
Learning and Characterizing
Fully-Ordered Lattice Automata

Dana Fisman and Sagi Saadon⋆

Ben-Gurion University

Abstract. Traditional automata classify words from a given alphabet as either
good or bad. In many scenarios, in particular in formal verification, a finer clas-
sification is required. Fully-ordered lattice automata (FOLA) associate with ev-
ery possible word a value from a finite set of values such as {0, 1, 2, . . . , k}. In
this paper we are interested in learning formal series that can be represented by
FOLA. Such a series can be learned by a straight forward extension of the L∗ al-
gorithm. However, this approach does not take advantage of the special structure
of a FOLA. In this paper we investigate FOLAs and provide a Myhill-Nerode
characterization for FOLAs, which serves as a basis for providing a specialized
algorithm for FOLAs, which we term FOL∗. We compare the performance of
FOL∗ to that of L∗ on synthetically generated FOLA. Our experiments show that
FOL∗ outperforms L∗in the number of states of the obtained FOLA, the number
of issued value queries (the extension of membership queries to the quantitative
setting), and the number of issued equivalence queries.

1 Introduction
Automata, being a simple computational model on which many operations (such as
union, intersection, complementation, emptiness, equivalence) can be efficiently com-
puted, have found usages in many applications including pattern matching, syntax anal-
ysis, and formal verification. Traditional automata are Boolean in the sense that they
associate with any given word one of two possible values. In many applications, such
as biology, physics, cognitive sciences, control, and linguistics, it is desired to associate
with any given word one of many possible values. These motivated the study of richer
types of automata such as weighted automata in which a word is associated with a value
from a given semiring over a large range of values [22].

Focusing on formal verification, of particular interests are semirings that form a (dis-
tributive) lattice. A lattice L = ⟨A,≤⟩ is a partially ordered set in which every two
elements a, b ∈ A have a least upper bound (a join b) and a greatest lower bound (a
meet b). Lattices offer generalization for multi-valued logics, and as such arise in quan-
titative verification [12,15,18,6,21], abstraction methods [13], query checking [10,16],
and verification under inconsistent view-points [29,17].

In recent years, model learning emerged as a useful technique in formal verification [30].
Model learning, roughly speaking, refers to the task of learning a black-box system,

⋆ This research was partially supported by the Israel Science Foundation (ISF) grant 2507/21.

2 Dana Fisman and Sagi Saadon

implemented by some automaton, by querying it with sequences of input and observ-
ing the received sequences of outputs. Model learning can be achieved using learning
algorithms that ask membership and equivalence queries, as does the classical L∗ algo-
rithm developed by Angluin for learning regular languages represented by DFAs [2].
To this aim, the verification community seeks for query leaning algorithms for the
automata types in use. Angluin-style algorithms have been developed for many au-
tomata types such as tree-automata [27], non-deterministic and alternating finite au-
tomata [9,4], Mealy machines [28], I/O-Automata [1], modular visibly pushdown au-
tomata [19], ω-automata [5], symbolic automata [11], strongly unambiguous Büchi au-
tomata [3], and structurally unambiguous probabilistic grammars [25].

In this work we are interested in learning fully-ordered lattice automata. A fully-ordered
lattice automata (FOLA) is a lattice automata over a fully-ordered set {0, 1, . . . , k}
where min and max are the meet and join operations, respectively. Roughly speaking

q0/2 q1/1

A : a/1, b/2

a/2

b/0

Fig. 1: A FOLA A

a FOLA extends a DFA by annotating the transitions and states
with values from the given lattice, as shown for instance in
Fig.1. The value the FOLA gives an input word is computed
as the meet of all the lattice values read along the run as well
as the lattice value of the final state (a formal definition is pro-
vided in Sec.2). Thus the FOLA A of Fig.1 gives the word b
the value 2 ∧ 1 = 1, and the word ba the value 2 ∧ 2 ∧ 2 = 2.

