Abstract: The TATA element is a well-known example of a DNA promoter sequence recognized by the TATA box binding protein (TBP) through its intrinsic motion and deformability. Although TBP recognizes the TATA element octamer unusually (through the minor groove, which lacks the distinctive features of the major groove), single base-pair replacements alter transcriptional activity. Recent crystallographic experiments have suggested that TATA/TBP complexes differing by a single base pair retain substantial structural similarity despite their functional differences in activating transcription. To investigate the subtle role of sequence-dependent motion within the TATA element and certain aspects of its effect on assembly of the transcriptional complex, we examine 5-ns dynamics trajectories of 13 variant TATA/TBP complexes differing from each other by a single base pair. They include the wild-type (WT) adenovirus 2 major late promoter (AdMLP) TATA element, TATAAAAG (the octamer specifies positions −31 to −24 with respect to the transcription initiation site), and the variants A31 (i.e., AATAAAAG), T30, A29, C29, G28, T28, T27, G26, T26, C25, T25, and T24. Our simulated TATA/TBP complexes develop sequence-dependent structure and motion trends that may lead to favorable orientations for high-activity variants (with respect to binding TFIIA, TFIIB, and other transcription factors), while conversely, accelerate dissociation of low-activity TATA/TBP complexes. The motions that promote favorable geometries for preinitiation complexes include small rotations between TBP’s N- and C-terminal domains, sense strand DNA backbone “slithering,” and rotations in TBP’s H2 and H2’ helices. Low-activity variants tend to translate the H1 and H1’ helices and withdraw the intercalating phenylalanines. These cumulative DNA and protein motions lead to a spatial spread of complex orientations up to 4 Å; this is associated with an overall bend of the variant TATA/TBP complexes that spans 93° to 110° (107° for the crystal reference). Taken together, our analyses imply larger differences when these local structural and bending changes are extended to longer DNA (upstream and downstream) and suggest that specific local TATA/TBP motions (e.g., shifts in TBP helices and
INTRODUCTION

The TATA box binding protein (TBP) is the central protein component stimulating the assembly of the preinitiation complex (PIC), 1,2 TBP binds to the consensus DNA octamer sequence TATA(t/a)A(t/a)N, where (t/a) indicates thymine or adenine, and N indicates any base. 3 The complex between the TATA element and TBP, determined by crystallography for several different organisms, 4–9 is unusual: the DNA is bent more than 90° while the protein interacts with the minor groove of the DNA primarily through nonspecific hydrophobic contacts with the bases. The deformation of this complex brings distant DNA segments closer to each other, erecting a scaffold for other transcription factors to establish and maintain simultaneous upstream and downstream contacts. Several ternary structures of TATA/TBP with additional transcription factors, such as TFIIA, 10,11 TFIIB, 12 and NC2, 13 reveal that different surfaces of TBP and the bent TATA promoter are exploited for contacting these other transcription elements.

While these tightly tailored structures have been insightful in formulating the basic model of PIC assembly, the modulation of transcriptional activity by the intrinsic promoter variation within the genome continues to be an active area of investigation. 14–18 Although the minor groove of DNA lacks specific functional groups to distinguish transversion variations (i.e., Pyr ↔ Pur such as TA to AT), TATA/TBP complex activity is substantially affected by single base-pair (bp) variations. 19,20 The substantial alteration of TBP activity through DNA variations that do not alter minor groove functional groups suggests that TBP recognizes TATA elements indirectly though dynamic aspects (such as the energy of bending deformation), rather than average structure per se. 21–24 Indeed, a recent structural study by Burley and co-workers examining the details of TBP bound to 11 different single-bp DNA variants reveal a conserved structure (including similar overall bend) despite functional variation 14 (see Table I). Data from a recent fluorescence study examining the overall size and bending of a subset of these variant TATA/TBP complexes suggest that large sequence-dependent bending patterns exist, and that these differences might in turn modulate activity and PIC assembly. 15 In addition, recent measurements of the binding constants between TBP and these variant TATA elements showed the tendency of variants with higher transcriptional efficiencies (TE) to have lower binding constants to TBP (than low-TE variants) 17; some differences in the solvent accessibility of the TATA DNA between variant complexes were noted. 17,18 Taken together, the works suggest that sequence-dependent modulation of promoter activity depends in a complex way on a combination of factors such as specific motions, bending trends, binding energy/stability, and subtle structural variation of the complexes.

Molecular dynamics (MD) simulations have become a fundamental utility for complementing crystallographic and biochemical investigations. 25–27 The late Peter Kollman, to which this article is dedicated, developed not only the highly successful program AMBER, 28 but pioneered stable and accurate long-time nucleic acid simulations, 29 as well as free energy calculations that have important implications for drug design and the synergy of experiment and theory. 27 Motivated by Kollman’s works, we analyze here 13 5-ns trajectories of the variant TATA/TBP complexes examined experimentally 14,15,17 (Table I) with the state-of-the-art AMBER force field 30 to explore the potential role of DNA bending, motion, solvent, and structural changes in variant TATA/TBP complexes. This study complements our earlier investigation—the the 13 variant TATA sequences without the protein 34—which related characteristic DNA motions (such as increased roll/rise and minor groove widening at TATA ends), flexibility, and conformational preferences (such as reduced twist and increased bending into the major groove) to intrinsic activity.

Here we delineate local motion/flexibility trends that may promote favorable PIC complex formation in high-activity variants, and conversely, facilitate dissociation in low-activity variants. Though the TATA/TBP system is highly complex and simulations are inherently limited in their temporal and spatial sampling, the collective motions we analyze—rotation of TBP's helices and between TBP N- and C-terminal domains, DNA bending, DNA backbone "slithering," and "ratcheted" bp stacks—produce differing geometries that are likely to affect the binding of other transcription factors, such as TFIIA, TFIIIB, TAFs, and RNA polymerase. 1,2
We find that, in high- and medium-activity variants, the two domains of TBP rotate relative to each other, establishing a possibly optimal interdomain orientation. Specific helices of TBP (H2/H2/H11032; see Figure 5) are also rotated in high-activity variants to potentially affect interactions with TBP-associated factors (TAFs)31,32 and TFIIA.10,11 Several other subtle motions emerge as likely important for activity, including deoxyribose/phosphate backbone slithering within the TATA octamer and associated stretching within the TATA element bases.

In low-activity variants, the H1 helix tends to translate and rotate, altering an interaction site for TFIIA.10,11 Low-activity variants reveal a dissociation pathway, consisting of increased DNA twist and withdrawal of intercalated phenylalanines. Other conformational changes within low-activity TATA elements lead to unique bp rearrangements and ratcheted structures with slipped bp stacks. Although the DNAs in all systems remain highly bent, bending differences lead to large overall changes in the modeled positions of the +1 initiation site and upstream transcription factor binding sites. Throughout the simulations, we observe unusual water interactions within the TATA/TBP interface and salt interactions with the TATA bp stack; these solvent and ionic interactions may be particularly important to the dissociation pathways in low-activity variant structures.

