the node that owns the zone within which the pdmlies. To
retrieve an entry corresponding to k& , any node can apply the
same deterministic hash function to m&p onto pointP and then
retrieve the corresponding value from the pafht If the point P
is not owned by the requesting node or its immediate neighbor
the request must be routed through the CAN infrastructutg itin
reaches the node in whose zandies. Efficient routing is therefore
a critical aspect of a CAN.

Nodes in the CAN self-organize into an overlay network tlegtr
resents this virtual coordinate space. A node learns andtaias
the IP addresses of those nodes that hold coordinate zojués-ad
ing its own zone. This set of immediate neighbors in the coaite
space serves as a coordinate routing table that enablésgdng-
tween arbitrary points in this space.

We will describe the three most basic pieces of our designrNCA
routing, construction of the CAN coordinate overlay, andntex
nance of the CAN overlay.

2.1 Routing in a CAN

2For simplicity, the illustrations in this paper do not showoeus,
so the reader must remember that the coordinate space wraps.

neighbors in the coordinate space. ld-dimensional coordinate
space, two nodes are neighbors if their coordinate spangapve
alongd—1 dimensions and abut along one dimension. For example,
in Figure 2, node 5 is a neighbor of node 1 because its codadina
zone overlaps with 1's along the Y axis and abuts along theiX-a
On the other hand, node 6 is not a neighbor of 1 because their co
ordinate zones abut along both the X and Y axes. This purebl lo
neighbor state is sufficient to route between two arbitraniy{s in

the space: A CAN message includes the destination cooedinat
Using its neighbor coordinate set, a hode routes a messaged®

its destination by simple greedy forwarding to the neightvith
coordinates closest to the destination coordinates. €igwshows

a sample routing path.

For ad dimensional space partitioned intoequal zones, the av-
erage routing path length {g/4) (n'/%) hops and individual nodes
maintain2d neighbors. These scaling results mean that fod-a
dimensional space, we can grow the number of nodes (and hence
zones) without increasing per node state while the averatje p
length grows a®)(n'/4).

Note that many different paths exist between two points & th
space and so, even if one or more of a node’s neighbors were to
crash, a node can automatically route along the next betalblea
path.

If however, a node loses all its neighbors in a certain dioact
and the repair mechanisms described in Section 2.3 haveetot y
rebuilt the void in the coordinate space, then greedy forivar
may temporarily fail. In this case, a nhode may use an expgndin
ring search (using stateless, controlled flooding over thieast
CAN overlay mesh) to locate a node that is closer to the dztsbim
than itself. The message is then forwarded to this closeg rfooim
which greedy forwarding is resumed.

2.2 CAN construction

As described above, the entire CAN space is divided amongst
the nodes currently in the system. To allow the CAN to grow in-
crementally, a new node that joins the system must be a#idgest
own portion of the coordinate space. This is done by an exjsti
node splitting its allocated zone in half, retaining halfldranding
the other half to the new node.

The process takes three steps:

1. First the new node must find a node already in the CAN.

2. Next, using the CAN routing mechanisms, it must find a node
whose zone will be split.

3. Finally, the neighbors of the split zone must be notified so
that routing can include the new node.

Bootstrap

A new CAN node first discovers the IP address of any node cur-
rently in the system. The functioning of a CAN does not depend

3Recently proposed routing algorithms for location sersift5s,

20] route inO(log n) hops with each node maintainirg@(log n)
neighbors. Notice that were we to select the number of dirnaas
d=(log, n)/2, we could achieve the same scaling properties.We
choose to holdl fixed independent af, since we envision apply-
ing CANs to very large systems with frequent topology change
In such systems, it is important to keep the number of neighbo
independent of the system size

(0.5-0.75,0.5-1.0)
/

(0.75-1.0,0.5-1.0)

A B
(0-0.5,0-0.5)/ 7 (0.5-1.0,0.0-0.5)
1

0.0,
0.0

’ /

1.0

node B’s virtual coordinate zone

oy

Ly

N

Figure 1: Example 2-d space with 5 nodes

1’s coordinate neighbor set = {2,3,4,5}
7’s coordinate neighbor set ={ }

Figure 2: Example 2-

7 joins

sample routing

path from node 1

to point (x,y)

1’s coordinate neighbor set = {2,3,4,7}
7’s coordinate neighbor set = {1,2,4,5}

Figure 3: Example 2-d space after node
7 joins

d space before node

on the details of how this is done, but we use the same boptstra number of nodes in the system. Thus, node insertion affetdis o

mechanism as YOID [4].

O(number of dimensiongxisting nodes, which is important for

As in [4] we assume that a CAN has an associated DNS domain CANs with huge numbers of nodes.

name, and that this resolves to the |IP address of one or moke CA
bootstrap nodes. A bootstrap node maintains a partial fli€tAN
nodes it believes are currently in the system. Simple teples to
keep this list reasonably current are described in [4].

To join a CAN, a new node looks up the CAN domain name in
DNS to retrieve a bootstrap node’s IP address. The bootatrdp
then supplies the IP addresses of several randomly chostas no
currently in the system.

Finding a Zone

The new node then randomly chooses a péinn the space and
sends alJOIN request destined for poirf®. This message is sent
into the CAN via any existing CAN node. Each CAN node then
uses the CAN routing mechanism to forward the message, itintil
reaches the node in whose zaRdies.

This current occupant node then splits its zone in half asias
one half to the new node. The split is done by assuming a oertai
ordering of the dimensions in deciding along which dimensio
zone is to be split, so that zones can be re-merged when resles |
For a 2-d space a zone would first be split along the X dimension
then the Y and so on. The (key, value) pairs from the half zone t
be handed over are also transfered to the new node.

Joining the Routing

Having obtained its zone, the new node learns the IP addredse
its coordinate neighbor set from the previous occupants §ht is
a subset of the previous occupant’s neighbors, plus thatpaet
itself. Similarly, the previous occupant updates its nbigtset to
eliminate those nodes that are no longer neighbors. Firtadith
the new and old nodes’ neighbors must be informed of thi$oes
tion of space. Every node in the system sends an immediatgeipd
message, followed by periodic refreshes, with its curseasksigned
zone to all its neighbors. These soft-state style updatesrerhat
all of their neighbors will quickly learn about the changed amill
update their own neighbor sets accordingly. Figures 2 arttb@/s
an example of a new node (node 7) joining a 2-dimensional CAN.
The addition of a new node affects only a small number of ex-
isting nodes in a very small locality of the coordinate spatke
number of neighbors a node maintains depends only on thendime
sionality of the coordinate space and is independent of dted t

2.3 Node departure, recovery and CAN main-
tenance

When nodes leave a CAN, we need to ensure that the zones they
occupied are taken over by the remaining nodes. The norroal pr
cedure for doing this is for a node to explicitly hand overztse
and the associated (key,value) database to one of its reghti
the zone of one of the neighbors can be merged with the degarti
node’s zone to produce a valid single zone, then this is ddhe.
not, then the zone is handed to the neighbor whose currestizon
smallest, and that node will then temporarily handle botiezo

The CAN also needs to be robust to node or network failures,
where one or more nodes simply become unreachable. Thigsis ha
dled through an immediate takeover algorithm that ensuneso®
the failed node’s neighbors takes over the zone. Howevenis t
case the (key,value) pairs held by the departing node areihdi
the state is refreshed by the holders of the Hata

Under normal conditions a node sends periodic update messag
to each of its neighbors giving its zone coordinates andt afigs
neighbors and their zone coordinates. The prolonged abs&ram
update message from a neighbor signals its failure.