We consider the active learning setting in which the algorithm can use value queries
(VQ) (the extension of membership queries to the quantitative case) and equivalence
queries (EQ). We focus on FOLAs, since besides nicely modeling multi-valued logics,
they posses a polynomial minimization algorithm, while the minimization problem for
general lattice automata is NP-complete [14]. Thus, assuming P ̸=NP general lattice
automata cannot be polynomially learned, since the learning algorithm can act as a
minimization procedure.

1

2

3

4

n

a/n

b/na/n− 1

b/na/n− 2

b/n

a/n− 3

...

a/1, b/n

Fig. 2: A FOLA for Ln.

In a FOLA, both transitions and states are annotated with val-
ues l from the given lattice L. The value the automaton pro-
vides for a word depends on both the values traversed during
the run, and the value of the state at the end of the run. If all
transition values are the maximal value (thus do not affect the
final value), the FOLA, is said to be a simple FOLA, abbrevi-
ated, SFOLA. A FOLA of size n over a lattice L can be sim-
ulated by an SFOLA of size n × |L|. This blowup is tight in
the sense that there exists a family of languages {Ln}n∈N over
Σ = {a, b} and lattice of size n which can be implemented
by a FOLA with n states but there is no SFOLA with less than
n× (n− 1) states. A FOLA for Ln is provided in Fig.2 and an
equivalent SFOLA is given in Fig.10 in App.A.1

1 The reason for the quadratic blowup can be understood by noticing that states of the SFOLA
are required to record the traversal value up to that state (since all transitions values are⊤), and
for any l ∈ {2, 3, . . . , n} the FOLA needs to check whether an a will follow n consecutive
b’s (which requires of course n states), so in total (n− 1)× n states are required.

Learning and Characterizing Fully-Ordered Lattice Automata 3

SFOLAs can be polynomially learned using a straight forward extension of the L∗ al-
gorithm.2 It is therefore desired that the developed algorithm for FOLAs would perform
better. However, we cannot expect the algorithm to have better worst-case complexity
analysis since there are families of languages for which the minimal size of a FOLA is
the same as the minimal size of a SFOLA. For instance this is the case for the family
{L′

n}n∈N over lattice L = {0, . . . , n−1} which returns the size of the word modulo
n. We do, however, expect a specialized algorithm can take into account the special
structure of FOLAs and work better in practice.

In [8] an algorithm for learning multiplicity automata, an algebraic generalization of
automata, that works with respect to a given field was developed. This algorithm was
deployed by [7] to learn weighted automata, under the assumption that the semiring is a
field. While a (distributive) lattice is a special case of a semiring, a lattice is not a field,
since the property that every element a ∈ A has an additive (and/or multiplicative)
inverse may not hold. It follows that the algorithm for learning multiplicity automata
cannot be deployed for learning lattice automata. FOLAs can be learned using a learn-
ing algorithm for automata based on a monoid action, called writer automata in [31],
however the complexity of this algorithm for the case of FOLA is the same as using the
extension of L∗ to learn SFOLAs.

In order to obtain an algorithm that in practice would perform better on FOLAs than
L∗ for SFOLA, we must understand FOLAs better. To this aim, building on the work
of Halamish and Kupferman [14] who studied minimization of FOLAs, we reveal: an
equivalence relation for FOLAs; a canonical minimal FOLA; and a respective Myhill-
Nerode characterization for FOLAs. Sec.3 is devoted for this investigation.

The provided characterization and insights allow us to design a specialized algorithm
for FOLAs; this is the topic of Sec.4. Sec.5 compares the performance of FOL∗ with
that of the L∗ algorithm on synthetically generated FOLAs. The experiments shows a
clear advantage to our algorithm, with up to an |L| blowup. Sec.6 concludes. Due to
space restrictions some proofs are deferred to the appendix of the full version.

