Improved Clustering Algorithms for the Random Cluster Graph Model

Ron Shamir Dekel Tsur

Tel Aviv University

The Clustering Problem

Input: A graph G. (edges in G represent similarity between the vertices)

Output: A partition of the vertices of V into sets such that there are many edges between vertices from the same set, and few edges between vertices from different sets.

The Clustering Problem

Input: A graph G. (edges in G represent similarity between the vertices)

Output: A partition of the vertices of V into sets such that there are many edges between vertices from the same set, and few edges between vertices from different sets.

The Random Cluster Graph Model

A graph G=(V,E) which is built by the following process:

- 1. V is partitioned into disjoint sets V_1, \ldots, V_m (clusters).
- 2. Mates (= vertices from the same set) are connected by an edge with probability p.
- 3. Non-mates are connected by an edge with probability r < p.

The edges are independent.

The Clustering Problem

Input: A cluster graph G.

Output: The clusters V_1, \ldots, V_m .

$$n = |V|$$

$$k = \min_{i} |V_{i}|$$

$$\Delta = p - r$$

General case

Paper		Requirements	Complexity
	k	Δ	
Ben-Dor et al 99	$\Omega(n)$	$\Omega(1)$	

	m	Δ
Dyer and Frieze 86	2	$\Omega(n^{-1/4}\log^{1/4}n)$
Boppana 87	2	$\Omega(n^{-1/2}\sqrt{\log n})$
Jerrum and Sorkin 93	2	$\Omega(n^{-1/6+\varepsilon})$
Condon and Karp 99	O(1)	$\Omega(n^{-1/2+\varepsilon})$

$$n = |V| \qquad k = \min_{i} |V_i| \qquad \Delta = p - r$$

General case

Paper		Requirements	Complexity
	k	Δ	
Ben-Dor et al 99	$\Omega(n)$	$\Omega(1)$	
This paper	$\Omega(\Delta^{-1}\sqrt{n}\mathrm{mag})$	$ax(\log n, \Delta^{-\varepsilon}))$	

	m	Δ
Dyer and Frieze 86	2	$\Omega(n^{-1/4}\log^{1/4}n)$
Boppana 87	2	$\Omega(n^{-1/2}\sqrt{\log n})$
Jerrum and Sorkin 93	2	$\Omega(n^{-1/6+\varepsilon})$
Condon and Karp 99	O(1)	$\Omega(n^{-1/2+\varepsilon})$
This paper		$\Omega(mn^{-1/2}\sqrt{\log n})$

$$n = |V| \qquad k = \min_{i} |V_i| \qquad \Delta = p - r$$

General case

Paper	F	Requirements	
	k	Δ	
Ben-Dor et al 99	$\Omega(n)$	$\Omega(1)$	$n^2 \log^{O(1)} n$
This paper	$\Omega(\Delta^{-1}\sqrt{n}\max(\log$	$(n,\Delta^{-arepsilon}))$	$O(mn^2/\log n)$

	m	Δ	
Dyer and Frieze 86	2	$\Omega(n^{-1/4}\log^{1/4}n)$	$O(n^2)$
Boppana 87	2	$\Omega(n^{-1/2}\sqrt{\log n})$	$n^{O(1)}$
Jerrum and Sorkin 93	2	$\Omega(n^{-1/6+\varepsilon})$	$O(n^4)$
Condon and Karp 99	O(1)	$\Omega(n^{-1/2+\varepsilon})$	$O(n^2)$
This paper		$\Omega(mn^{-1/2}\sqrt{\log n})$	$O(mn^2 \log n)$

$$n = |V| \qquad k = \min_{i} |V_i| \qquad \Delta = p - r$$

General case

Paper		Requirements	
	k	Δ	
Ben-Dor et al 99	$\Omega(n)$	$\Omega(1)$	$n^2 \log^{O(1)} n$
This paper	$\Omega(\Delta^{-1}\sqrt{n}\max(\log$	$g(n, \Delta^{-\varepsilon}))$	$O(n \log n)$