Once a node has decided that its neighbor has died it irdtiate
the takeover mechanism and starts a takeover timer runiiagh
neighbor of the failed node will do this independently, witte
timer initialized in proportion to the volume of the node'siio
zone. When the timer expires, a node sen@iskEOVER message
conveying its own zone volume to all of the failed node’s hbigrs.

On receipt of aTAKEOVER message, a node cancels its own
timer if the zone volume in the message is smaller that its zovre
volume, or it replies with its oWTAKEOVER message. In this way,

a neighboring node is efficiently chosen that is still alinel das a
small zone volunie

Under certain failure scenarios involving the simultareéail-
ure of multiple adjacent nodes, it is possible that a nodeatst

“To prevent stale entries as well as to refresh lost entriedes
that insert (key,value) pairs into the CAN periodicallyresth these
entries

% Additional metrics such as load or the quality of connetyigian
also be taken into account, but in the interests of simplivie
won't discuss these further here.

a failure, but less than half of the failed node’s neighboessill
reachable. If the node takes over another zone under theserzi
stances, it is possible for the CAN state to become incargistn
such cases, prior to triggering the repair mechanism, tlie per-
forms an expanding ring search for any nodes residing bejload
failure region and hence it eventually rebuilds sufficieaighbor
state to initiate a takeover safely.

Finally, both the normal leaving procedure and the immediat
takeover algorithm can result in a node holding more than one
zone. To prevent repeated further fragmentation of the espac
background zone-reassignment algorithm, which we desdrib
Appendix A, runs to ensure that the CAN tends back towards one
zone per node.

3. DESIGN IMPROVEMENTS

Our basic CAN algorithm as described in the previous section
provides a balance between low per-node statédf for a
d-dimensional space) and short path lengths \@n'/?) hops
for d dimensions and: nodes. This bound applies to the number
of hops in the CAN path. These aapplication levehops, not IP-
level hops, and the latency of each hop might be substargizd|
that nodes that are adjacent in the CAN might be many miles and
many IP hops away from each other. The average total latefhcy o
a lookup is the average number of CAN hops times the average la
tency of each CAN hop. We would like to achieve a lookup lagenc
that is comparable within a small factor to the underlyingokeh
latencies between the requester and the CAN node holdingethe

In this section, we describe a number of design techniqueseavh
primary goal is to reduce the latency of CAN routing. Not unin
tentionally, many of these techniques offer the additicadhlan-
tage of improved CAN robustness both in terms of routing aatd d
availability. In a nutshell, our strategy in attempting éaluce path
latency is to reduce either the path length or the per-CAN-lae
tency. A final improvement we make to our basic design is to add
simple load balancing mechanisms (described in Sectighargl
3.8).

First, we describe and evaluate each design feature ingiihd
and then, in Section 4, discuss how together they affectibeath
performance. These added features yield significant inggnants
but come at the cost of increased per-node state (althoughoge
state still remains independent of the number of nodes irsyke
tem) and somewhat increased complexity. The extent to whieh
following techniques are applied (if at all) involves a teaoff be-
tween improved routing performance and system robustrnetseo
one hand and increased per-node state and system compmiaxity
the other. Until we have greater deployment experience kaod/
the application requirements better, we are not preparetae
on these tradeoffs.

We simulated our CAN design on Transit-Stub (TS) topologies
using the GT-ITM topology generator [22]. TS topologies miod
networks using a 2-level hierarchy of routing domains witnsit
domains that interconnect lower level stub domains.

3.1 Multi-dimensioned coordinate spaces

The first observation is that our design does not restrictdihe
mensionality of the coordinate space. Increasing the diines
of the CAN coordinate space reduces the routing path lemgtth,
hence the path latency, for a small increase in the size afdhe
dinate routing table.

Figure 4 measures this effect of increasing dimensions at: ro
ing path length. We plot the path length for increasing nusioé
CAN nodes for coordinate spaces with different dimensiéits.a
system withn nodes and dimensions, we see that the path length

scales a®)(d(n'/?)) in keeping with the analytical results for per-
fectly partitioned coordinate spaces.

Because increasing the number of dimensions implies thade n
has more neighbors, the routing fault tolerance also imgs@s a
node now has more potential next hop nodes along which messag
can be routed in the event that one or more neighboring naedsb.c

3.2 Realities: multiple coordinate spaces

The second observation is that we can maintain multipleg-ind
pendent coordinate spaces with each node in the system aging
signed a different zone in each coordinate space. We cdilsath
coordinate space a “reality”. Hence, for a CAN withrealities, a
single node is assignedcoordinate zones, one on every reality and
holdsr independent neighbor sets.

The contents of the hash table are replicated on every yealit
This replication improves data availability. For exampiay a
pointer to a particular file is to be stored at the coordinatza}
tion (x,y,z). With four independent realities, this pointgould
be stored at four different nodes corresponding to the éoatels
(x,y,z) on each reality and hence it is unavailable only wh#én
four nodes are unavailable. Multiple realities also imgrogut-
ing fault tolerance, because in the case of a routing bremkdm
one reality, messages can continue to be routed using treniem
realities.

Further, because the contents of the hash table are regulioat
every reality, routing to location (X,y,z) translates tachking (x,y,z)
on any reality. A given node owns one zone per reality each of
which is at a distinct, and possibly distant, location in toerdi-
nate space. Thus, an individual node has the ability to rdetant
portions of the coordinate space in a single hop, therebstiyree-
ducing the average path length. To forward a message, a mvde n
checks all its neighbors on each reality and forwards thesegesto
that neighbor with coordinates closest to the destinatitigure 5
plots the path length for increasing numbers of nodes fdewifit
numbers of realities. From the graph, we see that realitieatly
reduce path length. Thus, using multiple realities redulcegpath
length and hence the overall CAN path latency.

Multiple dimensions versus multiple realities

Increasing either the number of dimensions or realitiesltesn
shorter path lengths, but higher per-node neighbor statevein-
tenance traffic. Here we compare the relative improvemenised
by each of these features.

