The Assignment Problem

E.A Dinic, M.A Kronrod

Moscow State University

January 30, 2012
1 Introduction
 - Motivation
 - Problem Definition

2 Algorithm
 - Basic Idea
 - Deficiency reduction
 - Finding Maximum delta
Outline

1. Introduction
 - Motivation
 - Problem Definition

2. Algorithm
 - Basic Idea
 - Deficiency reduction
 - Finding Maximum delta
Find the best way to assign each constructor with a job, paying the minimal cost.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123$</td>
<td>210$</td>
<td>112$</td>
<td>180$</td>
<td>150$</td>
</tr>
<tr>
<td>2</td>
<td>573$</td>
<td>499$</td>
<td>680$</td>
<td>540$</td>
<td>510$</td>
</tr>
<tr>
<td>3</td>
<td>360$</td>
<td>240$</td>
<td>370$</td>
<td>362$</td>
<td>250$</td>
</tr>
<tr>
<td>4</td>
<td>780$</td>
<td>999$</td>
<td>600$</td>
<td>820$</td>
<td>900$</td>
</tr>
<tr>
<td>5</td>
<td>450$</td>
<td>500$</td>
<td>360$</td>
<td>440$</td>
<td>480$</td>
</tr>
</tbody>
</table>
Find the best way to assign each constructor with a job, paying the minimal cost.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123$</td>
<td>210$</td>
<td>112$</td>
<td>180$</td>
<td>150$</td>
</tr>
<tr>
<td>2</td>
<td>573$</td>
<td>499$</td>
<td>680$</td>
<td>540$</td>
<td>510$</td>
</tr>
<tr>
<td>3</td>
<td>360$</td>
<td>240$</td>
<td>370$</td>
<td>362$</td>
<td>250$</td>
</tr>
<tr>
<td>4</td>
<td>780$</td>
<td>999$</td>
<td>600$</td>
<td>820$</td>
<td>900$</td>
</tr>
<tr>
<td>5</td>
<td>450$</td>
<td>500$</td>
<td>360$</td>
<td>440$</td>
<td>480$</td>
</tr>
</tbody>
</table>

Valid solution 2082$
Find the best way to assign each constructor with a job, paying the minimal cost.

Valid solution 2081$
Find the best way to assign each constructor with a job, paying the minimal cost.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123$</td>
<td>210$</td>
<td>112$</td>
<td>180$</td>
<td>150$</td>
</tr>
<tr>
<td>2</td>
<td>573$</td>
<td>499$</td>
<td>680$</td>
<td>540$</td>
<td>510$</td>
</tr>
<tr>
<td>3</td>
<td>360$</td>
<td>240$</td>
<td>370$</td>
<td>362$</td>
<td>250$</td>
</tr>
<tr>
<td>4</td>
<td>780$</td>
<td>999$</td>
<td>600$</td>
<td>820$</td>
<td>900$</td>
</tr>
<tr>
<td>5</td>
<td>479$</td>
<td>500$</td>
<td>360$</td>
<td>440$</td>
<td>480$</td>
</tr>
</tbody>
</table>

Optimal solution 1912$
Outline

1. Introduction
 - Motivation
 - Problem Definition

2. Algorithm
 - Basic Idea
 - Deficiency reduction
 - Finding Maximum delta

E.A Dinic and M.A Kronrod
Problem Definition

Input:
Square matrix, A, of order \(n \)

Output:
A set of an \(n \) elements (cells), exactly one in each row and each column, such that the sum of these elements is minimal with respect to all such sets.
So what is a solution?

A permutation β over the set $\{1, \ldots, n\}$ such that for any permutation λ:

$$\sum_{i=1}^{n} a_{i, \beta(i)} \leq \sum_{i=1}^{n} a_{i, \lambda(i)}.$$

In which cases is it easy to find the solution?

