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Abstract

We present an index for top-k most frequent document retrieval whose
space is |CSA|+o(n)+D log n

D+O(D) bits, and its query time is O(log k log2+ε n)
per reported document, where D is the number of documents, n is the sum
of lengths of the documents, and |CSA| is the space of the compressed suf-
fix array for the documents. This improves over previous results for this
problem, whose space complexities are |CSA|+ ω(n) or 2|CSA|+ ω(1).

Keywords data structures, document retrieval, text indexing.

1 Introduction

In document retrieval problems, the goal is to construct an index for a set of doc-
uments (strings) that can answer queries on the documents, for example, “which
documents contain a given query string P?” or “how many documents contain
P?”. Matias et al. [14] were the first to study document retrieval problems, and
afterward these problems were widely studied, e.g. [4–6,11–13,15,19,21].

In this paper we consider the top-k most frequent document retrieval prob-
lem. The goal in this problem is to build an index for a set D of documents
that supports the following queries: given a string P and an integer k, find the
k documents in D in which P occurs the most number of times. The theoret-
ical results on this problem are summarized in Table 1. The paper of Hon et
al. [13] was the first to give a succinct index for this problem. Additional suc-
cinct indices were given in [3, 7, 10]. These succinct indices use a compressed
suffix array (cf. [16]) in order to store the concatenation of the documents in
D, and a rank-select structure holding the lengths of the documents. These
two structures use |CSA| + o(n) + D log n

D
+ O(D) bits, where D is the num-

ber of documents, n is the sum of lengths of the documents, and |CSA| is the
space of the compressed suffix array. In this paper, we show that only an ad-
ditional o(n) bits are required for the index. More precisely, we give an index
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Source Space Time per reported document

[9] O(n(log n+ log2D)) O(1)
[13] O(n log n) O(log k)
[17] O(n(log σ + logD + log log n)) O(1)

[13] 2|CSA|+ o(n) +D log n
D

+O(D) O(log4+ε n)
[7] 2|CSA|+ o(n) +D log n

D
+O(D) O(log4+ε n)

[3] 2|CSA|+ o(n) +D log n
D

+O(D) O(log k log2+ε n)

[7] |CSA|+O(n logD/ log logD) O(log3+ε n)
[3] |CSA|+O(n logD/ log logD) O(log k log2+ε n)

[10] |CSA|+ 2n logD + o(n logD) O(log log n)
[10] |CSA|+ n logD + o(n logD) O((log σ log log n)1+ε)
[7] |CSA|+ n logD + o(n) O(log2+ε n)
[3] |CSA|+ n logD + o(n) O(log k log1+ε n)

[3] |CSA|+O(n log log logD) O(log k log2+ε n)
This paper |CSA|+ o(n) +D log n

D
+O(D) O(log k log2+ε n)

Table 1: Results for top-k document retrieval. D is the number of documents, n is
the sum of lengths of the documents, and |CSA| is the space of a compressed suffix
array holding the concatenation of the documents. The time complexities are per
reported document, so the overall query time is k times the given complexity, plus
the time to searching the compressed suffix array. The time complexities are in
simplified form, using the assumption that the time for accessing a value of the
suffix array is tSA = O(log1+ε n).

whose space is |CSA| + o(n) + D log n
D

+ O(D) bits, and whose query time is
O(tsearch + k log k(tSA + log log k + log log log n) log n(log log n)4), where tsearch is
the time for searching the compressed suffix array, and tSA is the time for ac-
cessing a value of the suffix array. The space complexity of our index is better
than previous results (see Table 1). The query time is poly-logarithmic in n as
previous succinct solutions for the problem, with the exception of the index of
Hon et al. [10] that uses substantially more memory than our index. Our result
is based on an index of Belazzougui and Navarro [3]. The index of [3] stores
pre-computed frequencies and minimal perfect hash functions in order to com-
pute the frequencies in which the pattern P occurs in some candidate documents.
We show that this task can be achieved without the use of minimal perfect hash
functions, thus reducing the space of the index.
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2 Preliminaries

An interval [L,R] is a set of integers {L,L+ 1, . . . , R}. For a string S, the suffix
array SAS of S is an array in which SAS[i] = j if S[j..|S|] is the i-th smallest
suffix of S in the lexicographical order of the suffixes. The suffix range of a string
P with respect to S is the interval [L,R] such that P is a prefix of S[SAS[i]..|S|]
if and only if i ∈ [L,R].