Figure 6 plots the path length versus the average numbeigtine
bors maintained per node for increasing dimensions andtiesal
We see that for the same number of neighbors, increasingithe d
mensions of the space yields shorter path lengths thanasiog
the number of realities. One should not, however, conclude f
these tests that multiple dimensions are more valuable rthati-
ple realities because multiple realities offer other beaefuch as
improved data availability and fault-tolerance. Rathlee, point to
take away is that if one were willing to incur an increase ia &v-
erage per-node neighbor state for the primary purpose afiwing
routing efficiency, then the right way to do so would be to @ase
the dimensionalityl of the coordinate space rather than the number
of realitiesr.

3.3 Better CAN routing metrics

The routing metric, as described in Section 2.1, is the gsgr
in terms of Cartesian distance made towards the destinaGore
can improve this metric to better reflect the underlying Ipology
by having each node measure the network-level round-trip-t
RTTto each of its neighbors. For a given destination, a message

#realities=1

#dimensions=2

Number of nodes = 131,072

T T T T
2 dimensions 256
3 dimension
4 dimensiorf
5 dimepsion:

S
128 o 128

Number of hops
Number of hops

T

2,r=2

d
25

increasing dimensions, #realities=2

T —T
1 reality i i er . i
iti increasing realities, #dimensions=2

2 realiti By

e

S
4 redlities

20 -
ar=3

15 o.r=4

Number of hops

o.r=5
r=6
5
10 =74
n.d=4

=d=5_ d=6

d=7

L L L L L L
4096 16K 64K 256K 1024 4096

Number of nodes

L
1024

Figure 4: Effect of dimensions on path

length path length

is forwarded to the neighbor with the maximum ratio of pragre
to RTT. This favors lower latency paths, and helps the aptibo
level CAN routing avoid unnecessarily long hops.

Unlike increasing the number of dimensions or realitiesTRT
weighted routing aims at reducing the latency of individbaps
along the path and not at reducing the path length. Thus, etnign
for evaluating the efficacy of RTT-weighted routing is the-pep
latency, obtained by dividing the overall path latency by gath
length.

To quantify the effect of this routing metric, we used Transi
Stub topologies with link latencies of 100ms for intra-sérdo-
main links, 10ms for stub-transit links and 1ms for intrakstlo-
main links. With our simulated topology, the average enéid la-
tency of the underlying IP network path between randomlgcted
source-destination nodes is approximately 115ms. Tableni- c
pares the average per-hop latency with and without RTT wiigigh
These latencies were averaged over test runsayithe number of
nodes in the CAN, ranging frof to 2'%,

As can be seen, while the per-hop latency without RT T-weight
routing matches the underlying average IP network lateRay[-
weighted routing lowers the per-hop latency by between 24éb a
40% depending on the number of dimensions. Higher dimession
give more next-hop forwarding choices and hence even grizate
provements.

3.4 Overloading coordinate zones

So far, our design assumes that a zone is, at any point in time,
assigned to a single node in the system. We now modify this to

allow multiple nodes to share the same zone. Nodes that share
the same zone are termed peers. We define a system parameter

MAXPEERS which is the maximum number of allowable peers per
zone (we imagine that this value would typically be rather, 18 or
4 for example).

With zone overloading, a node maintains a list of its peeegin
dition to its neighbor list. While a node must know all the i@
its own zone, it need not track all the peers in its neighlzpriones.
Rather, a node selects one neighbor from amongst the pesaistin
of its neighboring zones. Thus, zone overloading does motase
the amount oheighborinformation an individual node must hold,
but does require it to hold additional state for upMBXPEERS
peer nodes.

Overloading a zone is achieved as follows: When a new nbde
joins the system, it discovers, as before, an existent ibddose
zone it is meant to occupy. Rather than directly splittirsgzibne

Number of nodes

Figure 5: Effect of multiple realities on

15 20
Number of neighbors

L L L
16K 64K 256K M 25 30

Figure 6: Path length with increasing
neighbor state

as described earlier, node first checks whether it has fewer than
MAXPEERS peer nodes. If so, the new nodemerely joinsB’s
zone without any space splitting. Node obtains both its peer
list and its list of coordinate neighbors froM. Periodic soft-state
updates fromA serve to informA’s peers and neighbors about its
entry into the system.

If the zone is full (already hag AXPEERSNodes), then the zone
is splitinto half as before. NodB informs each of the nodes on it's
peer-list that the space is to be split. Using a determinisiie (for
example the ordering of IP addresses), the nodes on the ipeer |
together with the new nodd divide themselves equally between
the two halves of the now split zone. As beforepbtains its initial
list of peers and neighbors frof.

Periodically, a node sends its coordinate neighbor a reédaes
its list of peers, then measures the RTT to all the nodes inh tha
neighboring zone and retains the node with the lowest RTTsas i
neighbor in that zone. Thus a node will, over time, measuee th
round-trip-time to all the nodes in each neighboring zoreratain
the closesti(e. lowest latency) nodes in its coordinate neighbor set.
After its initial bootstrap into the system, a node can perfohis
RTT measurement operation at very infrequent intervalssstoa
not unnecessarily generate large amounts of control traffic

The contents of the hash table itself may be either divided or
replicated across the nodes in a zone. Replication provitgeer
availability but increases the size of the data stored atyevede by
a factor ofMAXPEERS(because the overall space is now partitioned
into fewer, and hence larger, zones) and data consistensy lmeu
maintained across peer nodes. On the other hand, panti¢jatzita
among a set of peer nodes does not require consistency nigtisan
r increased data storage but does not improve availabiliter.

Overloading zones offers many advantages:

(6]

¢ reduced path length (number of hops), and hence reduced
path latency, because placing multiple nodes per zone bas th
same effect as reducing the number of nodes in the system.

reduced per-hop latency because a node now has multiple
choices in its selection of neighboring nodes and can select
neighbors that are closer in terms of latency. Table 2 lists
the average per-hop latency for increasmgXxPEERS for
system sizes ranging fro®® to 2'® nodes with the same
Transit-Stub simulation topologies as in Section 3.3. e se
that placing 4 nodes per zone can reduce the per-hop latency
by about 45%.

¢ improved fault tolerance because a zone is vacant only when

Number of | Non-RTT-weighted| RTT-weighted
dimensions routing (ms) routing (ms)
2 116.8 88.3
3 116.7 76.1
4 115.8 71.2
5 115.4 70.9

Table 1: Per-hop latency using RTT-weighted routing

| Number of nodes per zonk per-hop latency (ms)

1 116.4
2 92.8
3 72.9
4 64.4

Table 2: Per-hop latencies using multiple nodes per zone

all the nodes in a zone crash simultaneously (in which case tions and so on. Previously, a new node joined the CAN at a ran-

the repair process of Section 2.3 is still required).

On the negative side, overloading zones adds somewhat-+o sys

tem complexity because nodes must additionally track af petars.