	m	Δ
Dyer and Frieze 86	2	$\Omega(n^{-1/4}\log^{1/4}n)$
Boppana 87	2	$\Omega(n^{-1/2}\sqrt{\log n})$
Jerrum and Sorkin 93	2	$\Omega(n^{-1/6+\varepsilon})$
Condon and Karp 99	O(1)	$\Omega(n^{-1/2+\varepsilon})$
This paper		$\Omega(mn^{-1/2}\sqrt{\log n})$

$$n = |V| \qquad k = \min_{i} |V_i| \qquad \Delta = p - r$$

More Notation

For a graph G = (V, E),

w.h.p. = With probability $1 - n^{-\Omega(1)}$

N(v) =The neighbors of v

$$d_S(v) = |N(v) \cap S|$$

Top Level Description

A set $S \subseteq V$ is called a subcluster if $S \subseteq V_i$ for some cluster V_i .

Our algorithm:

While G is not empty:

Find seed: Find a subcluster S of size $\Theta(\log n/\Delta^2)$.

Expand: Find the whole cluster V_i which contains

S, and remove it from G.

Suppose that $S \subseteq V_i$ and $|S| = \Theta(\log n/\Delta^2)$. Consider $d_S(v)$ for $v \in V - S$:

$$\mathrm{E}[d_S(v)] = \left\{ \begin{array}{ll} |S|p & \text{if } v \in V_i \\ |S|r & \text{otherwise} \end{array} \right.$$

Suppose that $S \subseteq V_i$ and $|S| = \Theta(\log n/\Delta^2)$. Consider $d_S(v)$ for $v \in V - S$:

$$\mathrm{E}[d_S(v)] = \left\{ \begin{array}{ll} |S|p & \text{if } v \in V_i \\ |S|r & \text{otherwise} \end{array} \right.$$

Using Chernoff-like bound, w.h.p.

$$|d_S(v) - \mathrm{E}[d_S(v)]| < \frac{1}{2}D$$
, where $D = \Theta(\sqrt{|S| \log n})$

Suppose that $S \subseteq V_i$ and $|S| = \Theta(\log n/\Delta^2)$. Consider $d_S(v)$ for $v \in V - S$:

$$\mathrm{E}[d_S(v)] = \left\{ \begin{array}{ll} |S|p & \text{if } v \in V_i \\ |S|r & \text{otherwise} \end{array} \right.$$

Using Chernoff-like bound, w.h.p.

$$|d_S(v) - \mathrm{E}[d_S(v)]| < \frac{1}{2}D$$
, where $D = \Theta(\sqrt{|S| \log n})$

Suppose that $S \subseteq V_i$ and $|S| = \Theta(\log n/\Delta^2)$.

Consider $d_S(v)$ for $v \in V - S$:

$$\mathrm{E}[d_S(v)] = \left\{ \begin{array}{ll} |S|p & \text{if } v \in V_i \\ |S|r & \text{otherwise} \end{array} \right.$$

Using Chernoff-like bound, w.h.p.

$$|d_S(v) - \mathrm{E}[d_S(v)]| < \frac{1}{2}D$$
, where $D = \Theta(\sqrt{|S| \log n})$

- 1. Order $V S = \{v_1, \dots, v_{n-|S|}\}$ such that $d_S(v_1) \ge d_S(v_2) \ge \dots \ge d_S(v_{n-|S|})$.
- 2. Let $D = \Theta(\sqrt{|S| \log n})$.
- 3. If $\max_{j} \{d_S(v_j) d_S(v_{j+1})\} < D$, then return V.
- 4. Otherwise, let j be the first index for which $d_S(v_j) d_S(v_{j+1}) \ge D$. Return $S \cup \{u_1, \dots, u_j\}$.