2 Preliminaries
Words, Languages, Formal Series We use Σ for an alphabet i.e. a finite non-empty
set of symbols. The set of word over Σ is denoted Σ∗. The length of a word w =
σ1σ2 . . . σm, denoted |w| is m. The prefix of w up to position i, namely σ1σ2 . . . σi, is
denoted w[..i]. Similarly the suffix of w starting at position i, namely σiσi+1 . . . σm,
is denoted w[i..]. A language is a subset of Σ∗. A formal series f is a function f :
Σ∗ → A mapping each word to a value in A, where A is some set. Such a formal
series f is sometimes called an A-language. Note that a language is a special case of a
formal series. That is L ⊆ Σ∗ can be thought of as a formal series fL : Σ∗ → B where
B = {0, 1}. In this work we are interested in formal series that map words to a value in
a fully ordered set {0, 1, . . . , k}.

2 In this extension, the observation table matrix holds values in the lattice instead of {0, 1}, that
is, the entry (i, j) holds the result of the value query for the word si · ej where si is the title of
row i and ej the title of row j. Two rows in the observation table are considered equivalent if
they are exactly the same. These are the only changes required w.r.t. to L∗ for DFAs.

4 Dana Fisman and Sagi Saadon

Lattice Let L = ⟨A,≤⟩ be a partially ordered set. An element a ∈ A is an upper
bound on A (denoted ⊤) if b ≤ a for all b ∈ A. An element a ∈ A is a lower bound
on A (denoted ⊥) if a ≤ b for all b ∈ A. A partially (or fully) ordered set ⟨A,≤⟩ is a
Lattice if for every two elements a, b ∈ A both the least upper bound, denoted as a ∨ b,
and the greatest lower bound, denoted as a ∧ b, of {a, b} exist. A lattice is complete if
for every subset A′ ⊆ A the least upper bound and the greatest upper bound exist. In a
complete lattice ⊤ denotes the join of all elements in A and ⊥ denotes their meet.

Lattice Automata Lattice automata are a generalization of finite-state automata [20].
Their deterministic version is defined as follows. A deterministic lattice automaton
(LDFA) A is a tuple ⟨L, Σ,Q, q0, δ, η, F ⟩ where L is a complete lattice; Σ is the al-
phabet; Q is a finite set of states; q0 ∈ Q is the initial state; δ : Q×Σ → Q is the state
transition function; η : Q × Σ → L is the transitions value function associating with
every transition (from a state q on letter σ) a value ℓ from the lattice; and F : Q→ L is
the state-value function associating with each state a value form the lattice.

A run of A on a word w = σ1σ2 · · ·σn is a sequence r = q0 . . . qn of n + 1 states.
The traversal value of r on w, denoted trvl(w) is the meet of all transitions involved,
i.e., if η(qi−1, σi) = ℓi then trvl(w) =

∧n
i=1 ℓi. The value of r on w is defined as

val(w) = trvl(w) ∧ F (qn). Namely it is the meet of the traversal value and the state-
value of the last state of the run.3 The extension of δ from letters to words is denoted δ∗

(i.e., δ∗(q, ϵ) = q, and δ∗(q, uσ) = δ(δ∗(q, u), σ) for u ∈ Σ∗ and σ ∈ Σ). The formal
series defined by A is denoted JAK, and JAK(w) denotes the value A gives to word w.

A fully-ordered lattice automaton (FOLA) is a lattice automaton over a fully-ordered
set {0, 1, . . . , k} where min and max are the meet and join operations, respectively.

Example 1. Recall the FOLA A over the lattice L = {0, 1, 2} and the alphabet Σ =
{a, b} from Fig.1. Consider the word w = baa. The run of A on w is the sequence
ρ = q0q1q0q1. Its traversal-value is trvl(w) = η(q0, b)∧η(q1, a)∧η(q0, a) = 2∧2∧1.
The value of A on w is val(w) = trvl(w) ∧ F (q1) = 1 ∧ 1 = 1.