3.5 Multiple hash functions

For improved data availability, one could ukedifferent hash
functions to map a single key onkopoints in the coordinate space
and accordingly replicate a single (key,value) pait distinct nodes
in the system. A (key,value) pair is then unavailable onlewhll
k replicas are simultaneously unavailable. In addition riggefor
a particular hash table entry could be sent tokatlodes in paral-
lel thereby reducing the average query latency. Figure %los
query latencyi.e. the time to fetch a (key,value) pair, for increasing
number of nodes for different numbers of hash functions.

Of course, these advantages come at the cost of increagng th

size of the (key,value) database and query traffic (in the cds
parallel queries) by a factor @f.

Instead of querying alt nodes, a node might instead choose to

retrieve an entry from that node which is closest to it in therdi-
nate space.

3.6 Topologically-sensitive construction of the
CAN overlay network
The CAN construction mechanism described in Section 22 all

dom point in the entire coordinate space. Now, a new nodes join
the CAN at a random point in that portion of the coordinatecspa
associated with its landmark ordering.

The rationale behind this scheme is that topologicallyelusdes
are likely to have the same ordering and consequently, esiide
in the same portion of the coordinate space and hence neighbo
in the coordinate space are likely to be topologically cloeehe
Internet.

The metric we use to evaluate the above binning scheme is the
ratio of the latency on the CAN network to the average latemty
the IP network. We call this the latensyretch Figure 8 compares
the stretch on CANs constructed with and without the abomd-la
mark ordering scheme. We use the same Transit-Stub togslogi
as before (Section 3.3) and 4 landmarks placed at randomthéth
only restriction that they must be at least 5 hops away froohea
other. As can be seen, landmark ordering greatly improvegdth
latency.

A consequence of the above binning strategy is that the toord
nate space is no longer uniformly populated. Because sodes-or
ings (bins) are more likely to occur than others their cquoegling
portions of the coordinate space are also more densely mxtup
than others leading to a slightly uneven distribution oflaaongst
the nodes. The use of background load balancing technigses (
described in Appendix A) where an overloaded node hands off a
portion of its space to a more lightly loaded one could be ueed

cates nodes to zones at random, and so a node’s neighbore on thyjjeviate this problem.

CAN need not be topologically nearby on the underlying IP net
work. This can lead to seemingly strange routing scenariusrey
for example, a CAN node in Berkeley has its neighbor nodesin E

rope and hence its path to a node in nearby Stanford may sever

distant nodes in Europe. While the design mechanisms tesktri
in the previous sections try to improve the selection of path an
existing overlay network they do not try to improve the oagrhet-
work structure itself. In this section, we present someéahiesults
on our current work on trying to construct CAN topologiestthee
congruent with the underlying IP topology.

These results seem encouraging and we are continuing tp stud
the effect of topology, link delay distribution, number ahldmarks
and other factors on the above scheme. Landmark orderingris w
in progress. We do not discuss or make use of it further in this
paper.

3.7 More Uniform Partitioning

When a new node joins, a JOIN message is sent to the owner of
a random point in the space. This existing node knows not itsly

Our initial scheme assumes the existence of a well known set own zone coordinates, but also those of its neighbors. Tdrere

of machines (for example, the DNS root name servers) thaisact
landmarks on the Internet. We achieve a form of “distributéed
ning” of CAN nodes based on their relative distances frora #eait

of landmarks. Every CAN node measures its round-trip-time t
each of these landmarks and orders the landmarks in order of i
creasing RTT. Thus, based on its delay measurements toftae di
ent landmarks, every CAN node has an associated orderinth Wi
m landmarks,m! such orderings are possible. Accordingly we
partition the coordinate space inta! equal sized portions, each
corresponding to a single ordering. Our current (Somewhate)
scheme to partition the space intd portions works as follows: as-
suming a fixed cyclical ordering of the dimensioesy; xyzxyzx...),
we first divide the space, along the first dimension, intportions,
each portion is then sub-divided along the second dimerision
m — 1 portions each of which is further divided inta. — 2 por-

instead of directly splitting its own zone, the existing gpant node
first compares the volume of its zone with those of its immiedia
neighbors in the coordinate space. The zone that is splitdora-
modate the new node is then the one with the largest volume.
This volume balancing check thus tries to achieve a more uni-
form partitioning of the space over all the nodes and can lee us
with or without the landmark ordering scheme from Sectiof 3.
Since (key,value) pairs are spread across the coordinate $sing
a uniform hash function, the volume of a node’s zone is irtdiea
of the size of the (key,value) database the node will haveoie s
and hence indicative of the load placed on the node. A unifoam
titioning of the space is thus desirable to achieve loadrizita.
Note that this is not sufficient for true load balancing beszau
some (key,value) pairs will be more popular than others putisng
higher load on the nodes hosting those pairs. This is sirulére

#dimensions=2, #realities=1

#landmarks=4, #realities=1

T 25 T

T T
16.0 |- 1 hash function

3 hash functions --f----
5 hash functions -7------

20
120 1

10.0 - VA

80 | S0 A

Latency Stretch

6.0 -

40

User-perceived Query Latency (s)

!

T
7 2-d, with landmark ordering
2-d, without landmark ordering -5----- *

4-d, with landmark ordering <=------
4-d, without landmark ordering

20 //,T.A:j?f;ji'j'/'j'i // | .

without unifbrm—pahitioniné feature
with uniform-partitioning feature

100 .

*
80

60

Percentage of nodes

n *

L L L
4096 16K 64K
Number of nodes

i
256 1024 256K 256

Figure 7: Reduction in user-perceived
query latency with the use of multiple
hash functions

“hot spot” problem on the Web. In Section 3.8 we discuss caghi
and replication techniques that can be used to ease thiphbbt s

problem in CANs.
If the total volume of the entire coordinate space wgreandn
the total number of nodes in the system then a perfect panititi

of the space among the nodes would assign a zone of volume
VrIn to each node. We ugé to denoteV/n. We ran simulations
with 2'¢ nodes both with and without this uniform partitioning fea-
ture. At the end of each run, we compute the volume of the zone have an associated time-to-live field and be eventuallyregfiom
assigned to each node. Figure 9 plots different possiblenves

in terms of V' on the X axis and shows the percentage of the total
number of nodes (Y axis) that were assigned zones of a pkaticu
volume. From the plot, we can see that without the uniformipar
tioning feature a little over 40% of the nodes are assignembtes
with volume V' as compared to almost 90% with this feature and
the largest zone volume drops fra8 to 2V7. Not surprisingly,
the partitioning of the space further improves with inciegsdi-
mensions.