Example

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>6</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1 Introduction
 • Motivation
 • Problem Definition

2 Algorithm
 • Basic Idea
 • Deficiency reduction
 • Finding Maximum delta
Definition

Let some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$ be given. An element, a_{ij}, of the matrix A is called Δ-minimal if

$$\forall 1 \leq k \leq n \ a_{ij} - \Delta_j \leq a_{ik} - \Delta_k$$

Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Δ</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Definition

Let some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$ be given. An element, a_{ij}, of the matrix A is called Δ-minimal if

$$\forall 1 \leq k \leq n \quad a_{ij} - \Delta_j \leq a_{ik} - \Delta_k$$

Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Δ</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Δ</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Let some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$ be given. An element, a_{ij}, of the matrix A is called Δ-minimal if

$$\forall 1 \leq k \leq n \ a_{ij} - \Delta_j \leq a_{ik} - \Delta_k$$

Lemma

For any Δ let there be given a set of n Δ-minimal elements: $a_{1j_1}, a_{2j_2}, \ldots, a_{nj_n}$, one from each row and each column. Then this set is an optimal solution for the Assignment Problem.
Let some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$ be given. An element, a_{ij}, of the matrix A is called Δ-minimal if

$$\forall 1 \leq k \leq n \ a_{ij} - \Delta_j \leq a_{ik} - \Delta_k$$

Lemma

For any Δ let there be given a set of n Δ-minimal elements: $a_{1j_1}, a_{2j_2}, \ldots, a_{nj_n}$, one from each row and each column. Then this set is an optimal solution for the Assignment Problem.

Proof

1. For some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$.
 A set of n Δ-minimal elements has the minimal sum among all sets of n elements one from each column.

2. A set of n Δ-minimal elements one from each row and each column is a minimal and valid solution.
For some vector $\Delta = (\Delta_1, \ldots, \Delta_n)$.
A set of $n \Delta$-minimal elements has the minimal sum among all sets of n elements one from each column.

Proof:
Let there be a set of n elements $a_{1j_1}, a_{2j_2}, \ldots, a_{nj_n}$ we can write the sum of the set as:

$$\sum_{i=1}^{n} a_{ij_i} = \sum_{k=1}^{n} \Delta_k + \sum_{i=1}^{n} (a_{ij_i} - \Delta_{j_i})$$

Let there be a set of $n \Delta$-minimal elements $a^*_{1c_1}, a^*_{2c_2}, \ldots, a^*_{nc_n}$

$$\sum_{i=1}^{n} a^*_{ic_i} = \sum_{k=1}^{n} \Delta_k + \sum_{i=1}^{n} (a^*_{ic_i} - \Delta_{c_i})$$

$$\sum_{k=1}^{n} \Delta_k + \sum_{n}^{i=1} (a^*_{ic_i} - \Delta_{c_i}) \leq \sum_{k=1}^{n} \Delta_k + \sum_{n}^{i=1} (a_{ij_i} - \Delta_{j_i})$$

$$\sum_{i=1}^{n} a^*_{ic_i} \leq \sum_{i=1}^{n} a_{ij_i}$$
More definitions

- Given a vector Δ, an element a_{ij} is a **basic** if it is a Δ-**minimal** element of the row i.
- A **set of basics** is a set of n basics, one from each row.
- **Deficiency** of a set of basics is the number of free columns, i.e. columns without a basic.

$$
\begin{array}{ccc}
 & 1 & 2 & 3 \\
1 & 2 & 5 & 4 \\
2 & 9 & 8 & 10 \\
3 & 12 & 15 & 7 \\
\hline
\Delta & 1 & 1 & 5 \\
\end{array}
$$
More definitions

Given a vector Δ, an element a_{ij} is a basic if it is a Δ-minimal element of the row i.

A set of basics is a set of n basics, one from each row.

Deficiency of a set of basics is the number of free columns, i.e. columns without a basic.

$$
\begin{array}{cccc}
 & 1 & 2 & 3 \\
1 & 2 & 5 & 4 \\
2 & 9 & 8 & 10 \\
3 & 12 & 15 & 7 \\
\Delta & 1 & 1 & 5 \\
\end{array}
$$

deficiency=2.
Redefinition of problem

Input:
- Square matrix, A, of order n

Output:
- vector, Δ, of size n
- a set of an n basics, with deficiency 0.
Integer linear programming problem

Given the \(n \times n \) matrix \(C \) we will define an \(n \times n \) matrix \(X \) of integer variables. The following constraints define the equivalent linear programming problem.

linear constraints:

1. All the variables of \(X \) are 0 or 1:
 \[\forall i, j \; x_{i,j} \in \{0, 1\}. \]
2. In each row and column the sum of variables is 1:
 \[\forall i \; \sum_{j=0}^{n} x_{i,j} = \sum_{j=0}^{n} x_{j,i} = 1. \]

Goal function:

minimize \[\sum_{i=0}^{n} \sum_{i=0}^{n} x_{i,j} c_{i,j}. \]
In the primal-dual method we generate a dual linear programming problem such that for every variable in the original problem we have a constraint in the dual problem, and for every constraint in the original we have a variable in the dual.
Primal-dual method

We iterate on the pairs: primal and dual solutions. At any time we have a NON-FEASIBLE primal solution S to the primal problem, while the dual solution PROVES that S is OPTIMAL among the ”similarly non-feasible” primal solutions. In the end of the process we have a feasible, and thus optimal solution to the original problem.
Intuition continues

We would want a function f such that for a matrix A with a solution β, $f(A)$ is a matrix for which β is a row minimal solution.

Example: f-function

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

A

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

$f(A)$

Notice: $f(A)$ is obtained by subtracting 1 from all the elements of the first column of A.
The function f

Input:

$\Delta = (\Delta_1, \ldots, \Delta_n)$, A an $n \times n$ matrix

Output: $f_\Delta(A) = B = (b_{i,j})$

for every indice $(i, j) \in \{1, \ldots, n\}^2$ $b_{i,j} = a_{i,j} - \Delta_j$.

<table>
<thead>
<tr>
<th>A</th>
<th>$f_\Delta(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4 6 2 2</td>
</tr>
<tr>
<td>8</td>
<td>3 1 3 1</td>
</tr>
<tr>
<td>6</td>
<td>5 3 4 3</td>
</tr>
<tr>
<td>5</td>
<td>2 5 2 5</td>
</tr>
<tr>
<td>Δ</td>
<td>3 2 2 0</td>
</tr>
</tbody>
</table>

E.A Dinic and M.A Kronrod
Redfinition of problem

Input:

- Square matrix, A, of order \(n \)

Output:

- vector, \(\Delta \), of size \(n \)
- a set of an \(n \) basics, with deficiancy 0.
Deficiency reduction

We will solve this in an iterative manner, such that in each iteration we will reduce the deficiency by 1.

Input:
- Square matrix, A, of order n
- Vector, Δ, of size n
- A set of n basics, with deficiency m.

Output:
- Vector, Δ', of size n
- A set of n basics, with deficiency $m-1$.

In the first iteration we start with $\Delta = (0, ..., 0)$, finding the basics and the deficiency takes $O(n^2)$.

E.A Dinic and M.A Kronrod
Outline

1 Introduction
 - Motivation
 - Problem Definition

2 Algorithm
 - Basic Idea
 - Deficiency reduction
 - Finding Maximum delta
Phase 1 - Finding alternative Basics

We begin with vector Δ and a set of basics $a_{1,j(1)}, \ldots, a_{n,j(n)}$

\[
\begin{array}{cccc}
7 & 8 & 4 & 2 \\
6 & 3 & 5 & 1 \\
8 & 5 & 6 & 3 \\
5 & 7 & 4 & 5 \\
0 & 0 & 0 & 0 \\
\end{array}
\]
Phase 1 - Finding alternative Basics

Let s_1 be the index of a free column.

<table>
<thead>
<tr>
<th>S1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Phase 1 - Finding alternative Basics

We will increase Δ_{s_1} with maximal δ_1 such that all basics remain Δ-minimal elements (let's assume we have a function which finds such a δ).

$$\delta=1$$
Phase 1 - Finding alternative Basics

We obtain that for some row index i_1 $a_{i_1,s_1} - \Delta s_1 = a_{i_1,j(i_1)} - \Delta j(i_1)$.

a_{i_1,s_1} is called an alternative basic.
Phase 1 - Finding alternative Basics

We define $s_2 = j(i_1)$.

\[
\begin{array}{ccc}
S1 & S2 \\
7 & 8 & 4 & 2 \\
6 & 3 & 5 & 1 \\
8 & 5 & 6 & 3 \\
\end{array}
\]

\[
\begin{array}{c}
i_1 \\
5 & 7 & 4 & 5 \\
\end{array}
\]
Phase 1 - Finding alternative Basics

We now increase Δ_s_1, Δ_s_2 with maximal δ_2 such that all basics remain Δ-minimal.