Our index uses several succinct data-structures. A compressed suffix array
of a string S is a data-structure that supports the following operations: (1)
computation of the suffix range of a string P w.r.t. S in time tsearch, and (2)
computation of SAS[i] in time tSA. See [1,2,16] for a survey and recent results on
compressed suffix arrays. A rank-select structure stores a binary vector (bitmap)
B, and allows querying for the number of ones in B in positions 1, . . . , i, or
reporting the position of the i-th one. A succinct tree structure stores a rooted
ordered tree, and support queries on the structure of the tree, for example, finding
the lowest common ancestor of two nodes.

Let E be an array of integers, which will be called colors. For an interval
I = [L,R] of E, define topk,E(I) to be the set of the k most frequent colors in
I, where ties are broken according to the color values (if there is a tie between
colors c and c′, where c < c′, then c is chosen for the set). Define freqE(c, I) to
the frequency of color c in I.

A nested interval sequence is a sequence of intervals (I0, . . . , Is) such that for
every two consecutive intervals It = [Lt, Rt] and It+1, either It+1 = [Lt − 1, Rt]
or It+1 = [Lt, Rt + 1]. If It+1 = [Lt − 1, Rt] for all t then the sequence is called
left-nested interval sequence.

Let I = (I0, . . . , Is) be a nested interval sequence. Define topk,E,I(0) =
topk,E(I0), and define topk,E,I(t) to be the set of the k most frequent colors in
the interval It of E, where ties are broken with preference to colors appearing in
topk,E,I(t− 1). More precisely, let i be the single element of It \ It−1. If the color
c = E[i] is in topk,E,I(t−1) then topk,E,I(t) = topk,E,I(t−1). Otherwise, let c′ be
the color in topk,E,I(t−1) with smallest frequency in the interval It−1 of E, where
ties are broken according the color values. If c occurs in the interval It of E more
times than c′ occurs in this interval, then topk,E,I(t) = topk,E,I(t−1)\{c′}∪{c}.
Otherwise, topk,E,I(t) = topk,E,I(t − 1). We also define sequences colk,E,I and
indk,E,I as follows. Start with both of these sequences empty and t = 0, and
repeatedly increment the value of t. Whenever topk,E,I(t− 1) 6= topk,E,I(t), let i
be the single element of It \ It−1, and append E[i] to colk,E,I and t to indk,E,I .

We use the following lemma of Belazzougui and Navarro [3].

Lemma 1. Let I be a left-nested interval sequence with s intervals. Then,
|colk,E,I | = O(

√
sk).

Corollary 2. Let I be a nested interval sequence with s intervals. Then, |colk,E,I | =
O(
√
sk).
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Proof. Denote I = (I0, . . . , Is−1) and I0 = [L,R]. Build a sequence E ′ in which
E ′[L,R] = E[L,R], and for every t > 0, E ′[L − t] = E[it], where it is the single
element of It \ It−1. Let I ′ = (I ′0, . . . , I

′
s−1), where I ′t = [L− t, R]. By definition,

colk,E′,I′ = colk,E,I , and the corollary follows from Lemma 1.

3 The index

Let S be the concatenation of the documents in D, and let T be the suffix tree
of S. The leaves of T , from left to right, will be denoted u1, u2, . . . , un. The leaf
range of a node v in T is the interval [Lv, Rv] such that ui is a descendant of v if
and only if i ∈ [Lv, Rv]. For an integer b, the sampled suffix tree Tb is obtained
from T by taking the subtree of T induced by the leaves ub, u2b, u3b, . . . and their
ancestors, and removing all nodes with only one child (for every removed node,
its parent and its child are connected by an edge). The sampled suffix tree Tb
has at most 2n/b nodes.

The document array of D is an array of colors E[1..n] such that E[i] = j if
the character SAS[i] of S is a character of dj. Let B be a bitmap of length n
satisfying B[i] = 1 if and only if the character S[i] is the first character of some
document of D.

The index stores the following structures. (1) A compressed suffix array for
S. (2) A succinct rank-select data-structure over the bitmap B. (3) A succinct
representation of the tree T . (4) For every k ≤ min(D, 1

2
n/ log2 n(log log n)4)

which is a power of 2, a succinct representation of the tree Tklk , where lk =
log k log n(log log n)4. For every node in a tree Tklk (except the root), additional
information is stored as described below.