3.8 Caching and Replication techniques for

“hot spot” management

As with files in the Web, certain (key,value) pairs in a CAN are

likely to be far more frequently accessed than others, thada@ad-

ing nodes that hold these popular data keys. To makepapular
data keys widely available, we borrow some of the caching and
replication techniques commonly applied to the Web.

e Caching: In addition to its primary data storee(those data

keys that hash into its coordinate zone), a CAN node main-
tains a cache of the data keys it recently accessed. Before
forwarding a request for a data key towards its destination,
a node first checks whether the requested data key is in its
own cache and if so, can itself satisfy the request without
forwarding it any further. Thus, the number of caches from
which a data key can be served grows in direct proportion to
its popularity and the very act of requesting a data key makes
it more widely available.

Replication: A node that finds it is being overloaded by re-

quests for a particular data key can replicate the data key
at each of its neighboring nodes. Replication is thus an ac-
tive pushing out of popular data keys as opposed to caching,
which is a natural consequence of requesting a data key. A

L
1024
Number of nodes

Figure 8: Latency savings due to land-
mark ordering used in CAN construction

0 n . . .
V/16 VI8 Vi4 V2 \% 2v v 8V
Volume

!
4096

Figure 9: Effect of Uniform Partitioning
feature on a CAN with 65,536 nodes, 3
dimensions and 1 reality

popular data key is thus eventually replicated within a re-
gion surrounding the original storage node. A node holding
a replica of a requested data key can, with a certain prob-
ability, choose to either satisfy the request or forwardrit o
its way thereby causing the load to be spread over the entire
region rather than just along the periphery.

As with all such schemes, cached and replicated data keysdsho

the cache.

4.

DESIGN REVIEW

Sections 2 and 3 described and evaluated individual CANydesi
components. The evaluation of our CAN recovery algorithoss (
ing both large scale and smaller scagsimulations), are presented
in [18]. Here we briefly recap our design parameters and ogetri
summarize the effect of each parameter on the differenticsetnd
quantify the performance gains achieved by the cumulafifeste
of all the features.

We used the following metrics to evaluate system perforraanc

Path length: the number of (application-level) hops required
to route between two points in the coordinate space.
Neighbor-state the number of CAN nodes for which an in-
dividual node must retain state.

Latency: we consider both the end-to-end latency of the to-
tal routing path between two points in the coordinate space
and the per-hop latency, i.e., latency of individual apgtiian
level hops obtained by dividing the end-to-end latency ley th
path length.

Volume: the volume of the zone to which a node is assigned,
that is indicative of the request and storage load a node must
handle.

Routing fault tolerance: the availability of multiple paths
between two points in the CAN.

Hash table availability: adequate replication of a (key,value)
entry to withstand the loss of one or more replicas.

The key design parameters affecting system performance are

dimensionality of the virtual coordinate spack:
number of realitiesr
number of peer nodes per zone:

Table 4: CAN parameters

e number of hash functions.¢. number of points per reality
at which a (key,value) pair is stored:

e use of the RTT-weighted routing metric

¢ use of the uniform partitioning feature described in Set8

In some cases, the effect of a design parameter on certain met
rics can be directly inferred from the algorithm; in all otfmses
we resorted to simulation. Table 3 summarizes the relatiprize-
tween the different parameters and metrics. A table entmketa
“-" indicates that the given parameter has no significareafbn
that metric, whilet and| indicate an increase and decrease respec-
tively in that measure caused by an increase in the correlsppn
parameter. The figure numbers included in certain tablée=nte-
fer to the corresponding simulation results.

To measure the cumulative effect of all the above featureseav
lected a system size aF2'® nodes and compared two algorithms:

1. a “bare bones” CAN that does not utilize most of our addi-
tional design features

2. a“knobs-on-full” CAN making full use of our added featsire
(without the landmark ordering feature from Section 3.7)

The topology used for this test is a Transit-Stub topologthwi
a delay of 100ms on intra-transit links, 10ms on stub-ttaivgks
and 1ms on intra-stub links.€. 100ms on links that connect two
transit nodes, 10ms on links that connect a transit node taka s
node and so forth). Tables 4 and 5 list the values of the pasame
and metrics for each test.

We find these results encouraging as they demonstrate that fo
system with over 260,000 nodes we can route with a latena¢ygha
well within a factor of two of the underlying network latencyhe
number of neighbors that a node must maintain to achieveshis
approximately 30 (27.1 + 2.95) which is definitely on the hsigte
but not necessarily unreasonable. The biggest gain cornes fr
increasing the number of dimensions, which lowers the patgth
from 198 to approximately 5 hops. However, we can see that the
latency reduction heuristics play an important role; withiatency
heuristics, the end-to-end latency would be closgé to115ms (#
hopsx # latency-per-hop).

We repeated the above “knobs-on-full” simulation and \étfe
system sizen from 2! to 2!%. In scaling the CAN system, we
scaled the topology by scaling the number of CAN nodes added

5The reason the IP latency is 82ms (in the “knobs-on-full't)tes
instead of 115ms is not because the average latency of tiscphy
network is lower but because our CAN algorithm (because ef th
use of zone overloading and RTT-weighted routing) autora#i
retrieves an entry from the closest replica. 82ms represtra
average IP network level latency from the retrieving nodéhie
closest replica.

Parameter | “bare bones”| “knobs on full”
CAN CAN
d 2 10
r 1 1 | Metric | “bare bones” CANJ “knobs on full CAN" |
E ‘1J if path length 198.0 5.0
RTTweighted OFF ON # r;ﬁepl)gef;tr);)rs 4'(;37 2792
ti tri :
rou '”9 mete IP latency 115.9ms 82.4ms
Uniform OFF ON CAN path latency| 23,008ms 135.29ms
partitioning
Landmark OFF OFF Table 5: CAN Performance Results
ordering

T T
—— H(100,10,1)
—-%-—- H(20,5,2)
3| —* R(1050 |
- 10xH(20,5,2)
28 | |
Y'Y A 1
=
£l
S 24t |
3 s o
>
g
SHPY S S
Gl
g
2r -
18 | |
16 F 1
14 |)
16K 32K 65K 131K

Number of nodes

Figure 10: Effect of link delay distribution on CAN latency

to the edges of the topology without scaling the backboneliop
ogy itself. This effectively grows the density at the edgéshe
topology. We found, that as grows, the total path latency grows
even more slowly than'/? (with = 10 in this case) because al-
though the path length grows slowly a¥'*° (from 4.56 hops with
2! nodes to 5.0 witl2!® hops) the latency of the additional hops
is lower than the average latency since the added hops ang alo
low-latency links at the edges of the network.

Extrapolating this scaling trend and making the pessimias-
sumption that the total latency grows with the increase ith pa
length {.e., asn'/'%) we could potentially scale the size of the
system by anothe?'?, reaching a system size of close to a billion
nodes, before seeing the path latency increase to withiotarfaf
four of the underlying network latency.