METHODS

Background

The 13 trajectories we analyzed are 14-bp duplexes containing single-bp variants of the TATA octamer complexed with TBP as defined in Table I. These simulations complement an earlier study of the same duplexes without the protein24 from which sequence-dependent motions that tailor DNA for interaction with TBP were identified. We employ both simulation sets to compute hydroxyl radical footprint differences between the TATA DNA and the TATA/TBP complexes17 to validate the theoretical structures (as described in the accompanying appendix).

Table I DNA Sequences, Their Transcriptional Efficiencies, and the TBP Used in These Studies

<table>
<thead>
<tr>
<th>Label (PDB)</th>
<th>Sequence</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (1QNE)</td>
<td>GC (-31)T A T A · A A A G(-24) GGCA</td>
<td>100</td>
</tr>
<tr>
<td>A31 (1QNC)</td>
<td>GC A T A · A A A G GGCA</td>
<td>14</td>
</tr>
<tr>
<td>T30 (1QNA)</td>
<td>GC T U T A · A A A G GGCA</td>
<td>25</td>
</tr>
<tr>
<td>A29 (nc)</td>
<td>GC T A A · A A A G GGCA</td>
<td><1*</td>
</tr>
<tr>
<td>C29 (1QNC)</td>
<td>GC T A C · A A A G GGCA</td>
<td>20</td>
</tr>
<tr>
<td>G28 (nc)</td>
<td>GC T A T G · A A A G GGCA</td>
<td><1</td>
</tr>
<tr>
<td>T28 (1QNC)</td>
<td>GC T A T H · A A A G GGCA</td>
<td>14</td>
</tr>
<tr>
<td>T27 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>35</td>
</tr>
<tr>
<td>T26 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>6</td>
</tr>
<tr>
<td>G26 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>18</td>
</tr>
<tr>
<td>C25 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>6</td>
</tr>
<tr>
<td>T25 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>100</td>
</tr>
<tr>
<td>T24 (1QNC)</td>
<td>GC T A T A · A A A G GGCA</td>
<td>40*</td>
</tr>
</tbody>
</table>

The TATA octamers are flanked by GC on the 5’ side and by GGCA on the 3’ side. The adenovirus 2 major late promoter (AdMLP) TATA element sequence serves as the control (or “wild-type”) sequence (WT). The four-letter PDB entry codes33 are indicated in the first column; variants that were not crystallizable (nc) are also indicated. Single-position variants (boxed characters) are indicated relative to WT, and labeled according to the replaced base and position with respect to the transcription initiation site. Transcriptional efficiencies (TEs) for A29 and T24 (marked by asterisks) are based on Bernue’s et al.20 and Wobbe and Struhl,19 respectively. The 183 residue fragment of A. thaliana TBP (residues 16–198) used in these simulations indicated at bottom is common to all eleven crystallographic structures.14
System Preparation and Simulation Method

Crystallographic structures of the duplexes complexed to TBP were obtained from Dr. Stephen K. Burley and the Protein Data Bank; only one of the two complexes was retained from each asymmetric unit. For two variants (A29 and G28), crystallographic structures were not available; initial models were prepared by replacing the appropriate bp of the wild-type AdMLP structure by the variant bp. Hydroxyl groups were added to the 5’ and 3’ termini of the DNA as necessary. The protein was truncated to a 183-residue contiguous fragment present in all crystal structures (Table I, bottom). Various residue sidechains not resolved in the crystallographic structure (typically surface lysines and arginines) were attached to the corresponding C

Periodic boundary conditions and the AMBER PARM94 force field version 26a2 are used for all energy minimizations and MD simulations. Nonbonded interactions are truncated at 12 Å, with force shift for electrostatic and potential-switch for van der Waals interactions.37

Energy minimization of the system was divided into three stages: minimization of only bulk water, minimization of all waters and ions, and minimization of the entire system. Initially, the coordinates of the heavy atoms of the DNA, protein, ions, and crystallographic waters were fixed; only bulk waters and hydrogen atoms were minimized using 1000 steps of steepest descent and an adopted-basis Newton–Raphson protocol for 4000 steps. In the second stage, the ions were released for 6000 steps of adopted-basis Newton–Raphson minimization. Each system was then briefly relaxed during 24 ps of our multiple-timestep Langevin integrator LN based on a normal-mode conceptual framework38,39 with a timestep protocol Δt/Δt of 1/2/120 fs for fast/medium/slow force components using SHAKE constraints, short-range nonbonded cutoffs of 7 Å (used to define the medium class), and healing and bookkeeping lengths of 4 and 4 Å, respectively; as mentioned above, the long-range cutoff was maintained at 12 Å. The LN integrator allows simulations with greater computational efficiency; see Ref. 40 for detailed verification of LN on large systems. LN uses large outer timesteps (120 fs in this study) to compute the slow force components, thereby reducing the number of nonbonded interaction updates and the corresponding computational cost. Medium-range nonbonded interactions are handled by a smaller timestep (2 fs), while bonded forces are updated on a short inner timestep (1 fs). The long-range nonbonded interactions in the TATA/TBP simulations were calculated using periodic boundary conditions; recent work has extended our algorithms to include the particle-mesh Ewald method pioneered by Kollman, Darden, and others.29,43 The LN integrator is available in both CHARMM and AMBER.

After the brief relaxation, the entire unconstrained system was then optimized with 6000 steps of adopted-basis Newton–Raphson minimization. The systems are then equilibrated with 3 ps of Newtonian dynamics using a position Verlet integrator with a timestep of 0.5 fs without SHAKE constraints, followed by 24 ps of Langevin dynamics with our LN integrator with SHAKE constraints using the timestep protocol indicated above. The final coordinate set was used as the initial structure for the production cycle of each of our systems.

For the production dynamics runs, SHAKE constraints were applied to all bonds with hydrogens. Coordinates were saved every 1.2 ps, and the last 4.7 ns of the trajectories was used for data analysis. Each 0.36-ns segment of the 5.04 ns trajectory took 11 days (244 h) on four 300-MHz R12000 processors of the NYU SGI Origin 2000 computer, or 4 days (96 hours) on sixteen 195-MHz R10000 processors of the NCSA Origin 2000 cluster.
Structure Analysis

Nucleic acid structural parameters were derived from the analysis program RNA of Olson and co-workers. Although we have used Curves in previous publications, Curves was unable to analyze the unusual stacking geometries we encountered in many complexes here, such as Hoogsteen conformations and slipped bp stacks.