Finding a Subcluster — Imbalance

For two disjoint sets L, R of vertices of equal size, the L, R-imbalance of V_i (Jerrum and Sorkin 93) is

$$I(V_i, L, R) = \frac{|V_i \cap L| - |V_i \cap R|}{|L|}.$$

The imbalance of L, R is

$$\max\{I(V_1, L, R), \dots, I(V_m, L, R)\}.$$

The secondary imbalance of L,R is the second largest value.

Finding a Subcluster

- 1. Find L,R with large imbalance and small secondary imbalance.
- **2.** Let $f(v) = d_L(v) d_R(v)$, $D = \Theta(\sqrt{|L| \log n})$.
- 3. Randomly choose $\Theta(\frac{m^2 \log n}{\Delta^2})$ vertices from $V (L \cup R)$ into a set S.
- 4. Order $S = \{v_1, \dots, v_s\}$ such that $f(v_1) \ge \dots \ge f(v_s)$.
- 5. If $\max_{j} \{f(v_j) f(v_{j+1})\} < D$, then return. (*L*, *R* are "bad")
- 6. Let j be the first index for which $f(v_j) f(v_{j+1}) \ge D$. Return $\{v_1, \dots, v_j\}$.

Correctness of the Algorithm

Denote $b_i = I(V_i, L, R)$ and l = |L|.

Suppose that $b_1 \geq b_2 \geq \cdots \geq b_m$.

Lemma If $b_1 \ge \Omega(\frac{\sqrt{\log n}}{\Delta\sqrt{l}})$ and $b_2 \le \frac{1}{2}b_1$ then w.h.p. the alg. returns a subcluster.

Proof For $v \in V_i$, $E[f(v)] = \Delta lb_i$.

Correctness of the Algorithm

Denote $b_i = I(V_i, L, R)$ and l = |L|.

Suppose that $b_1 \geq b_2 \geq \cdots \geq b_m$.

Lemma If $b_1 \ge \Omega(\frac{\sqrt{\log n}}{\Delta\sqrt{l}})$ and $b_2 \le \frac{1}{2}b_1$ then w.h.p. the alg. returns a subcluster.

Proof For
$$v \in V_i$$
, $\mathrm{E}[f(v)] = \Delta lb_i$. $|f(v) - \mathrm{E}[f(v)]| < \frac{1}{2}D$

Correctness of the Algorithm

Denote $b_i = I(V_i, L, R)$ and l = |L|.

Suppose that $b_1 \geq b_2 \geq \cdots \geq b_m$.

Lemma If $b_1 \ge \Omega(\frac{\sqrt{\log n}}{\Delta\sqrt{l}})$ and $b_2 \le \frac{1}{2}b_1$ then w.h.p. the alg. returns a subcluster.

Proof For
$$v \in V_i$$
, $\mathrm{E}[f(v)] = \Delta lb_i$. $|f(v) - \mathrm{E}[f(v)]| < \frac{1}{2}D$

- 1. $L_0, R_0 \leftarrow \phi$. Let $l = \Theta(\frac{m^2}{\Delta^2})$.
- 2. Randomly select a vertex u and l pairs of vertices.
- 3. For each pair of vertices, if only one vertex is a neighbor of u, place that vertex in L_0 and the other vertex in R_0 .

- 1. $L_0, R_0 \leftarrow \phi$. Let $l = \Theta(\frac{m^2}{\Delta^2})$.
- 2. Randomly select a vertex u and l pairs of vertices.
- 3. For each pair of vertices, if only one vertex is a neighbor of u, place that vertex in L_0 and the other vertex in R_0 .

- 1. $L_0, R_0 \leftarrow \phi$. Let $l = \Theta(\frac{m^2}{\Delta^2})$.
- 2. Randomly select a vertex u and l pairs of vertices.
- 3. For each pair of vertices, if only one vertex is a neighbor of u, place that vertex in L_0 and the other vertex in R_0 . Otherwise randomly place one vertex in L_0 and the other vertex in R_0 .