To better understand the effect of link delay distributionsthe
above results, we repeated the “knobs-on-full” test fdiedént de-
lay distributions on the Transit-Stub topologies. We udelfol-
lowing topologies:

e H(100,10,1): A Transit-Stub topology with a hierarchical
link delay assignment of 100ms on intra-transit links, 10ms
on transit-stub links and 1ms on intra-stub links. This &s th
topology used in the above “knobs-on-full” test.

e H(20,5,2): ATransit-Stub topology with a hierarchical link
delay assignment of 20ms on intra-transit links, 5ms orsitan
stub links and 2ms on intra-stub links.

souaw aouewlopad uo siajawered ubisap Jo 1993 € ajgeL

=+ c c|s N o = o
‘Dmgmc o c @ = E
Lol o3 3 3 o 3 0
S J|Zolo B3 = S &
se7 28 CE g oz 3
sl g = Q > o
= = - <1)
D
2 Em °© 3
30 &2 8 D
=| - o
e} =5 n
5l 83 3
=, = S
= =9
@
S| g2|&)
Ql 2 2
e
<-1 LI | Q &AQA_-O
@ =h =S5 D
2o = g@ao:ﬂi
Sl o alLlges
5 0) il N 0=
o ® S U'IV:V
o > = =
< =3 LI | Q Q Q nw S
(1% —
o S| 5| = B&
o C IS NS) o<
S5 Q =
og g
@ =
mele|lgaelac|a— g
TaES 2 2 3~ 5
S cl@|l=g8eg a8 =
ool Y TSI TS |SZTE kel
5”\,8 D= D= D o]
= o o o o —
o
c) @ @ @
) ol g o >
9] cc c c Q
o §a o)
° o & 3 2
@ o
I ol ©| ©
= il
S} o2 & 2
S =5 = =
1 (_l e 1 1 FDP'O
— ~—~ (‘D
=+ —+ S 8
Q) o 1
(=X =2 <3
@ @ S
= D =
)
1
= \ » o = \ n
@ o) o O o,
s |=8&Fg = B
c o @ = 2
) ® a0 o
P] e
- o8 s
5 Sk 5
) < 1
Q' S & 9]
5 T =
S g o
o Q =
® 4.)
=
= o2
«Q 82
S a @
53
2
—
' v S—= = = 3
@ 3 <
Qa =,
55 =
@
3 = 5
L3 QC_’
=
g —
Q o
g o
5 N
! 1912 C 3 @) ! Q
s 2)
® 2 7
T 0 o
Qo @
g ®
=4 Q
= a <
)
35 5
)
o o
7)) =
o ~ —
29 <
D @

e R(10,50): A Transit-Stub topology with the delay of every
link set to a random value between 10ms to 50ms.

e 102:H(20,5,2): This topology is the same a4 (20, 5, 2)
except that the backbone topology is scaled by a factor of 10
which implies that the density of CAN nodes on the resultant
topology is about 10 times lower.

For each of the above topologies, we measure the latendgtstre
- the ratio of CAN latency to IP latency - for different systsines.
The results are shown in Figure 10. We see that while the delay
distribution affects the absolute value of the latencytelrein all
cases, the latency stretch grows very slowly with systera. sim
no case do we see a latency stretch of more than 3 for system siz
up to 130,000 nodes. The fastest growth is in the case of mando
delay distributions. This is because in this case, as we gnew
CAN system size, the new links added at the edges of the networ
need not be low latency links (unlike with the hierarchicelay
distributions). Finally, we see that latency stretch witpdlogy
H (20,5, 2) is slightly lower than with topologyl0x H (20, 5, 2).
This is due to the higher density of CAN nodes in the case of
H (20,5, 2); higher densities allow the latency heuristics to yield
higher gains.

5. RELATED WORK

We categorize related work as relatelgiorithmsin the litera-
ture relevant to data location and relasygtemshat involve a data
location component.

5.1 Related Algorithms

The Distance Vector (DV) and Link State (LS) algorithms used
in IP routing require every router to have some level of kremige
(the exact link structure in the case of LS and the distan¢®ps
for DV) of the topology of entire network. Unlike our CAN rdng
algorithm, DV and LS thus require the widespread dissentinat
of local topology information. While well suited to IP netviks
wherein topology changes are infrequent, for networks \ingh
guent topology changes, DV and LS would result in the frequen
propagation of routing updates. Because we wanted our CAN de
sign to scale to large numbers of potentially flaky nodes weseh
not to use routing schemes such as DV and LS.

Another goal in designing CANs was to have a truly distrilute
routing algorithm, both because this does not stress a sreatf
nodes and because it avoids a single point of failure. Heree w
avoided more traditional hierarchical routing algorithfd$, 19,
11, 3].

Perhaps closest in spirit to the CAN routing scheme is the-Pla
ton algorithm [15]. In Plaxton’s algorithm, every node isigmed
a uniquen bit label. Thisn bit label is divided intd levels, with
each level havingy = n/1 bits. A node with label, sayyz, where
X,y and z arew bit digits, will have a routing table with:

e 2" entries of the form
e 2" entries of the form
¢ 2V entries of the form

where we use the notatianto denoteeverydigitin 0, ..., 2 — 1,
and X to denoteanydigitin 0, ..., 2" — 1.

Using the above routing state, a packet is forwarded towards
destination label node by incrementally “resolving” thestileation
label from left to right,i.e., each node forwards a packet to a neigh-
bor whose label matches (from left to right) the destinatadrel in
one more digit than its own label does.

For a system with nodes, Plaxton’s algorithm routes(i(log n)
hops and requires a routing table size thab{gog n). CAN rout-
ing by comparison routes i(dn'/%) hops (whered is dimen-
sions) with routing table siz€&(dr) which is independent of. As
mentioned earlier, setting = (log, n)/2 allows our CAN algo-
rithm to match Plaxton’s scaling properties. Plaxton’sositinm

priate server. OceanStore uses the Plaxton algorithm asatsis
for its data location scheme. The Plaxton algorithm was rifzest
above.
5.2.3 Publius

Publius [13] is a Web publishing system that is highly resis-

addresses many of the same issues we do. As such it was d naturdant to censorship and provides publishers with a high degfe

candidate for CANs and, early into our work, we seriouslysidn
ered using it. However, on studying the details of the atbami
we decided that it was not well-suited to our application.isTih
primarily because the Plaxton algorithm was originally goveed
for web caching environments which are typically admiristely
configured, have fairly stable hosts and maximal scales emith
der of thousands. While the Plaxton algorithm is very weillexlito
such environments, the peer-to-peer contexts we addrespuie
different. We require a self-configuring system which is atalp
of dealing with a very large set of hosts (millions), many leém
potentially quite flaky. However, because the targetediegipbn
is web caching, the Plaxton algorithm does not provide atigmlu
whereby nodes can independently discover their neighbaaslie-
centralized manner. In fact, the algorithm requires gldtradwl-
edge of the topology to achieve a consistent mapping betdaizn
objects and the Plaxton nodes holding those objects. /Awiditi
ally, every node arrival and departure affects a logarithmimber
of nodes which, for large systems with high arrival and depar

anonymity. The system consists of publishers who post Bsibli
content to the web, servers that host random-looking conéem
retrievers that browse Publius content on the web. The otRab-
lius design assumes the existence of a static, system-vsidef|
available servers. The self-organizing aspects of our Cabigh
could potentially be incorporated into the Publius desitjpmang

it to scale to large numbers of servers. We thus view our werk a
complementary to the Publius project.