Let v be some node in tree Tklk , and v′ be the parent of v in Tklk . Let
v0 = v, v1, . . . , vs, v

′ be the path from v to v′ in T . Let I ′0, . . . , I
′
s be the leaf

ranges of v0, . . . , vs, and denote I ′t = [Lt, Rt]. Note that I ′0 ⊂ I ′1 ⊂ · · · ⊂ I ′s,
L0 − Ls < klk, and Rs − R0 < klk. Construct a nested interval sequence Iv of
(I ′1, . . . , I

′
s) as follows. Start with a sequence containing the interval I ′0. Then,

append to Iv the interval I ′1 with intermediate intervals:

[L0, R0 + 1], [L0, R0 + 2], . . . , [L0, R1], [L0 − 1, R1], [L0 − 2, R1], . . . , [L1, R1] = I ′1.

Continue this process with the intervals I ′2, . . . , I
′
s. Clearly, the number of intervals

in Iv is at most 2klk.
We use the following definitions and observations from [3].

Observation 3. For every c ∈ colk,E,Iv , f − klk + 1 ≤ freqE(c, [Lv, Rv]) ≤ f ,
where f is the minimum frequency of a color of topk,E([Lv, Rv]) in the interval
[Lv, Rv] of E.

As in [3], we divide the colors of colk,E,Iv into two types. A color c is a type 1
color if the frequency freqE(c, [Lv, Rv]) is between f − lk + 1 and f , and a type 2
color if the frequency is between f − klk + 1 and f − lk.
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Observation 4. There are O(k
√
lk) colors of type 1, and O(k) colors of type 2.

The first part of Observation 4 follows from Lemma 1, and the second part
follows from the fact that a type 2 color must appear at least lk times in the
region I ′s \ I ′0 of E.

For the node v, the index stores the following information. (1) An array
Av containing pairs (c, freqE(c, [Lv, Rv])) for every color c ∈ topk,E([Lv, Rv]),
sorted according to colors. (2) For j = 1, 2, an array Av,j containing the val-
ues freqE(c, [Lv, Rv]) for every c ∈ colk,E,Iv of type j, sorted according to the
order of these colors in colk,E,Iv . (3) The sequence indk,E,Iv . (4) An array Bv

holding the types of the colors in colk,E,Iv . Note that the colors of colk,E,Iv are
not stored as it would take too much space.

Answering queries Given a query P, k, let k′ be the smallest power of 2 which
is larger than k. Let b = k′lk′ . The suffix range [L,R] of P w.r.t. T is equal to
the leaf range of some node w of T . Let v be the highest descendant of w which
is also a node of Tb. To answer the query, we will use the information stored for
the copy of v in Tb. This information gives the frequencies of relevant colors in
the interval [Lv, Rv] of E. We will then scan the region [L,R] \ [Lv, Rv] of E and
update the frequencies of these colors. In order to decode the stored information,
we need to construct the sequence Iv at query time, and this is done using the
succinct representation of T .

In more detail, answering a query is performed as follows. (1) Using the com-
pressed suffix array, find the suffix range [L,R] of P . (2) If k > 1

2
n/ log2 n(log log n)4

or R − L ≤ b, scan the interval [L,R] and compute the frequencies of the colors
in this interval. Return the k most frequent colors. (3) Using the succinct repre-
sentation of Tb, find the lowest common ancestor of udL/be and ubR/bc in Tb, which
will be denoted by v. (4) Using the succinct representation of Tb, find the leaf
ranges of the ancestors of v in T , from the parent of v to v′, where v′ is the parent
of v in Tb. (5) Build the sequence Iv from the leaf ranges of the ancestors of v.
Denote Iv = (I0, . . . , Is), and let s′ be the index such that Is′ = [L,R]. (6) Create
a list of candidates that consists of (c, f) pairs, where c is a color and f is an
integer. The candidates list is initialized with the elements of Av. (7) Initialize
indices p, p1, p2 to 1. (8) For every t from 1 to s′, perform the following steps.
(a) Let i be the single element of It \ It−1. (b) Using the compressed suffix array
and the rank-select structure, compute the color c = E[i]. (c) If t = indk′,E,Iv [p],
let j = Bv[p]. Add the pair (c, Av,j[pj] + 1) to the candidates list, and increase
p and pj by one. (d) Otherwise, add (c, 1) to the candidates list. (9) Sort the
candidates list according to the colors. (10) Scan the candidates list and for each
color c that appears in the list, compute the sum of the second coordinate of the
pairs whose first coordinate is c. (11) Return the k most frequent candidates.