Bending and Flexibility of DNA. We were not able to compute bending using our program MadBend and the angles global roll and global tilt, because the standard bending angles [roll (ϕ), tilt (τ) and twist (Ω)] are not solely sufficient to describe the bending of unusual structures such as the ratcheted bp stacks. As an alternative, we computed bending as an angle between normals to the three-dimensional curve described by the TATA DNA helical axis. Namely, long pieces of B-form DNA (29 and 24 bp, respectively) were matched to the 5’ and 3’ ends of the TATA DNA through overlapping sequences at each end and superimposing the long pieces to minimize the RMS difference between the overlapping sequences. Specifically, at the 5’ end, 2 bps (−33 and −32) were used for the overlapping large ends; at the 3’ end, 3 bp (−23 through −21) were used. The resulting 61-bp DNA has both the highly bent TATA/TBP complex at the central bps 28–41 with idealized straight DNA extending to the downstream +1 initiation and the upstream −60 promoter sites. For each snapshot in each trajectory, we computed the center of mass of five regions: (1) the first four bps of the long 5’ segment; (2) bps −33 through −30 of the TATA complex; (3) bps −29 through −26 of the TATA complex; (4) bps −25 through −22 of the TATA complex; and (5) the last four bps of the long 3’ segment. We defined two planes and two normals to the planes using regions [1, 2, 3] and regions [3, 4, 5]. The bending angle (a dihedral angle) was computed as the scalar product of the normals. With this algorithm, the bend of the WT cocrystal complex is ∼106.5°, while our program MadBend computes a bend angle of ∼117.0°. The bending flexibility of variant i (ϕi) is computed as the standard deviation of the bending angle:

\[\phi_i = \sqrt{\langle (\text{bend}_i - \langle \text{bend}_i \rangle)^2 \rangle}. \]

Analysis of Salt, DNA/Protein Interface, and Water Interactions. Ion interactions, protein–DNA interactions, and water interactions were monitored using standard utilities available in CHARMM. Ion binding events were computed by monitoring ions approaching the TATA DNA major groove within 4 Å, i.e., one water diameter; the end bps of the TATA DNA were not included. Protein–DNA interactions were monitored as distances between side-chain and DNA functional groups; no distance cutoff was used. Lifetimes of water molecules located in the interface between the TATA element and TBP were computed as a joint probability: by monitoring distances between the water molecules and selected TBP side-chain and TATA minor groove atoms, waters simultaneously within cutoff distances to both atom sets were determined to be in the interface. The cutoff distances used depended on the specific geometry of nearby TATA and TBP atoms, but ranged from 4.5 to 6.0 Å, with an average of 5.2 Å; in contrast, the bulk waters in the TATA major groove are ∼8–9 Å from TBP. Since water molecules are moving around the interface, coordination events involving the same water molecule in the same site separated by less than 5 ps were counted as a single coordination event.

Measures of Significance. The correlation between the TE (TEi) and a property (Pi) of variant i is calculated by evaluating the linear correlation coefficient \(\kappa(P, TE) \) as:

\[\kappa(P, TE) = \frac{\langle \sum P_i \cdot TE_i \rangle}{\sqrt{\langle \sum P_i^2 \rangle \langle \sum TE_i^2 \rangle}} \]

Confidence limits at a 95% significance level (\(P < 0.05 \)) are estimated by linear regression. Properties analyzed this way include global bending and flexibility (Figure 2), rotation of domains and helices (Figure 5), and the mean square magnitude of motion along a principal component (Figures 8–10), water lifetimes (Figure 11), and ion contacts (Figure 12).

Motion analysis by Principal Component Analysis

Principal Component Analysis (PCA) decomposes the motions of a trajectory into independent modes, hierarchically organized so that the first several modes describe most of the motion characteristics of the trajectory. PCA has been widely used to study the intrinsic motions of both nucleic acids (including global bending) and proteins. We use PCA applied to a merged trajectory of all variants (a procedure that we term “uniform ensemble PCA”) to directly compare the different magnitude of each motion among our 13 variants; additional details are available below.

Our PCA procedures have been applied only to heavy (nonhydrogen) atoms of the TATA/TBP complex; hydrogens are ignored. A total of 2020 atoms are included in the analysis, resulting in 6060 PCs (3 × 2020). Snapshots are sampled from the last 4.68 ns of each trajectory at a frequency of \(\Delta t = 1.2 \) ps. In this study, our cutoff value of 100 PCs includes ∼89% of the ensemble motion; in the earlier TATA simulations without TBP, the top 100 PCs included ∼95% of the ensemble motion.

A covariance matrix \(C \) is constructed using the average structure from the merged configurational ensemble as the following sum of outer products:

\[C = \frac{1}{M} \sum_{k=1}^{M} (X_k - \langle X \rangle)(X_k - \langle X \rangle)^T \]

where \(X_k \) is the coordinate vector at the kth snapshot, and \(\langle X \rangle \) is the average structure from the dynamics simulation:

\[\langle X \rangle = \frac{1}{M} \sum_{k=1}^{M} X_k \]. The average structure used as a refer-
ence to develop the covariance matrices C is the unmini-
mized coordinate average. Diagonalization of C produces
the eigenvalues and eigenvectors as entries of A from the
decomposition:

$$V^T CV = A, \text{ or } CV = \lambda_n V_n, \quad n = 1, 2, \ldots, 3N,$$

where A is the diagonal matrix with eigenvalues $\{\lambda_n\}: A = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_{3N})$.

Each eigenvector V_n defines the direction of motion of N
atoms as an oscillation about the average structure (X). The
normalized magnitude of the corresponding eigenvalue
\(\frac{\lambda_n}{\sum_{n=1,3N} \lambda_n}\) indicates the relative percentage of the tra-
jectory motions along eigenvector V_n.

Uniform ensemble PCA Setup. To compare motions
between different TATA/TBP complexes, we must ensure
comparable numbers of atoms between different variants
and then merge the different trajectories. To make the
trajectories comparable, we set the WT sequence to be the
reference and convert each variant to resemble the WT
sequence:

1A. If the variant \rightarrow WT conversion is a *pyrimidine to pyrimidine* replacement (e.g., C to T, as in C29 to
WT) or a *purine to purine* replacement (e.g., G to
A, as in G26 to WT), the phosphate/deoxyribose back-
bone atoms and all nonhydrogen atoms of the pyrimidine
and purine rings of the mutated bp are maintained.
Exocyclic side chains (such as the thy-
mine methyl group) and hydrogen atoms are then
built using standard geometries, and the nucleotides are
accordingly renamed.

1B. If the variant \rightarrow WT conversion is a *pyrimidine to purine* replacement (e.g., A to T, as in A31 to WT)
or a *purine to pyrimidine* replacement (e.g., T to A,
as in T27 to WT), the phosphate/deoxyribose back-
bone atoms are again maintained. Nonhydrogen at-
oms of the 5-membered purine ring or the 6-mem-
bered pyrimidine ring are used to replace the bases
according to the superimposed positions of a purine
and a pyrimidine, maintaining the planar orientation
of the original base. The remaining hydrogen atoms
are built using standard geometries, and the nucleo-
tides are accordingly renamed.

2. After the above bp replacement and adjustment, all
atoms except those rebuilt from standard geometries
are fixed. A short minimization (10 steps of steepest
descent and 200 steps of adopted basis Newton–
Raphson) is performed to optimize the exocyclic
side-chain and hydrogen positions of the replaced
bases.

This procedure introduces minimal perturbations to our
trajectories: all bp geometries are maintained, and the
average relative error between local bp step parameters before
and after replacement is less than 2%. To eliminate tran-
slational and rotational motion in the merged trajectory, the
average structure of the merged trajectory (50700 total
frames from 13 variant trajectories of length 4.68 ns with
3900 frames each) is used to orient each frame of the
trajectory to minimize the RMSD of the TATA/TBP com-
plex. The reoriented merged trajectory then produces a
second average structure. The above process is repeated
approximately 7 times until the average structure converges
between cycles and no rotations or translations are neces-
sary to minimize the RMSD.