5.2.4 Peer-to-peer file sharing systems

Section 1 described the basic operation of the two most widel
deployed peer-to-peer file sharing systems; Napster ande(u
We now describe a few more systems in this space that use novel
indexing schemes. Although many of these systems address ad
ditional, related problems such as security, anonymitywied
searching etc., we focus here on their solutions to the index
problem.

Freenet [5, 2] is a file sharing application that additionaifo-

rates, appears to be on the high side because nodes could-be co tects the anonymity of both authors and readers. Freenetrtuald

stantly reacting to changes in system membership.
Algorithms built around the concept of geographic routifg [
12] are similar to our CAN routing algorithm in that they il

3 types of information: keys (which are analogous to web URLs
addresses of other Freenet nodes that are also likely to kbowt
similar keys, and optionally the data corresponding to ehiosys.

around the notion of forwarding messages through a codelina A node that receives a request for a key for which it does notkn

space. The key difference is that the “space” in their wofkne
to true physical space because of which there is no neighiber d

covery problemi(e. a node’s neighbors are those that lie in its ra-

dio range). These algorithms are very well suited to thegeted
applications of routing and location services in ad-hoawvoeks.
Applying such algorithms to our CAN problem would requiretas
construct and maintain neighbor relationships that wooldectly
mimic geographic space which appears non trivial (for edamp

GPSR performs certain planarity checks which would be hard t

achieve without a physical radio medium). Additionallyckige-
ographic routing algorithms are not obviously extensillentulti-
dimensional spaces.

5.2 Related Systems

5.2.1 Domain Name System

The DNS system in some sense provides the same functionality

as a hash table; it stores key value pairs of the form (dormeximen
IP address). While a CAN could potentially provide a disitésl
DNS-like service, the two systems are quite different. hmte of
functionality, CANs are more general than the DNS. The aurre

design of the DNS closely ties the naming scheme to the manner
which a name is resolved to an IP address, CAN name resolution

is truly independent of the naming scheme. In terms of desitn
two systems are very different.

5.2.2 OceanStore

The OceansStore project at U.C.Berkeley [10] is buildingilityit
infrastructure designed to span the globe and provide mootis
access to persistent information. Servers self-orgamitted very
large scale storage system. Data in OceanStore can resiy at
server within the OceanStore system and hence a data Ipcdtio
gorithm is needed to route requests for a data object to aroapp

the exact location forwards the request to a Freenet nodettha
does know about, and whose keys are closer to the requested ke
Results for both successful and failed searches backtiank the
path the request travelled. If a node fails to locate therd@sion-
tent, it returns a failure message back to its upstream nddehw
will then try the alternate downstream node that is its needth
choice. In this way, a request operates as a steepest-dsitent
climbing search with backtracking. The authors hypothesimat
the quality of the routing should improve over time, for twear
sons. First, nodes should come to specialize in locating clet
similar keys because a node listed in routing tables undarticp
ular key will tend to receive mostly requests for similar &e}Also,
because of backtracking, it will become better informedsnout-
ing tables about which other nodes carry those keys. Secodés
should become similarly specialized in storing clusterle$ hav-
ing similar keys. This is because forwarding a request ssfally
will result in the node itself gaining a copy of the requestiéel
and most requests will be for similar keys and hence the nalile w
mostly acquire files with similar keys. The scalability oétabove
algorithm is yet to be fully studied.

Ongoing work at UCB looks into developing a peer-to-peer file
sharing application using a location algorithm similarte Plax-
ton algorithm (although developed independently from tlzexten
work). A novel aspect of their work is the randomization oftpa
selection for improved robustness.

A description and evaluation of these and other file sharmg a
plications can be found at [23]. A key difference between@AN
algorithm and most of these file sharing systems is that unader
mal operating conditions, content that exists within theNCzan al-
ways be located by any other node because there is a cleae"hom
(point) in the CAN for that content and every other node knows
what that home is and how to reach it. With systems such ag [2, 6

"Private communication with Adam Costello

however it is quite possible that even with every node in f& s
tem behaving correctly, content may not be found either isea
content is beyond the horizon of a particular node [6] or bsea
different nodes have different, inconsistent views of tieéwork
[2]. Whether this is an important distinguishing factor de@s of
course on the nature of an application’s goals.

6. DISCUSSION

Our work, so far, addresses two key problems in the design of

Content-Addressable Networks: scalable routing and imgexOur
simulation results validate the scalability of our oved#kign - for

a CAN with over 260,000 nodes, we can route with a latency that
is less than twice the IP path latency.

Certain additional problems remain to be addressed inziagli
a comprehensive CAN system. An important open problem is tha
of designing a secure CAN that is resistant to denial of serai-
tacks. This is a particularly hard problem because (unhiesweb)

a malicious node can act, not only as a malicious client, za a
as a malicious server or router. A number of ongoing projboth
in research and industry are looking into the problem ofding
large-scale distributed systems that are both secure aisia®t to
denial-of-service attacks [13, 10, 2].

Additional related problems that are topics for future wark
clude the extension of our CAN algorithms to handle mutable c
tent, and the design of search techniques [8, 21] such asokdyw
searching built around our CAN indexing mechanism.

Our interest in exploring the scalability of our design, ahé
difficulty of conducting truly large scale experiments (dueds of
thousands of nodes), led us to initially evaluate our CANigtes
through simulation. Now that simulation has given us sonteun
standing of the scaling properties of our design, we aregilalso-
ration with others, embarking on an implementation projetiuild
a file sharing application that uses a CAN for distributedeiidg.

7. ACKNOWLEDGMENTS

The authors would like to thank Steve McCanne, Jitendra Pad-

hye, Brad Karp, Vern Paxson, Randy Katz, Petros Maniatistaand
anonymous reviewers for their useful comments.

8. REFERENCES

[1] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feastlili

of a Serverless Distributed File System Deployed on an

existing set of Desktop PCs. Rroceedings of SIGMETRICS

200Q Santa Clara, CA, June 2000.

I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A

Distributed Anonymous Information Storage and Retrieval

System. ICSI Workshop on Design Issues in Anonymity and

Unobservability, July 2000.

S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. H. Katz

An Architecture for a Secure Service Discovery Service. In

Proceedings of Fifth ACM Conf. on Mobile Computing and

Networking (MOBICOM)Seattle, WA, 1999. ACM.