5



Time complexity The time complexity is determined by steps 1, 8, and 9.
Step 1 takes tsearch time, step 8 takes O(s′ · tSA) time, and Step 9 takes O((k′ +
s′) log log(k′ + s′)) time using the sorting algorithm of Han [8]. Recall that s′ ≤
2k′lk′ = O(k log k · log n(log log n)4). If step 2 is performed, the time complexity
of this step is O((R− L)tSA), and in both cases R− L = O(k′lk′). The following
lemma follows.

Lemma 5. A query takes O(tsearch+k log k(tSA+log log k+log log log n) log n(log log n)4)
time.

Space complexity Since B has exactly D ones, the rank-select structure on
B requires D log n

D
+ O(D) + o(n) bits [18]. The succinct representation of T

requires 2n + o(n) bits [20]. Storing the tree Tklk takes O(n/(klk)) bits. For
each node in Tklk , the following space is used: O(k log n) bits for storing the
colors of topk,E([Lv, Rv]) and their frequencies, O(k

√
lk log lk + k log(klk)) =

O(k
√
lk log log n + k log n) bits for storing the frequencies of colors in colk,E,Iv

(due to Corollary 2 and Observation 3), O(k
√
lk log klk

k
√
lk

) = O(k
√
lk log log n)

bits for storing indk,E,Iv (as indk,E,Iv is a monotone increasing sequence of length
O(k
√
lk) with elements from {1, . . . , 2klk}), and O(k

√
lk) bits for storing Bv. The

total space over all nodes in all the trees Tklk is

O

( ∑
k=1,2,4,...

n

klk
(k log n+ k

√
lk log log n)

)
= o(n).

Lemma 6. The index uses |CSA|+ 2n+ o(n) +D log n
D

+O(D) bits.

Reducing the space complexity The succinct representation of T requires
2n+ o(n) bits. To reduce this space, store a succinct representation of Tg instead
of T , where g = log log n. We assume that g divides lk for all k (we can define
lk = gd(log k log n(log log n)4)/ge in order to ensure that this assumption is met).
The tree Tg does not allow us to compute the sequence Iv which is needed to
decode the information stored for v when answering a query. Therefore, we need
to replace Iv with a nested interval sequence that satisfies the following: (1) The
sequence can be efficiently constructed using Tg. (2) Let v′ be the parent of v in
Tklk , and let v0 = v, v1, . . . , vs, v

′ be the path from v to v′ in Tg (both v and v′ are
in Tg due to the assumption that g divides klk). Then, for every i, the leaf range
of vi appears in the sequence. The second requirement is needed to ensure that
the colors whose frequencies are stored in v include the k most frequent colors in
[Lvi , Rvi ] for all i.

We cannot accomplish the goal above using one sequence. However, we can
accomplish it by defining several nested interval sequences I0v , . . . , Ig−1v (the sec-
ond requirement is now that the leaf range of vi appears in at least one sequence).
Let I ′0, . . . , I

′
s be the leaf ranges of v0, . . . , vs, where I ′t = [Lt, Rt]. Construct the
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sequence I iv by starting with a sequence containing the interval I ′0. Then, add
the following intervals:

[L0, R0 + 1], [L0, R0 + 2], . . . , [L0, R0 + i′], [L0 − 1, R0 + i′], [L0 − 2, R0 + i′],

. . . , [L1, R0 + i′], [L1, R0 + i′ + 1], [L1, R0 + i′ + 2], . . . , [L1, R1],

where i′ = min(i, R1 −R0). Continue this process with the intervals I ′2, . . . , I
′
s.

For each sequence I iv, the index stores the same information as before (namely,
the frequencies of colors in colk,E,Iiv , the type of the colors, and the sequence
indk,E,Iiv). Answering a query is similar to before. In step 5, the algorithm builds
the sequence I iv, where i = R − Ru (note that [L,R] is in I iv). The query time
complexity remains the same.

Compared with the previous structure, each node now stores information
for g interval sequences. Therefore, the space for storing the sequence infor-
mation is multiplied by g = log log n. The space for a single node is now
O
(
(k log k + k

√
lk log log n) log log n

)
, and the space over all nodes in all trees

remains o(n).
We have shown the following.

Theorem 7. There is an index for top-k most frequent document retrieval that
uses |CSA|+ o(n) +D log n

D
+O(D) bits, and answer queries in time O(tsearch +

k log k(tSA + log log k + log log log n) log n(log log n)4).
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