3 A Myhill-Nerode Characterization for FOLAs

For a language L ⊆ Σ∗, one defines the equivalence relation≡L⊆ Σ∗×Σ∗ as follows
x ≡L y iff for every z ∈ Σ∗ it holds that xz ∈ L ⇐⇒ yz ∈ L. The celebrated Myhill-
Nerode theorem states that (i) L is a regular iff ≡L has a finite index (i.e. ≡L induces
a finite number of equivalence classes), (ii) there is a one-to-one relation between the
states of a minimal DFA for L and the equivalence classes of ≡L, and (iii) all DFAs
with a minimal number of states are isomorphic to each other, or put otherwise there is
a unique minimal DFA [23,24]. Many automata learning algorithms, including L∗, rely
on the correspondence between the equivalence classes and the states of the minimal
representation. Therefore, we seek for a similar correspondence between an adequate
equivalence relation for formal-series defined by FOLAs and minimal FOLAs.

3 In non-deterministic lattice automata, there may be several runs on a given word, and each run
may have a different value. In this case the value of the automaton on the word is the join of
the values of all of its runs on that word.

Learning and Characterizing Fully-Ordered Lattice Automata 5

3.1 No unique minimal FOLA

We first note that unlike the situation in regular languages, for formal series repre-
sented by FOLAs there may exists two FOLAs with a minimal number of states that
are not isomorphic to each other. Fig.3 depicts two minimal distinct FOLAs,A1 andA2,

q0/1 q1/1

A1 :
a/1

a/0

q0/1 q1/1

A2 :
a/1

a/0

Fig. 3: Two minimal FOLAs
for the same formal series.

implementing the formal-series f : {a}∗ → {0, 1} that
gives 1 iff the length of the word is at most one.

Let us examine this closely. LetA = ⟨L, Σ,Q, q0, δ, η, F ⟩
be a FOLA. It induces an equivalence relation≡A between
pairs of words, defined as follows. For x, y ∈ Σ∗ we have
x ≡A y iff the run of A on x ends in the same state as the
run of A on y. In the case of regular languages, if A1 and
A2 are two minimal DFAs for the same language L, then
≡A1

and ≡A2
are exactly the same relation as ≡L.

Fig.3 shows that in the case of languages accepted by FOLAs, this is not necessarily
the case. Indeed, while the FOLAs A1 and A2 define the same function, and are both
minimal in the number of states, the induced equivalence relations are different: for
≡A1 we have E0 = {ϵ} and E1 = Σ+, whereas for ≡A2 we have E0 = {w : |w|
mod 2 = 0} and E1 = {w : |w| mod 2 ̸= 0} where Ei describes the equivalence
class of state qi.

3.2 Difficulties in defining ≡f

Investigating minimization of FOLAs, Halamish and Kupferman [14] explain the diffi-

q0/2

a/0

b/1

c/2

Fig. 4: A FOLA B

culty in finding an equivalence relation for FOLAs. Their first ob-
servation is that the natural extension x ≡1

f y iff for every z ∈ Σ∗

it holds that f(xz) = f(yz) is too refined, as for the FOLA B over
Σ = {a, b, c} and L = {0, 1, 2} depicted in Fig.4 it will consist
of three equivalence classes, while one suffices. Yet, this definition
holds under the assumption that all transition values are⊤. As men-
tioned earlier, FOLAs admitting this restriction are called simple
FOLAs or in short SFOLAs.

Their second observation concerns the following definition x ≡2
f y which states that

x ≡2
f y iff for every z ∈ Σ∗ exists ℓz ∈ L such that f(xz) = f(x) ∧ ℓz and f(yz) =

f(y)∧ℓz . This definition seems intuitive for FOLAs for which all acceptance values are
⊤, however, it does not work in this case as well. The main problem with this definition
is that it is not transitive and thus it is not an equivalence relation, as shown in Exmp.2.