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>δ=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Phase 1 - Finding alternative Basics

Again for same row index $i_2 \neq i_1$

\[
a_{i_2,s_k} - \Delta s_k = a_{i_2,j(i_2)} - \Delta j(i_2)
\]

were $k \in \{1, 2\}$. a_{i_2,s_k} is an alternative basic.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th></th>
<th>S2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i_2</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>i_1</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

$4-2=2-0$
Phase 1 - Finding alternative Basics

We define $s_3 = j(i_2)$. We will continue this process until we find an alternative basic in a column with 2 or more basics.
Phase 1 - Pseudo Code

Input:
- \((a_x, y)\) nxn matrix
- \(\Delta\) n long vector
- \(j(i)\) function such that for each row \(a_{i,j(i)}\) is a basic

\[S = \{\text{chooseEmptyColumn}(j)\} \]
\[R = \{\} \]
do:
\[\delta = \text{findMaxPreserving}\Delta\text{Minimalty}(R, S, (a_x, y), \Delta, j(i)) \]
for \(s \in S\) do: \(\Delta_s = \Delta_s + \delta\)
let \(i \in \{1, ..., n\} \setminus R\) such that \(\exists s \in S\) \(a_{i,j(i)} - \Delta_j(i) = a_{i,s} - \Delta_s\.
\[R = R \cup \{i\} \]
\[S = S \cup \{j(i)\} \]
while every column in \(S\) has 1 or 0 basics.
Phase 1 - Complexity Analysis

In each step of phase 1:
- δ is found - $O(n^2)$
- Δ is updated - $O(n)$
- A new alternative basic is found (during the search of δ) - $O(1)$

In each round the size of S increases by 1, and S is bounded by n

\[\Downarrow \]

There are at most $n - 1$ steps in phase 1.

Total complexity: $O(n) \times [O(n^2) + O(n) + O(1)] = O(n^3)$
Phase 2 - Change of basics

Now as we mark a column \((s_3)\) with 2 or more basics. This is the end of phase 1. We start changing our basics.

\[
\begin{array}{ccc}
\text{S1} & \text{S2} & \text{S3} \\
\hline
\text{i2} & 7 & 8 & 4 & 2 \\
\text{i1} & 5 & 7 & 4 & 5 \\
\end{array}
\]
Phase 2 - Change of basics

We reduce the number of basics for our last marked column by one.
Phase 2 - Change of basics

In total we reduce the deficiency by 1.
Phase 2 - Complexity Analysis

The complexity of this step is $O(n)$ as the number of basics.
Example continues

We start phase 1 again and choose a column s_1 with no basics. $S = \{s_1\}$. Δ remains as it was built at the previous iteration \Rightarrow all basics remain Δ-minimal.
Example continues

We find a maximal δ to add to Δ_s were $s \in S$, such that it preserves Δ-minimality.

$$\delta=2$$
Example continues

For some row index i_1, $a_{i_1,s_1} - \Delta s_1 = a_{i_1,j(i_1)} - \Delta j(i_1)$. a_{i_1,s_1} is an alternative basic.

\[
\begin{array}{cccc}
7 & 8 & 4 & 2 \\
6 & 3 & 5 & 1 \\
8 & 5 & 6 & 3 \\
5 & 7 & 4 & 5 \\
3 & 2 & 2 & 0 \\
\end{array}
\]

$3-2=1-0$
We end phase 1 as we found a column $j(i_1) = s_2 \in S$ with more than one basic.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th></th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i₁</td>
<td>7 8 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 3 5 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 5 6 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 7 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 2 2 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example continues

Changing our basics leads us to a set of basics with deficiency $m = 0$. Therefore it is an optimal solution. $B = (a_{i,j} - \Delta_j)$.
Outline

1 Introduction
 • Motivation
 • Problem Definition

2 Algorithm
 • Basic Idea
 • Deficiency reduction
 • Finding Maximum delta
Naive computation

\[\delta = \min_{i \in R, s \in S} [(a_{i,s} - \Delta_s) - (a_{i,j(i)} - \Delta_{j(i)})] \]

Where:

- \(R \) - set of row indices which do not contain alternative basics
- \(S \) - set of potential alternative basics column indices
- \((a_{x,y})\) - nxn matrix
- \(\Delta \) - n long vector
- \(j(i) \) - function such that for each row \(a_{i,j(i)} \) is the basic in row \(i \)

Computing \(\delta \) in a straightforward manner takes \(O(n^2) \)
The maximum deficiency is $n - 1$.