P. Francis. Yoid: Extending the Internet Multicast

Architecture. Unpublished paper, available at

http://www.aciri.org/yoid/docs/index.html, Apr. 2000.

[5] FreeNet. http://freenet.sourceforge.net.

[6] Gnutella. http://gnutella.wego.com.

[7] J. Guterman. Gnutella to the Rescue ? Not so Fast, Napster
fiends. Link to article at http://gnutella.wego.com, Sept.
2000.

[8] Infrasearch. http://www.infrasearch.com.

(2]

(3]

[4]

[9] B. Karp and H. Kung. Greedy Perimeter Stateless Routing.

In Proceedings of ACM Conf. on Mobile Computing and

Networking (MOBICOM)Boston, MA, 2000. ACM.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, Pi&ig

D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao. Oceanstore: An

Architecture for Global-scale Persistent Storage. In

Proceedings of ASPLOS 2Q@@ambridge, Massachusetts,

Nov. 2000.

S. Kumar, C. Alaettinoglu, and D. Estrin. SCOUT: Scéab

Object Tracking through Unattended Techniques. In

Proceedings of the Eight IEEE International Conference on

Network ProtocolsOsaka, Japan, Nov. 2000.

J. Li, J. Jannotti, D. D. Couto, D. Karger, and R. Mor#s.

Scalable Location Service for Geographic Ad-hoc Routing.

In Proceedings of ACM Conf. on Mobile Computing and

Networking (MOBICOM)Boston, MA, 2000. ACM.

A. D. R. Marc Waldman and L. F. Cranor. Publius: A

Robust, Tamper-evident, Censorship-resistant, Web

Publishing System. IRroceedings of the 9th USENIX

Security Symposiumpages 59-72, August 2000.

Napster. http://www.napster.com.

C. Plaxton, R. Rajaram, and A. W. Richa. Accessing nearb

copies of replicated objects in a distributed environmbnt.

Proceedings of the Ninth Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAAune 1997.

J. B. Postellnternet Protocol SpecificatiofARPANET

Working Group Requests for Comment, DDN Network

Information Center, SRI International, Menlo Park, CA,

Sept. 1981. RFC-791.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, J. Padhye

and S. Shenker. Grass-roots Content Distribution: RAID

meets the Web. Jan. 2001. unpublished document available

at http://www.aciri.org/sylvia/.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A Scalable Content-Addressable Network. In

ICSI Technical Reportlan. 2001.

Y. Rekhter and T. LiA Border Gateway Protocol 4 BGP-4

ARPANETWorking Group Requests for Comment, DDN

Network Information Center, Mar. 1995. RFC-1771.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, H.

Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications. IRroceedings ACM

Sigcomm 2001San Diego, CA, Aug. 2001.

M. Welsh, N. Borishov, J. Hill, R. von Behren, and A. Woo.

Querying large collections of music for similarity. Tecbal

report, University of California, Berkeley, CA, Nov. 1999.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Mode
an Internetwork. IfProceedings IEEE Infocom '9&an
Francisco, CA, May 1996.

[23] Zeropaid.com. File sharing portal at
http://www.zeropaid.com.

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

10 11

Figure 11: Example depth-first search for a replacement node

APPENDIX

A. CAN MAINTENANCE: BACKGROUND
ZONE REASSIGNMENT

The immediate takeover algorithm described in Section 28 m
result in a single node being assigned multiple zones. lidead
would like to retain a one-to-one assignment of nodes to gone
because this prevents the coordinate space from beconghdyhi
fragmented. To achieve this one-to-one node to zone assiginhm
we use a simple algorithm that aims at maintaining, evendridbe
of node failures, a dissection of the coordinate space thdtihave
been created solely by nodes joining the system.

At a general step we can think of each existing zone as a leaf of
a binary “partition tree.” The internal vertices in the trepresent
zones that no longer exist, but were split at some previows.tirhe
children of a tree vertex are the two zones into which it wdi.sp
Of course we don’t maintain this partition tree as a datacttine,
but it is useful conceptually.

By an abuse of notation, we use the same name for a leaf ver-
tex, for the zone corresponding to that leaf vertex, andHentode
responsible for that zone. The partition tree, like any hinzarti-
tion tree, has the property that in the subtree rooted at rseyrial
vertex there are two leaves that are siblings.

Now suppose a node wants to hand-off a leaflf the sibling
of this leaf is also a leaf (call ify) the hand-off is easy: simply
coalesce leaves andy, making their former parent vertex a leaf,
and assign nodg to that leaf. Thus zoneg andy merge into a
single zone which is assigned to nogle If z’s sibling y is not a
leaf, perform a depth-first search in the subtree of the fiamtiree
rooted aty until two sibling leaves are found. Call these leaxes
andw. Combinez andw, making their former parent a leaf. Thus
zonesz andw are merged into a single zone, which is assigned to
nodez, and nodeaw takes over zone.

Figure 11 illustrates this reassignment process. Let usiedg
9 fails and by the immediate takeover algorithm node 6 takes o
node 9’s place. By the background reassignment process, éiod
discovers sibling nodes 10 and 11. One of these, say 11 takes o
the combined zones 10 and 11, and 10 takes over what was 9's
zone.

While the partition tree data structure helps us explainréie
quired transformations, its global nature makes it unbigtdor
actual implementation. Instead we must effect the requiimus-
formations using purely local operations. All an individlueode
actually has is its coordinate routing table which capttinesadja-
cency structure among the current zones (the leaves of thgate
tree). However, this adjacency structure is sufficient foukation
of all the operations on the patrtition tree.

A nodeT performs the equivalent of the above described depth-
first search on the partition as follows:

| Number of dimensiong avg(# hops)] max(# hops)|

2 112 3
3 1.09 3
4 1.07 3

Table 6: Background zone reassignment

let d;. be the last dimension along which noffe zone was
halved (this can be easily detected by merely searchingpéor t
highest ordered dimension with the shortest coordinate)spa

from its coordinate routing table, nodeselects a neighbor
node.J that abutdl along dimensioni;, such that/ belongs

to the zone that forms the other half is zone by the last
split along dimensio, .

if the volume ofJ’s zone equalg’s volume, then? andJ are
a pair of sibling leaf nodes whose zones can be combined.

If J's zone is smaller that’s thenI forwards a depth-first
search request to nodg which then repeats the same steps.

e This process repeats until a pair of sibling nodes is found.

We used simulation to measure the number of steps a depth-firs
search request has to travel before sibling leaf nodes céoube.
Table 6 lists the number of hops away from itself that a node
would have to search in order to find a node it can hand off amext
zone to. Because of the more or less uniform partitioninghef t
space (due to our uniform partitioning feature from Sec80or), a
pair of sibling nodes is typically available very close te tequest-
ing node,i.e., the dissection tree is well balanced.