Example 2 ([14]). To see that transitivity does not hold for ≡2
f consider the FOLA C

given in Fig.5. It defines a function from words over Σ = {a, b, c,#}∗ to values in
lattice L = {0, 1, 2, 3}. The proposed definition satisfies that a ≡2

f b and b ≡2
f c yet

a ̸≡2
f c. Indeed the FOLAs C1 and C2, depicted in Fig.5, are equivalent to C and each

makes a different choice regarding equivalence of the string b.

6 Dana Fisman and Sagi Saadon

q0/3 q2/3

q1/3

q3/3

q4/3

C :
a/3

b/1

c/3

#/1

#/3

#/2
q0/3

q1/3

q3/3

q4/3

C1 :

a/
3,
b/
1

c/3

#
/1

#
/2

q0/3

q1/3

q3/3

q4/3

C2 :
a/
3

b/1, c/3

#
/1

#
/2

Fig. 5: The definition ≡2
f breaks transitivity [14]

3.3 Defining the Equivalence Relation
The relation ≡L for a regular language L captures that two words reach the same state
of the minimal DFA. The relation ≡f for a formal series f should capture that two
words reach the same state of a minimal FOLA. To define it we make use of the notion
of a Hankel Matrix. With every formal series f : Σ∗ → L we can associate its Hankel
Matrix Hf . The Hankel Matrix has infinitely many rows and infinitely many columns.
The entry (i, j) has the value f(wi ·wj) where wi and wj are the i-th and j-th words in
an agreed enumeration of Σ∗. Consider the Hankel Matrix for a regular language L and
two words w1, w2. The rows of w1 and w2 in HL are exactly the same iff w1 ≡L w2.
This is since if w1 ̸≡L w2 then there exists a word z ∈ Σ∗ s.t. w1z ∈ L and w2z /∈ L or
vice versa, thus HL(w1, z) ̸= HL(w2, z). To define ≡f we need to understand how do
two rows of words w1 and w2 resemble if w1 and w2 reach the same state of a minimal
FOLA. Clearly they need not be exactly the same, since f(w1z) relies also on the values
traversed while reading w1.

We use the term observation table for any sub-matrix of Hf . Two subsets S and E
of Σ∗ define the observation table T = (S,E, T) where T : S × E → L is defined as
T (s, e) = f(s · e) for every s ∈ S and e ∈ E. We will define relations for an arbitrary
observation table; when applied to the full Hankel Matrix, it will convey the desired
equivalence relation. The algorithm will use the definitions for a finite observation table.

We say that the row-potential of a row s (or simply its potential) is l if there exists a
column e ∈ E such that T (s, e) = l and there is no e′ ∈ E such that T (s, e′) > l. This
means that the traversal value of the correct automaton on reading s cannot be smaller
than l as otherwise for no extension the value l can be obtained. However, according to
the observed data, there is no reason to assign it a value greater than l.

Definition 3 (Row Potential). Let T = (S,E, T) be an observation table, and s ∈ S.
The row-potential of s, denoted potT (s), is max{T (s · e) : e ∈ E}.

For every value l ∈ L and every pair of rows whose potential is at least l we would
like to ask whether they should be distinguished according to the data. The following
definitions make this precise.

Definition 4 (̸∼l
T , ̸≈l

T , ̸≈T). Let l ∈ L and s, s′ ∈ S.

1. We use s ̸∼l
T s′ if potT (s) ≥ l, potT (s

′) ≥ l and ∃e ∈ E s.t. T (s, e) ≥ l and
T (s′, e) < l or vice versa.

2. We use s ̸≈l
T s′ if for some l′ ≤ l we have s ̸∼l′

T s′.
3. We use s ̸≈T s′ if s ̸∼l

T s′ for some l ∈ L.

Learning and Characterizing Fully-Ordered Lattice Automata 7

It is easy to see that x ≈l
T y implies x ≈l−1

T y and that x ≈T y iff x ≈k
T y where

L = {0, 1, . . . , k}.