Structure Generation Using PCs. An arbitrary structure
Y can be generated from the average structure (X) by a
displacement D along the linear combination of all eigen-

$$Y = \langle X \rangle + D = \langle X \rangle + \sum_{n=1,3N} \alpha_n V_n, \quad \alpha_n = V^T D$$

This basic method of generating structures from PCs has
utility in the analysis procedures that we describe below,
such as measuring the motions of single and combined PCs.
Namely, single PCs (e.g., PCs 1–11 in Figure 9) are an-
alyzed by determining the structural deformations associated
with the eigenvectors. A scalar α_n corresponding to the
deformation D is computed by considering the minimal and
maximal projection of individual PCs against the MD tra-
jectory. The difference between the minimal and maximal
projection is divided into ten equal segments. The resulting
set of deformations D is used to generate 11 structures. The
structures may then be analyzed with standard programs
such as RNA45–46 Curves,47,48 or animated in visualization
packages such as Insight.

PC Analysis by Relative Magnitude of Motion. Follow-
ing uniform ensemble PCA, we compare for each vari-
ant i the normalized mean square magnitude of the projec-
tion along PC n, $\bar{\alpha}_n^i$:

$$\bar{\alpha}_n^i = \frac{1}{\text{Tr}(A)} \frac{1}{M_i} \sum_{k=1,M_i} (\alpha_n^i)^2$$

where M_i is the number of trajectory frames of variant i,
$\text{Tr}(A)$ is the sum of covariance matrix eigenvalues
$\text{Tr}(A) = \sum_{n=1,3N} \lambda_n$ and α_n^i is the projection of sequence i on
PC n at frame k. This use of this method is illustrated in
Figure 8 and in the selection of significant PCs for discus-
sion.

RESULTS AND DISCUSSION

Overall Structural Deformations

Analyses of RMS deviations of each complex (aver-
age structure from final 0.36 ns segment of each
variant’s trajectory) reveal no large structural changes
in either the protein or DNA components of the com-
FIGURE 1 Average structures of the simulated TATA/TBP complexes. (A) Superimposed average structures of the TATA/TBP complexes computed over the final 0.36 ns. Protein structures are illustrated with ribbons drawn following the Cα trace; the nucleic acid strand is illustrated with a ribbon intersecting the purine N1 and pyrimidine N3 atoms of the sense strand. The ribbons (and other figures) use a color-coding system to distinguish among variants with high-TE (TE ≥ 80% WT; green), medium-TE (80% < TE ≥ 20%; red), low TE (TE ≤ 20%; yellow). The RMS
plex (Figure 1). The RMS values for the superimposed complex, the protein alone, and the DNA alone, show that the average conformations are within 2–3 Å RMSD of the initial crystallographic structures.

Still, the pairwise RMS analysis suggests that complexes with minimal activity (such as A29, G28, C25, T26, T28, and A31 with TEs ranging from 0 to 14%) exhibit more similarity with each other compared to the more diverse family of higher-activity complexes (such as G26, C29, T30, T27, T24, T25, and WT with TEs ranging from 18 to 100%).

We have separated our results below into two groupings focusing on the activity of the TATA/TBP complexes: structures and motions associated with low-activity variants, and structures/motions associated with high- and medium-activity variants. Within these groupings, we discuss the different DNA, protein, and interface structures and motions associated with activity. Since specific structural details are determined to be important for either high-activity or low-activity variants (such as H2/H2′ rotation for high-activity variants), the discussion sections are not precisely parallel. Following these two separate sections, we analyze the water and ion interactions associated with these structural and dynamic features.

Low-Activity Complexes

DNA Structure.

Local DNA Bending. Overall, we find no large changes in the bending geometry of the TATA/TBP complex: the TATA DNAs all remain highly bent, with average bends over all snapshots in the 13 ensembles decreasing only 10° from the initial value of ~107°. In Figure 2, we show the average bending difference from the initial structure computed over the final 4.7 ns of the simulations, and the standard deviation of the bending as a measure of the complex flexibility. The correlation coefficient \(\kappa \) (defined in Methods) indicates that the slight increase in bending is not significantly correlated with activity (\(\kappa = -0.13 \pm 0.1 \)). The spread in bend angles of the variant complexes (~15°) is comparable to the spread in bend angles measured for the free TATA DNAs, highlighting the intrinsic bending proclivities of TATA sequences.

The overall bend is important because a recent study of the end-to-end distance in fluorophore-labeled TATA/TBP complexes by Parkhurst et al. suggested that activity and the bend angle are correlated: low-activity variants were found to bend less than high-activity variants. This fluorophore study used 8 TATA variants, also studied here: A29, C25, G26, T26, T27, and WT. Our study does not confirm this bend/activity relationship; and, given the limited sampling of all nanosecond-scale MD simulations, our data neither support nor refute the FRET experimental findings.

The bending flexibility \(\phi \), calculated as the standard deviation of the bending angle, is notably higher for some low and medium-TE variants, such as C29 (5′-TACAAAAG-3′, \(\phi_{C29} = 8.3° \)) and A29 (5′-TAAAACAAAAG-3′, \(\phi_{A29} = 6.4° \)) than for the high-TE WT and T25 (WT: 5′-TAAAAAG-3′, \(\phi_{WT} = 4.9° \); T25: 5′-TATAAATG-3′, \(\phi_{T25} = 3.8° \)); overall, the bending flexibility of the TATA DNA is moderately significant to low-activity variants (\(\kappa = -0.42 \pm 0.07 \)). This result agrees with observations from fluorophore studies that low-activity variants have larger standard deviations of the end-to-end DNA distance.

We interpret this increased flexibility in low-TE variants as a tendency of these variants to dissociate from TBP, since low- and medium-TE variants may have binding constants smaller than high-TE variants. We also conjecture that the increased flexibility and bending of low and medium-TE variants promotes the release of TATA DNA from the complex, possibly through an intermediate form that is more bent than the cocrystal.

DNA Bending Within the Larger PIC Region. These local bending trends are quite significant if extrapolated to larger DNAs approaching transcriptionally important regions. This can be seen in models that extend the TATA/TBP complex DNA from the +1 initiation site to the −60 upstream position by adding large idealized DNA segments to each end (Figure 3). If the DNA between the 3′ end of the TBP complex and initiation site is approximately straight, our modeling suggests that the cumulative effect of the local bends can spread over a 60–70 Å range in the upstream promoter and downstream initiation sites.

These extrapolated models also suggest that the
upstream and downstream regions of low-activity variants converge to a relatively common spatial region spanning less than 14 and 21 Å, respectively (Figure 3), in accordance with the small RMSD values among the group of low-activity variants (Figure 1). In contrast, the average positions of the upstream/downstream regions of high and medium-activity variants are spread over wider ranges (Figure 3). This convergence of the modeled upstream and downstream regions in the low-TE variants suggests the presence of a common conformation essential to either inactivity or complex dissociation.

Unusual DNA Structures. Although the TATA element is very distorted in the complex,4,5,14 we observe additional unusual DNA features such as Hoogsteen bps and “ratcheted” bp stacks during the simulations of several low-activity variants.