In each iteration we perform phase 1 + phase 2: $O(n^3) + O(n)$

Total complexity: $O(n) \times [O(n^3) + O(n)] = O(n^4)$
First improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \]

- For each \(k \), let \(b_k = (b_{1k}, ..., b_{nk}) \) be a column of the values:
 \[b_{ik} = [(a_{ik} - \Delta_k) - (a_{ij} - \Delta_j)] \]
- Let \(B \) be the \(nxn \) matrix: \((b_1^*, ..., b_n^*) \),
 where \(b_k^* = \text{Sort}(b_k) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
First improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \]

- For each k, let \(b_k = (b_{1k}, ..., b_{nk}) \) be a column of the values:
 \[b_{ik} = [(a_{ik} - \Delta_k) - (a_{ij} - \Delta_j)] \]
- Let \(B \) be the \(nxn \) matrix: \((b^*_1, ..., b^*_n)\), where \(b^*_k = \text{Sort}(b_k) \)

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(b_1 \):
 - 0
 - 1
 - 5

- \(b_2 \):
 - 3
 - 0
 - 8

- \(b_3 \):
 - 2
 - 2
 - 0

\(E.A \) Dinic and \(M.A \) Kronrod
First improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})] \]

- For each k, let \(b_k = (b_{1k}, ..., b_{nk}) \) be a column of the values:
 \[b_{ik} = [(a_{ik} - \Delta_k) - (a_{ij} - \Delta_{ji})] \]
- Let \(B \) be the \(nxn \) matrix: \((b^*_1, ..., b^*_n) \),
 where \(b^*_k = \text{Sort}(b_k) \)

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1)</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(b_2)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(b_3)</td>
<td>5</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(b_1^*)</th>
<th>(b_2^*)</th>
<th>(b_3^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1^*)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b_2^*)</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(b_3^*)</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
First improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \]

- For each \(k \), let \(b_k = (b_{1k}, \ldots, b_{nk}) \) be a column of the values:
 \[b_{ik} = [(a_{ik} - \Delta_k) - (a_{ij} - \Delta_j)] \]
- Let \(B \) be the \(nxn \) matrix: \((b_1^*, \ldots, b_n^*) \),
 where \(b_k^* = \text{Sort}(b_k) \)

What is the complexity of the construction of \(B \)?
First improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \]

- For each \(k \), let \(b_k = (b_{1k}, \ldots, b_{nk}) \) be a column of the values:
 \[b_{ik} = [(a_{ik} - \Delta_k) - (a_{ij} - \Delta_j)] \]

- Let \(B \) be the \(nxn \) matrix: \((b_1^*, \ldots, b_n^*) \), where \(b_k^* = \text{Sort}(b_k) \)

What is the complexity of the construction of \(B \)?

\[
\begin{align*}
& n \times O(n \log(n)) \\
\downarrow & \\
& O(n^2 \log(n))
\end{align*}
\]
First improvement

- As preprocessing phase of an iteration build matrix B $O(n^2 \log n)$.

In each succeeding step of phase 1:
- clear the matrix from items of rows which are not in R.
 $n \times O(1) = O(n)$
- find $\min_{k \in S} b_k$ $O(n)$
First improvement

- As preprocessing phase of an iteration build matrix B
 $O(n^2 \log n)$.

In each succeeding step of phase 1:

- clear the matrix from items of rows which are not in R.
 $n \times O(1) = O(n)$

- find $\min_{k \in S} b_k$ $O(n)$

What is the total complexity?
First improvement

- As preprocessing phase of an iteration build matrix B $O(n^2 \log n)$.