The following claim states that if we have two rows s1 and s2 such that in one column
e the entry for T (s1, e) is strictly bigger than T (s2, e) whereas in another column e′ the
entry for T (s1, e′) is strictly smaller than T (s2, e

′), then s1 ̸≈T s2.

Claim 5 Let T = (S,E, T). Let s1, s2 ∈ S and e1, e2 ∈ E. If T (s1, e1) < T (s2, e1)
while T (s1, e2) > T (s2, e2) then s1 ̸≈T s2.

We claim that if s ̸≈T s′ then strings s and s′ cannot reach the same state of a FOLA
for the respective formal series.
Lemma 6. Let T = (S,E, T) be an observation table for formal series f , and let
s, s′ ∈ S. If s ̸≈T s′ then in no FOLA for f the words s, s′ reach the same state.
Proof. From s ̸≈T s′ it follows that exists l ∈ L such that s ̸∼l

T s′. From the defi-
nition of ̸∼l

T it follows that potT (s) ≥ l, potT (s
′) ≥ l and ∃e ∈ E s.t. T (s, e) ≥ l

and T (s′, e) < l or vice versa. Let A = ⟨L, Σ,Q, q0, δ, η, F ⟩ be a FOLA for f . The
traversal value of s in A must be at least l, as otherwise for every z, A(sz) < l but
potT (s) ≥ l implies there exists a z ∈ E for which T (s, z) ≥ l so Af disagrees with
T . The same argument shows that the traversal value of s′ in A must be at least l. As-
sume towards contradiction that A upon reading s or s′ reaches the same state qs. Let
qe be the state that A reaches upon reading se (or s′e as this must be the same state).
The traversal value of e starting from the state q must be at least l and F (qe) must be
at least l as otherwise A will be wrong regarding s · e. But if this is the case then A is
wrong regarding s′ · e. Contradiction. ⊓⊔

T e1 e2 e3
s1 1 2 1
s2 1 1 1
s3 2 1 2

Fig. 6:
s1 ≈T s2 and
s2 ≈T s3 but
s1 ̸≈T s3

While the relation ≈T differentiates words that do not reach the same
state, it is not an equivalence relation. The reason is that it does not
satisfy the transitivity requirement as shown by Fig.6. The following
claim will help us strengthen it to get the desired equivalence relation.

Claim 7 Let s1, s2, s3 ∈ S. If s1 ≈T s2, s2 ≈T s3, s2 ≽T s1 and
s2 ≽T s3 then s1 ≈T s3.

If we would like to pick one of a set of non-distinguishable words to be
a representative, following claim 7 it makes sense to choose one with
the highest potential. Since there could be several such, we define an order between two
rows in the table. We use the shortlex order between strings, denoted ≤slex. 4

Definition 8 (Rows order). Let T = (S,E, T) be an observation table and s, s′ rows
in S. We say that s ≽T s′ if either [potT (s) ≥ potT (s

′)] or [potT (s) = potT (s
′) and

s ≤slex s′] (where ≤slex is the shortlex order).

The representative for a set S′ ⊆ S of rows that cannot be distinguished from one
another is chosen to be the minimal element in the shortlex order, among those in S′

with the highest potential. That is, the set of representatives of an observation table T
is defined as follows.

4 The shortlex order (aka the length-lexicographic order) stipulates that string w1 is smaller than
string w2, denoted w1 <slex w2 if |w1| < |w2| or |w1| = |w2| and w1 precedes w2 in the
lexicographic order.

8 Dana Fisman and Sagi Saadon

Definition 9 (reps(T), repT (s), ≡T). Let T = (S,E, T) be an observation table.

– The set of representatives of the table is defined as reps(T) = {s ∈ S | ∀s′ ≈T
s. s ≽T s′}.