Hoogsteen Base Pair in C25. The cocrystal structure of the C25 variant (5’TATAAACG-3’) adjusts to the N2 amine group of guanine at position 25 by transforming the guanine to a Hoogsteen geometry.14 This Hoogsteen bp was preserved during the simulations (although in an unprotonated state to test its stability); we note that G_25 is stable, although it participates in a strong bifurcated hydrogen bond network with A_26 (Figure 4A).

Slipped Base-Pair Stacks and “Ratcheted” Structures. An interesting feature of the cocrystal structures is the strong bifurcated hydrogen bond interactions between adjacent bp steps in the TATA box,4,5,14 as shown in Figure 4B for the WT cocrystal. In four of our simulations, some of the hydrogen bonds between adjacent bp steps (Figure 4B, red bonds, normally greater than 4 Å) shorten to a distance typical of normal Watson–Crick basepaired geometries (~3 Å), while the Watson–Crick hydrogen bonds (Figure 4B, blue bonds) lengthen to more than 3 Å. This pattern extends for several bps, and can be explained by a slipped or ratcheted bp (by one base), such that the adenine bp j normally partnered with thymine bp j’ now has Watson–Crick hydrogen bonds with bp (j – 1)’. One base is left at each end of the slipped region with no complementary partner.

The overall conformational transition leading to this slipped arrangement only requires motions of magnitude 1–2 Å for of the bases, well within the thermal range accessible to the bifurcated hydrogen bond geometries. Significantly, the two complexes that develop the largest ratcheted structures, namely T24 (5’TATAAAAAT-3’) and A29, have medium- and low-activity values of 40 and 0%, respectively. In both A29 and T24, the ratcheted structure stretches over four bps, from A_30 to A_27 in the A29 variant and from A_28 to A_25 in the T24 variant. A third medium-activity variant, C29, develops the smallest possible ratcheted bp stack, stretching from A_28 to A_26. The low-activity C25 variant develops a smaller but similar bp rearrangement, localized around a Hoogsteen bp (described above). While changes in the structure of the bp stack might affect transcription factors like TFIIB12 and NC213 that contact the TATA major groove, the observed pattern of DNA structural changes in only a few low- and medium-activity variants suggests that this is likely to be
a promoter-specific mechanism of either transcription regulation or dissociation from TBP.

Protein Structure. Since TBP serves as a central locus for the gathering of transcription factors and PIC assembly, large rotations and translations of \(\alpha\)-helices and of the N- and C-terminal domains may modulate the transcriptional activity by locally altering binding and stability propensities for complexes between TBP and other transcription factors. The structure of TBP is dominated by a broad \(\beta\)-sheet, which forms the N- and C-terminal saddles (Figure 5A). Regions where this \(\beta\)-sheet narrows to just two \(\beta\)-strands define the C-terminal stirrup, the central hinge region, and the N-terminal stirrup. We monitor the rotation between TBP's N- and C-terminal domains using these five \(\beta\)-sheet regions; in addition, independent motions of the H1/H1' and H2/H2' \(\alpha\)-helix subdomains, which respectively interact with TBP's stirrup and saddle subdomains, are followed.
through the orientation of the respective helical axes to these β-sheet regions. In Figure 5, we illustrate TBP domain and subdomain conformational changes in turn: rotations and lateral translations of the H1 and H1’ helices as observed in low-activity variants; and rotation between the N-terminal and C-terminal domains and of the H2 and H2’ helices in high/medium-activity variants.

H1/H1’ Rotation/Translation. The H1 and H1’ helices, important interaction sites for transcription factors such as TFIIA\(^{10,11}\) and TFIIIB,\(^{12}\) are exposed to solvent at the ends of the TBP domains and are sensitive to motions like domain rotation and DNA twisting. We note from Figure 5C, which analyzes the H1/H1’ helices’ translation and rotation (relative to each variant’s initial cocrystal structure), that motions in the H1 helix increase with decreasing activity ($\kappa_{\text{rot}} = -0.4 \pm 0.1, \kappa_{\text{trans}} = -0.5 \pm 0.01$). These motions are larger than the corresponding motions associated with the H2/H2’ helices (discussed below). While the H1’ helix also displays comparably large rotations and translations, these motions have weaker correlations with variant activity ($\kappa_{\text{rot}} = 0.2 \pm 0.08, \kappa_{\text{trans}} = -0.07 \pm 0.01$). The structural changes in the H1 helix likely affect TFIIA interactions\(^{10,11}\) and may be linked to the formation of the TFIIA/TATA/TBP complex, while the structural changes in the H1’ helix alter the TBP/TFIIB interface.\(^{12}\)

Domain Rotation and H2/H2’/Rotation. We find that the specific motions of TBP’s N- and C-terminal
domains and of the H2/H2’ helices are only significant for high- and medium-activity variants, as discussed below.

DNA/TBP Interface. The interface between the TATA element and TBP is characterized by an unusual set of specific protein/DNA interactions. Four phenylalanines intercalate into the DNA4,5 (two each into the first and last TATA bp steps), the minor groove of the DNA is primarily recognized by hydrophobic protein side chains through van der Waals contacts, and the DNA backbone interacts with a set of cationic and hydrophilic residues. For reference, Figure 6 shows the location and types of interactions (i.e., hydrophobic, polar, or electrostatic) between side chains and the DNA. In Figure 7, we illustrate the mean distance between the interacting protein and DNA functional groups with corresponding standard
deviations from the mean as a measure of each interaction’s flexibility.

The trajectory analyses reveal that most interactions to the bases are well-maintained, i.e., hydrophobic interactions < 4.5 Å and polar interactions < 3.5 Å (Figure 7A), in good agreement with the crystallographic structures.14

However, in several low-activity variants (A29, T26, C25, C29, and T24), the flexibility of the Phe 148 and Pro 149 residues increases (Figure 7A), suggesting an overall instability of the 5′ end of the TATA element interactions and withdrawal of Phe 148 from DNA in these variants. No such instability is observed at the 3′ end phenylalanines (Phe 57 and Phe 74). We associate this withdrawal motion with PC 11 (discussed below), a proposed dissociation pathway prominent in low-activity variants.