- 1. $L_0, R_0 \leftarrow \phi$. Let $l = \Theta(\frac{m^2}{\Delta^2})$.
- 2. Randomly select a vertex u and l pairs of vertices.
- 3. For each pair of vertices, if only one vertex is a neighbor of u, place that vertex in L_0 and the other vertex in R_0 . Otherwise randomly place one vertex in L_0 and the other vertex in R_0 .

Analysis of the Initialization

Suppose that $u \in V_1$. If $v \in V_1$ and $w \notin V_1$, then

P[v is a neighbor of u] = p > r = P[w is a neighbor of u]

⇒ Using Chernoff bounds and Hoeffding-Azuma's Inequality, w.h.p.,

$$I(V_1, L_0, R_0) \approx (1 - \frac{1}{m}) \frac{\Delta}{m}$$

$$I(V_i, L_0, R_0) \approx -\frac{1}{m} \cdot \frac{\Delta}{m} \qquad i > 1$$

Finding the Sets L, R — 1st Iteration

4. If L_0 , R_0 are "good" (yielding a subcluster) stop.

Finding the Sets L, R — 1st Iteration

- 4. If L_0, R_0 are "good" (yielding a subcluster) stop.
- 5. Let $f_0(v) = d_{L_0}(v) d_{R_0}(v)$.
- 6. $L_1, R_1 \leftarrow \phi$. Randomly select l pairs of unchosen vertices.
- 7. For each pair v, w, if $f_0(v) \neq f_0(w)$ place the vertex with larger f_0 -value in L_1 and the other vertex in R_1 .

Finding the Sets L, R — 1st Iteration

- 4. If L_0 , R_0 are "good" (yielding a subcluster) stop.
- 5. Let $f_0(v) = d_{L_0}(v) d_{R_0}(v)$.
- 6. $L_1, R_1 \leftarrow \phi$. Randomly select l pairs of unchosen vertices.
- 7. For each pair v, w, if $f_0(v) \neq f_0(w)$ place the vertex with larger f_0 -value in L_1 and the other vertex in R_1 .

Finding the Sets L, R — Iterations

- 8. If L_1, R_1 are "good" stop.
- 9. Otherwise repeat this process (i.e. build L_2 , R_2 from L_1 , R_1 , build L_3 , R_3 from L_2 , R_2 etc.) until a "good" pair is found.

Finding the Sets L, R — Iterations

- 8. If L_1, R_1 are "good" stop.
- 9. Otherwise repeat this process (i.e. build L_2 , R_2 from L_1 , R_1 , build L_3 , R_3 from L_2 , R_2 etc.) until a "good" pair is found.

Finding the Sets L, R — Iterations

- 8. If L_1, R_1 are "good" stop.
- 9. Otherwise repeat this process (i.e. build L_2 , R_2 from L_1 , R_1 , build L_3 , R_3 from L_2 , R_2 etc.) until a "good" pair is found.

Analysis of the Iterations

Denote $b_i^t = I(V_i, L_t, R_t)$.

Using Hoeffding-Azuma's Inequality and Esseen's Inequality we show that w.h.p.

- 1. The imbalance of V_1 grows exponentially: $b_1^t \ge 2b_1^{t-1}$ for all t.
- 2. The imbalance of other V_i -s is much smaller: $b_i^t = o(b_1^t)$ for all i, t.
- \Rightarrow After at most $\log n$ iterations we reach L_t, R_t with high imbalance.

Concluding Remarks

Main results:

- An algorithm for (almost) equal sized cluster (shown). The algorithm requires $k = \Omega(\Delta^{-1}\sqrt{n\log n})$.
- An algorithm for unequal sized cluster (not shown) The algorithm requires $k = \Omega(\Delta^{-1}\sqrt{n}\max(\log n, \Delta^{-\varepsilon}))$.