In each succeeding step of phase 1:
- clear the matrix from items of rows which are not in R.
 \[n \times O(1) = O(n) \]
- find $\min_{k \in S} b_k$ $O(n)$

What is the total complexity?

\[n \times \left[O(n^2 \log n) + n \times (O(n) + O(n) + O(n)) + n \right] \]

\[\text{phase 0} \quad \text{phase 1} \quad \text{phase 2} \]

one iteration
First improvement

- As preprocessing phase of an iteration build matrix B
 \(O(n^2 \log n) \).

In each succeeding step of phase 1:
- clear the matrix from items of rows which are not in R.
 \(n \times O(1) = O(n) \)
- find \(min_{k \in S} b_k \) \(O(n) \)

What is the total complexity?
\(O(n^3 \log n) \)
Second Improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \]
Second Improvement

\[\delta = \min_{i \in R, s \in S} \left[(a_{is} - \Delta_s) - (a_{ij} - \Delta_j) \right] \]
Second Improvement

\[
\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \\
\delta = \min_{i \in R} \left[\min_{s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_j)] \right]
\]
Second Improvement

\[
\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})]
\]

At the beginning of an iteration compute the column vector \(q_i \).

In each succeeding step of phase 1:

update the vector \(q_i \):

\[
\forall i \quad q_i \leftarrow \min \left[a_{is} - \Delta_s; q_i - \delta \right]
\]

const. for a row
Second Improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij_i} - \Delta_{ji})] \]

\[\downarrow \]

\[\delta = \min_{i \in R} \left[\min_{s \in S} [(a_{is} - \Delta_s)] - (a_{ij_i} - \Delta_{ji}) \right] \]

const. for a row

E.A Dinic and M.A Kronrod
Second Improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})] \]

\[\downarrow \]

\[\delta = \min_{i \in R} [\min_{s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})]] \]

\[\text{const. for a row} \]

\[\downarrow \]

\[\delta = \min_{i \in R} [\min_{s \in S} (a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})] \]
Second Improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})] \]

\[\delta = \min_{i \in R} \left[\min_{s \in S} [(a_{is} - \Delta_s)] - (a_{ij} - \Delta_{ji}) \right] \]

\[\delta = \min_{i \in R} \left[\min_{s \in S} (a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji}) \right] \]

At the beginning of an iteration compute the column vector \(q_i \).

In each succeeding step of phase 1:

update the vector \(q_i \):

\[\forall i \ q_i \leftarrow \min \left[a_{is} - \Delta_s; q_i - \delta \right] \]
Second Improvement

\[\delta = \min_{i \in R, s \in S} [(a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji})] \]

\[\delta = \min_{i \in R} \left[\min_{s \in S} [(a_{is} - \Delta_s)] - (a_{ij} - \Delta_{ji}) \right] \]

\[\downarrow \]

\[\delta = \min_{i \in R} \left[\min_{s \in S} (a_{is} - \Delta_s) - (a_{ij} - \Delta_{ji}) \right] \]

- At the beginning of an iteration compute the column vector \(q_i \)

In each succeeding step of phase 1:

- update the vector \(q \):
 \[\forall i \quad q_i \leftarrow \min [a_{ism} - \Delta_{sm}; q_i - \delta] \]
Second improvement

- At the beginning of an iteration compute the column vector q_i
 $O(n)$

In each succeeding step of phase 1:

- update the vector q:
 $\forall i, q_i \leftarrow \min[a_{is_m} - \Delta_{sm}; q_i - \delta]$
 $O(n)$

What is the total complexity?
Second improvement

- At the beginning of an iteration compute the column vector q_i:
 $O(n)$

In each succeeding step of phase 1:

- update the vector q:
 $\forall i \quad q_i \leftarrow \min[a_{ism} - \Delta_{sm}; q_i - \delta]$
 $O(n)$

What is the total complexity?

$$n \times [O(n) + n \times O(n) + n]$$

- phase 0
- phase 1
- phase 2

one iteration

E.A Dinic and M.A Kronrod
Second improvement

- At the beginning of an iteration compute the column vector q_i
 $O(n)$

In each succeeding step of phase 1:

- update the vector q:
 $\forall i \ q_i \leftarrow \min[a_{is_m} - \Delta_{s_m}; q_i - \delta]$
 $O(n)$

What is the total complexity?

$O(n^3)$