Interactions in the central 6 bp of the TATA oc-
FIGURE 7 Interaction matrices of TATA/TBP variants. (A) Mean interaction distances between bases and TBP. (B) Mean interaction distances between the sense strand phosphate-deoxyribose backbone and TBP. (C) Mean interaction distances between the antisense strand phosphate-deoxyribose backbone and TBP. Each interaction matrix shows either the mean interaction distance (A–C). (D) Flexibility of interactions between bases and TBP. (E) Flexibility of interactions between the sense strand phosphate-deoxyribose backbone and TBP. (F) Flexibility of interactions between the antisense strand phosphate-deoxyribose backbone and TBP. Each interaction matrix shows either the mean interaction distance (A–C) or flexibility (D–F), i.e., the standard deviation around the mean, measured over 3900 snapshots sampled over 4.68 ns. The average distance was computed by measuring distances between TBP’s side chains and the relevant interaction sites in the TATA DNA. Note that interactions involving several sidechain atoms or several DNA groups (such as intercalated phenylalanines or bifurcated asparagines) were averaged over all relevant distances. The average distance and standard deviations are color coded according to the scale shown at right.
FIGURE 8 Definitions of domain motions of TBP and correlation coefficients for the top 100 PCs. Each domain motion is a rotation about one of three orthogonal axes, designated “pincer,” “rock,” or “rotate.” Note that each domain (N- and C-terminal) rotates independently around its own set of axes, since the domains have few interdomain contacts. Motions are illustrated by deforming the average structure of the merged ensemble of all 13 variants along a given PC. The blue and red structures correspond to the minimal and maximal deformations of the associated PC, respectively (see Methods). (A) Pincer domain motion. (B) Rock domain motion. (C) Rotate domain motion. (D) PCs and correlation coefficients are plotted as a red line; PCs discussed in the text are labeled with blue diamonds. The 95% confidence limit on the correlation coefficient is approximately 0.09 for the top 11 PCs. Note that the confidence limit increases in higher order modes since they represent minor motions; however, PC 50 and lower order PCs have 95% confidence limits less then 0.2.
tamer (between Leu 163 and Leu 72) are tighter in many medium and low-activity variants than the high-activity variants WT and T25. The decreased motion and the smaller mean interaction distance of these central bp interactions reflect the increased overall curvature observed in low-activity variants (Figure 2). Ratcheted bp stacks, such as observed in the A29, T24, and C29 simulations, lengthen interactions at the TATA octamer center to 5 Å or greater in low and medium activity variants; this lengthening and the formation of voids accessible to water and ions next to the unpartnered bases at each end of the slipped region suggest that the slipped bp stacks may be a part of dissociation pathways.

Several interactions contacting the deoxyribose backbone backbone are altered in an activity-dependent manner. The interaction between Lys 68 and bps −27′/−28′ becomes tighter in low- and medium-activity variants, losing the water molecule bridge indicated by the crystal structures. TFIIA contacts the antisense strand near the center of the TATA element where Lys 68 forms this interaction; thus, a competition between Lys 68 and TFIIA may destabilize TFIIA in low-activity complexes.

Global Motion. Results of the motion analysis by PCA are illustrated in Figure 8 as selected independent motions. We term the orthogonal rotation axes of TBP’s N-terminal and C-terminal domain motions “rock,” “rotate,” and “pincer,” respectively. In Figures 9 and 10, we show the minimal (blue) and maximal (red) motion associated with each PC; for PCs associated with TATA/TBP activity, additional analyses illustrate the motion. Below we discuss PC 11, that we find to be associated with low-activity variants (κ ≈ −0.4); PCs correlated with high-activity variants (κ ≥ 0.4), namely, PCs 5, 6, and 7, are discussed later. We are now posting animation sequences of selected PCs on our group website: http://monod.biomath.nyu.edu/.

PC 11 is the sole mode among the top 50 PCs that collectively describes more than 2% of the overall motion and is associated with low-activity variants (κ = −0.45 ± 0.1). The dominant motion in PC 11 for TBP is a “pincer” motion, which withdraws the intercalated phenylalanines. This pincer motion is particularly large in the C-terminal domain, withdrawing Phe 148 and Phe 165 by ≈ 2.5 Å from the first TATA bp step; in the N-terminal domain, Phe 57 and Phe 74 are withdrawn only 1 Å from the last bp step. The withdrawal of the phenylalanines decreases the roll at both ends of the TATA element, and increases the twist outside the TATA element (Figure 9D). Essentially, PC 11 suggests a possible dissociation pathway for low-activity variants.

High and Medium-Activity Complexes

DNA Structure. Our simulated TATA/TBP complexes remain highly bent as discussed above, close to the active crystallographic structure. The changes in DNA structure we observe (such as bending flexibility, Hoogsteen bps, or “ratcheted” bp stacks) are either associated with low-activity variants (as discussed in the prior section) or not significant (and hence not discussed).

Protein Structure.

Domain Rotation. During the simulations, the N- and C-terminal domains twist relative to each other (Figure 5B). To characterize the relative rotation between the N- and C-terminal domains, recall that we use the five regions defined above to measure the rotation as a dihedral angle between the two planes defined by the domains (illustrated in Figure 5A). This mean torsional change from the cocrystal structure between the TBP domains varies from −4° to 12°. Most of the high- and medium-activity variants exhibit relatively low domain rotations (between 1° and 4°), whereas most of the low-activity variants (yellow) have larger values. These results generally suggest that high-activity variant complexes preserve a favorable spatial relationship between the N- and C-terminal domains, while low-activity variants generate a torque between the TBP domains (κ = −0.25 ± 0.08). Transcription factors that bind simultaneously to both domains (either directly like TFIIB12 and the histone-like factor NC213 or indirectly through other factors) are likely to be affected by this domain rotation.

H2/H2′ Rotation. The H2 and H2′ α-helices occupy the upper surface of TBP opposite the DNA binding domain and expose a large surface area available for binding of other transcription factors, such as TFIIA10,11 NC2,13 and TAFs.1,3,31 The H2 and H2′ helices display small rotations ranging from −2.5° to 5° (Figure 5C). Both the mean rotation of the H2 helix and the H2′ helix increase slightly with activity (κH2 = 0.31 ± 0.02, κH2′ = 0.49 ± 0.02). TBP thus adjusts to binding of high-activity variants by rotating upper surface α-helices, and modulating activity of factors interacting with this site.

H1/H1′ Rotation/Translation. No significant motions of the H1 and H1′ helices are found for medium- and high-activity variants. The motions associated with low-activity variants were discussed in the prior section.
FIGURE 9 Motions in 7 of the top 11 uniform ensemble PCs. (A) PCs 1, 2, and 3. (B) PCs 4, 8, and 9. (C) PC 10. Structures were generated by deforming the average structure of the merged ensemble of all 13 variants along the corresponding PC. The blue and red structures correspond to the minimal and maximal deformations of the associated PC, respectively (see Methods).
DNA/TBP Interface. In high- and medium-activity variants, Arg 154 contacts the sense strand backbone near bp −29/−28; in low-activity variants, this interaction is broken (Figure 7B). Arg 154 contacts several different functional groups; this variability may entropically stabilize Arg 154 against excess solvent, as

<table>
<thead>
<tr>
<th>PC (%)</th>
<th>TBP motion</th>
<th>DNA motion</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (5.3)</td>
<td>Pincer motion 2.5 Å</td>
<td>Rotation about (\chi) −28 thru −25</td>
<td>−0.01</td>
</tr>
<tr>
<td>8 (2.8)</td>
<td>Portion of NTD rotates</td>
<td>Increasing Twist In Octamer</td>
<td>0.06</td>
</tr>
<tr>
<td>9 (2.4)</td>
<td>Hinge bends downwards</td>
<td>large motion at (C_{56}, N_{49}) brackets H1</td>
<td>−0.10</td>
</tr>
</tbody>
</table>

FIGURE 9 (Continued from the previous page.)
proposed by Pastor et al.53 Other interactions, such as between Glu 51 and phosphate $–26’$, Lys 85 and phosphates $–28’/–29’$, and Lys 169 and phosphates $–31’/–30’$, may specifically stabilize high-activity variants through exploiting solvent entropy: while these interactions form at a distance with the antisense strand backbone in all variants, these interactions in high and medium-activity variants have lower flexibility (Figure 7F) and appear to employ solvent molecules as bridging intermediates.