– For a row s ∈ S we use repT (s) for the row s∗ ∈ reps(T) such that s ≈T s∗ and
for every s′ ∈ reps(T) satisfying s′ ≈T s we have s∗ ≽T s′.

– Let s, s′ be rows in S. We use s ≡T s′ to denote that repT (s) = repT (s
′). That is,

two rows are equivalent if they have the same representative.

Given a formal series f : Σ∗ → L let Tf = (Σ∗, Σ∗, Tf) be the Hankel Matrix
for f . Let reps(f), repf (w) and potf (w) abbreviate reps(Tf), repTf

(w) and potTf
(w).

Likewise, let ∼l
f , ≈l

f , ≈f , and ≡f abbreviate ∼l
Tf

, ≈l
Tf

, ≈Tf
, and ≡Tf

.

We show that ≡f is an equivalence relation on Σ∗ and a right congruence relation.

Claim 10 The relation ≡f is an equivalence relation.

Claim 11 The relation ≡f is a right congruence relation. That is, x ≡f y implies
xz ≡f yz for all z ∈ Σ∗.

Note that if s∗ is the representative of s, then for every e ∈ E we have that T (se) ≤
T (s∗e) and more precisely T (se) = T (s∗e) ∧ potT (s).

Claim 12 Let T = (S,E, T) be an observation table, s ∈ S and s∗ = repT (s). Then
for all e ∈ E (i) T (s, e) ≤ T (s∗, e) and moreover (ii) T (s, e) = T (s∗, e) ∧ potT (s).

Proof. Assume towards contradiction that ∃e ∈ E s.t. T (s, e) > T (s∗, e). Assume
T (s, e) = l. Then T (s∗, e) < l ≤ potT (s) ≤ potT (s∗). Therefore, according to Def.4,
s ̸∼l

T s∗ which contradicts that s∗ is the representative of s (Def.9). This proves item
(i).

For item (ii), assume toward contradiction that ∃e ∈ E for which T (se) ̸= T (s∗e) ∧
potT (s). It is clear that T (se) ≤ potT (s) and from item (i) we know that T (se) ≤
T (s∗e). Applying these conclusions, we get that T (se) < T (s∗e) ∧ potT (s), which
implies that T (se) < T (s∗e) and T (se) < potT (s). Let ℓ ∈ L be the minimal element
for which ℓ > T (se). Hence, potT (s), potT (s∗) ≥ ℓ, and T (s∗e) ≥ ℓ, but T (se) < ℓ.
Thus, according to Def.4, s∗ ̸≡ s reaching a contradiction. ⊓⊔

3.4 The correspondence between ≡f and a minimal FOLA

Next we prove that for every formal series f defined by a FOLA the induced equivalence
relation ≡f has a one-to-one correspondence with a minimal FOLA for f .

Utilizing the provided definitions, we can associate with a given formal series f : Σ∗ →
{0, 1, . . . , k}, a specific FOLA which we denote Af .

Definition 13 (The FOLA Af). Let f : Σ∗ → {0, 1, . . . , k} be a formal series. Let
reps(f) = {r0, r1, . . . , rn}. The FOLA Af = (Σ,Q, q0, δ, η, F) is defined as follows:
Q = reps(f), q0 = repf (ϵ), F (ri) = f(ri), δ(ri, σ) = repf (ri · σ) and η(ri, σ) =
potf (ri · σ).

Learning and Characterizing Fully-Ordered Lattice Automata 9

We claim in Thm.17 that Af recognizes the formal series f .

To prove it we associate with the formal series f a tree Tf , whose nodes are set of
words, defined as follows.

Definition 14 (The tree Tf , the sets Wℓ). Let f : Σ∗ → {0, 1, . . . , k} be a formal
series. Let Wℓ = {w | potf (w) ≥ ℓ}. The tree Tf has k + 1 layers. The set of nodes in
layer ℓ consists of the equivalence classes of ≈ℓ

f intersected with Wℓ. There is an edge
from node N in layer ℓ to node N ′ in layer ℓ+ 1 iff N ⊇ N ′.