Global Motion. Many of the PC modes associated with high- and medium-activity variants share a common tendency: the backbone atoms of the sense strand slide back and forth along the strand direction. Although this motion occurs in both strands in PCs 5, 6, and 7, it is much stronger in the sense strand.

We show the motions of PC 5 ($\kappa = 0.53 \pm 0.09$) in Figure 10A. Part of PC 5 describes a rotation of the H2 and H2' helices; this rotation likely affects transcription factors recognizing TBP’s upper surface like TAFs and TFIIA (described above). The motions of the sense strand backbone are particularly large at the 5' and 3' ends of the TATA element, as evident by the isotropic fluctuations of the TATA backbone atoms; in contrast, much less motion is observed in the antisense strand (except adjacent to the end base; data not shown). We attribute this backbone motion to the different numbers of cationic residues on each side and each “leg” of TBP5,54; the fewer Lys/Arg residues proximal to the sense strand TATA DNA implies an increased mobility in this half of the complex. TFIIA contacts the antisense strand backbone within the TATA element,10 and the reduced motion of the antisense strand in PCs 5, 6, and 7 might stabilize TFIIA binding.

The PC 6 motion ($\kappa = 0.47 \pm 0.09$) separates the two domains of TBP: the C-terminal domain moves back from the DNA in a pincer motion, while the N-terminal domain “rotates” counterclockwise (Figure 10B). The TATA motions imply strand separation in bps $–28$ through $–25$, through accompanying increases in the DNA base motions stretch, shear, and stagger in this region55 (Figure 10B). Strand separation is easier in a deformed and constrained DNA segment (like TATA/TBP); such melting motions create a void for Hoogsteen bp formation14 and may be linked to nearby strand melting during initiation.56

The motion of the N- and C-terminal domains in PC 7 ($\kappa = 0.63 \pm 0.09$) is closely related to that of PC 6: “rotation” of the C-terminal domain and pincer of the N-terminal domain. This PC separates the two stirrups but does not open the central cavity. The TATA DNA accommodates the protein motion by increased twist in some regions and the sliding of the sense strand observed in other PCs (Figure 10C). The PC 7 DNA motion appears to maintain interactions between the two TBP domains and the DNA. This motion indicates that high- and medium-activity variants relieve torsional stress in the underwound TATA
DNA without significantly altering their favorable complex geometry, thus stabilizing the complexes.

Water Molecules at the Interface—All Variants

The TATA/TBP complex interface is largely hydrophobic and dehydrated. Still, a buried water molecule was observed in the T26 cocrystal,14 suggesting that water may either be trapped in, or penetrate into, the interface. A recent combination of experimental studies with simulations suggested that backbone interactions in the TATA/TBP complex might have low entropic penalties when solvated due to the intrinsic flexibility of certain backbone interactions.53 The concentration of osmolytes has also been shown to be a factor affecting the concentration of osmolytes has also been shown to be a factor affecting the *in vitro* behavior of TATA/TBP complexes, apparently increasing sequence-dependent bends in solution to a common 80° bend angle close to the crystallographic value.18 Thus, the role of water in TATA/TBP complexes remains unclear.

We find a number of water molecules located at the interface between TBP and the TATA DNA. In our initial models, solvent molecules were placed in the available interfacial cavities and the initial placement was verified by a simulated annealing of the chemical potential in several grand canonical Monte Carlo simulations.57 These additional Monte Carlo simulations verified occupancy of these sites without steric clashes.

In Figure 11, we analyze the overall lifetimes of 10 water sites (labeled I–X, Figure 11A) and the mean lifetime of water in each site; we chose these 10 sites because water molecules are favored there in at least 11 of our 13 initial structures. The lifetimes of waters in these ten sites were determined by monitoring distances (between 4.5 and 6.0 Å; 5.2 Å average) simultaneously to both nearby protein and nucleic acid atoms buried in the TATA/TBP interface; protein atoms, in particular, are buried ~8–9 Å deep from waters in the TATA major groove.

Although some of the waters initially placed in the interfacial sites remained in, or near, the site during the simulation (as indicated by the large peak in the histogram at 5 ns of Figure 11B), many additional water molecules also migrated into the interface. The largest histogram peak indicates small binding site lifetimes and demonstrates that many water molecules exchanged into and out of the TATA/TBP interface. Although most of the interfacial sites appear to be serially or multiply occupied by different water molecules, the weak confidence limits indicate that there is no strong correlation between TE and the mean water lifetime at any particular site (Figure 11C). Interestingly, the simulated T26 complex exchanges water rapidly near the bp 26′ site (waters VII and VIII) identified in the cocrystal,14 suggesting that the water molecule is observed in the T26 cocrystal structure because the locations behind bps 26 and 26′ are accessible. The presence of exchangeable waters within the TATA/TBP complex is an unexpected result, and may explain observations such as the effect of osmolytes on TATA/TBP binding states,18 and the conserved crystallographic structure of TATA/TBP complexes with varying activity.14

Salt Interactions—All Variants

Ions in the major groove are essential for screening the potential generated by the phosphate groups crowded together in the bent DNA and the cationic residues binding the TATA DNA backbone.54,55 This environment explains the attraction of ions to the cavity formed between the 5′ and 3′ ends of the bent TATA DNA. In Figure 12A, we illustrate this for ten sodium ions (of a total of 37 sodium ions) in the major groove at the end of the C29 trajectory. One ion (identified in purple) is within 4 Å of the DNA, near one end of the slipped bp stack; ions in such proximity to the DNA can exert strong local forces, compelling nearby polar groups to move in concert with the ion. In such a way, these ions may promote or stabilize particular conformations typical of low-activity variants, such as Hoogsteen bps or ratcheted bp stacks.

Low-activity variants reveal a tendency (κ = −0.61 ± 0.06) for more sodium binding events (i.e., sodiums to come within 4 Å of the base atoms lining the major groove) (Figure 12B). Overall, sodium binding events are quite common, observed in more than 75% of all trajectory snapshots, while chloride binding events are rare. The increased cation frequency in the cavity of low-activity complexes and the associated close approaches may contribute to low-activity variant instability, while altering the overall electrostatic field presented to other transcription factors by this highly charged complex.

CONCLUSION

Due to the large curvature and deformation of the TATA DNA in the complex with TBP, the motion and energy (or implied force) inherent to the bound complex play a prominent role in TATA/TBP activity. In examining systematic sequence variations of
TATA/TBP complexes, various research groups have concluded that subtle motion and structural differences were closely linked,15,17,23,24 despite global similarity in overall structures.14 Our detailed simulations of variant TATA/TBP complexes, extending earlier investigations from several groups15,17,18,21,22,52–54 and in good agreement with several experimental studies,15,17,18 have revealed a variety of intrinsic motions and conformational changes in the protein and DNA components.

The conformational changes observed in our simulations might explain some aspects of observed ac-
tivity differences for these variant complexes. Several predictions also emerge:

1. To develop the highly bent DNA observed in crystallographic and other experimental studies, the DNA passes through an intermediate with a higher bend than the crystallographic structures. This intermediate is expected to be unstable and may be spectroscopically detectable.
2. Ratcheted bp stacks leave bases unpaired at either end of the ratcheted region. These unpaired bases expose protons normally protected by Watson–Crick hydrogen bonding. In addition, ratcheted regions create a void in the bp stack region accessible to water and available to form Hoogsteen bp. Therefore, TBP binding to TATA elements may expose base protons and make the protons available for exchange; these protons may exchange more readily in low-activity variants.

3. High-activity complexes tend to rotate the carboxyl end of the H2 and H2' helices on TBP’s upper surface, while displaying low rotations.
and translations of the solvent-exposed H1 and H1′ helices. Within our 5-ns simulations, this motion separates the Cα backbone of these helix pairs by 3 Å or more. The separation of these subdomains should be detectable with appropriate spectroscopic probes.

4. Hydroxyl radical footprints are experimentally available for only 4 of our 13 variants. We have calculated footprints of the other 9 variants; these footprints predict the solvent accessibility of the DNA backbone in these complexes.

Undoubtedly, continuing experimental, structural, and computational investigations of sequence variations of the TATA promoter will shed further insights into the rich behavior and conformational ensemble relevant to eukaryotic transcription complexes. To extend our understanding of mechanistic pathways of genomic regulation, computer simulations in particular must extend their scope to temporal and spatial scales of larger macromolecular systems; ongoing work in several laboratories is addressing multiscale modeling and its application to transcriptional and genomic machinery.

APPENDIX A

Hydroxyl Radical Footprints—Simulation Validation and Predictions

The structures observed in our simulation closely resemble the cocrystal complexes, despite local differences in both the protein and DNA components. To validate our results, we have compared the hydroxyl radical footprints of our simulated complexes to experimental footprints from these same variants under
conditions of saturating TBP. Recently, Pastor et al. have demonstrated that MD simulations can successfully reproduce structural details (including backbone dynamics) that regulate the accessibility of TATA/TBP complex deoxyribose protons to hydroxyl radical. Of relevance to our results, experimental studies of variant TATA/TBP complexes examined in our simulations have shown that the hydroxyl radical footprints are DNA sequence specific, suggesting altered solvent accessibility and different TATA/TBP complex structures.

Calculation of Hydroxyl Radical Footprint. The reagent hydroxyl radical (OH\(^\bullet\)) attacks and cleaves the DNA phosphate-deoxyribose backbone in a largely sequence-independent manner in mixed sequence DNA. The small size of the hydroxyl radical (comparable to a water molecule) allows the resulting radical-catalyzed DNA cleavage to be interpreted as a measure of the solvent accessible surface area of the DNA. This measure has found utility in measuring the narrowing of the adenine tract minor groove (see also http://monod.biomath.nyu.edu/index/papdir/pap_2_76.html) and the basepair-dependent details of protein-DNA complexes.

Deuterium isotope effect studies of the DNA cleavage reaction conducted by Tullius and co-workers have shown all deoxyribose protons are attacked by hydroxyl radical, although the C4' and C5' protons are the primary attack sites. The cumulative proba-
bility of cleaving a deoxyribose with hydroxyl radical is the sum of the individual proton probabilities P_j and is strongly correlated with each deoxyribose proton’s surface area S_{ij}. Thus, we can compute from our structures the accessible surface area and use this quantity to weigh each proton’s individual cleavage probability. The average cleavage probability C_i for each deoxyribose i and the corresponding standard deviation σ_{C_i} are calculated as

$$C_i = \left(\sum_{\text{protons } j} P_j S_{ij} \right),$$

$$\sigma_{C_i} = \sqrt{\left(\sum_{\text{protons } j} \frac{\sigma_{P_j}^2 S_{ij}^2}{P_j^2 S_{ij}^2} \right) + \sum_{\text{protons } j} P_j^2 \sigma_{S_{ij}}^2} \quad (3)$$

where P_j, the cleavage probability for each deoxyribose proton j, is taken from deuterium isotope effect experiments58 and S_{ij}, the surface area of each proton j in deoxyribose i, is computed by the available procedure in CHARMM. We use the Lee and Richards algorithm61 as implemented in CHARMM,34 which basically rolls a water-molecule size probe around the solute surface in a plane to determine successive sections of the accessible surface area. To account for sequence-dependent differences in bp-dependent solvent accessibility in the free and TBP-bound states,17 we plot the ratio $(C_{i,\text{free}}/C_{i,\text{bound}}) - 1$; this ratio is zero if there are no differences between the free DNA and the bound complex.

Comparisons to Experimental Footprints. In Figure 13, we illustrate the relative cleavage ratio of the free TATA DNA to the bound TATA DNA. The computed footprints of several variants (WT, T28, T25,
G26), which have experimentally determined footprints available for comparison, reproduce the corresponding experimental pattern associated with each variant complex. We note that an earlier study from Pastor et al. also successfully reproduced the WT footprint pattern.53

There are only a few bps where differences exist in the peak height between our calculated footprints and the experimental comparisons. For example, the experimental footprint of the WT complex indicates a peak at base 28' that is not visible in our results. Of course, perfect agreement between simulation and experiment is not expected in this particular system, since the weights employed in the footprint calculation are derived from B-form DNA58 and may be different in the “northern” deoxyribose sugar pucker phases of the distorted TATA DNA. Though the experimental footprints were determined using a saturating concentration of TBP, intermediate binding states were also footprinted due to the slow isomerization times of TATA/TBP complexes. This leads to a merging of state-dependent protection patterns17, since the TATA DNA motion from the free form to the complexed form is very large and it is unlikely that the bending/binding processes lead to uniform monotonic changes in the protection pattern, the final experimental footprint contains an indeterminate non-uniform component from the partially associated/disassociated TATA/TBP complexes. Nevertheless, the extensive similarities between the calculated and experimental footprints imply that the overall solvent accessibility of the simulated complexes is very similar to the solution conformations.

In addition, we have computed nine additional footprints that currently have no experimental comparisons; these nine footprints (for variants T24, T27, T30, C29, A31, T26, C25, G28, and A29) predict the relative magnitudes of the various bp peaks and the sequence-dependent motions of side chains protecting each of the variant complexes deoxyribose protons.53

This article is dedicated to the late Peter A. Kollman, who was inspirational to our group’s work over the last 15 years and is so dearly missed. We are indebted to Stephen K. Burley for proposing, stimulating, and contributing to this exciting project though many discussions. We thank Michael Brenowitz for pre-publication access to experimental data and analysis on the manuscript. We thank Richard Lavery for use of the Curves program, Wilma K. Olson for use of the RNA program, and Jan Hermans for invaluable suggestions regarding free energy calculations. The work was supported by NIH grant GM55164, NSF grants BIR-94-23827EQ and ASC-9704681, and a John Simon Guggenheim Fellowship to T. Schlick. Parts of the computations were performed on the NCSA Origin 2000 cluster at the University of Illinois Urbana—Champaign under NCSA grant MCA99S021N to T. Schlick.

REFERENCES