Note that W0 = Σ∗ and ≈0
ℓ=∼0

f has a single equivalence class. Thus, the first layer
consists of a single node (the root) which is the set Σ∗. Note also that the nodes of
layer ℓ partition the set Wℓ (i.e. their union is this set, and they are pairwise disjoint).
Moreover, if two words are in the same node of layer ℓ then they are also in the same
node of layer ℓ − 1 (since x ≈ℓ

f y implies x ≈ℓ−1
f y). It follows that a node in layer

ℓ+ 1 is connected to a single node in layer ℓ. Thus Tf is indeed a tree.

Example 15. Consider the FOLA D depicted in Fig.7 implementing a formal series
fD : {a, b}∗ → {0, 1, 2, 3, 4}. In Fig.7 we show the tree TfD . The first layer, layer 0, of
TfD , as always consists of a single node W0 = Σ∗. Layer 1 of TfD also consists of a
single node Σ∗ since according to fD the potential of all words is at least one. That is,
W1 = Σ∗. Layer 2 of TfD consists of two nodes W2a = {ϵ} and W2b = aΣ∗. Indeed
the word ϵ is differentiated from all words in aΣ∗ by∼2

f as evident by the word b. To see
why note that the potential of both ϵ and a (for instance) is 4 ≥ 2 and f(ϵ · b) = 1 < 2
while f(a · b) = 3 ≥ 2. Observe that W2 = W2a ∪ W2b = W1 \ bΣ∗, since no
word starting with b has a potential of 2 or more. Layer 3 of TfD consists of four nodes
W3a = {ϵ}, W3b = a(ba∗bΣ)∗, W3c = a(ba∗bΣ)∗ba∗ and W3d = a(ba∗bΣ)∗ba∗b.
Note that W3 = W2 \ a(ba∗bΣ)aΣ∗, since once the a transition from q2 to q4 is
taken the potential drops to 2. Layer 4 of TfD consists of two nodes W4a = {ϵ}, and
W4b = {a}, since once the b transition from q2 to q3 is taken the potential drops to 3.
The representatives are shown below the leaves.

q1/4

q2/4

q3/3

q4/3

D :
a/
4

b/1

a/2

b/3

a/4

b/
4

a/4, b/3

Σ∗W0

Σ∗W1

{ϵ}W2a aΣ∗W2b

{ϵ}W3a a(ba∗bΣ)∗W3b a(ba∗bΣ)∗ba∗W3c

ab

a(ba∗bΣ)∗ba∗bW3d

abb
{ϵ}W4a

ϵ

{a}W4b

a

Fig. 7: A FOLA D, and the tree TfD induced by FOLA D

10 Dana Fisman and Sagi Saadon

Claim 16 connects ≡f and the tree Tf , and consequently the FOLA Af and Tf .

Claim 16 Let L be a leaf in layer l of Tf and let u be the biggest word in L according
to the ≽f order. Then L = {u′ | u′ ≡f u} ∩Wl.

Let leaves(Tf) = {L0, L1, L2 . . . , Ln} be the leaves of Tf . It follows that there exists
a one-to-one mapping h : reps(f) → leaves(Tf) satisfying that h(ri) = Li for Li =
{w | w ≡f ri} ∩ Wpotf (ri). Since the states of Af are reps(f), this shows there is
a one-to-one mapping between the states of Af and the leaves of Tf . Moreover, the
representative of a word u ∈ Σ∗ can be found by searching for the deepest node N
in the tree to which u belongs. This node is unique since nodes in the same layer are
disjoint, and a node is subsumed by its parent. If N is a leaf, then the smallest word
in N in the shortlex order is its representative. Otherwise let L1, . . . , Lk be the deepest
leaves in the sub-tree rooted by N . Then the smallest word in the shortlex order amongst
L1, . . . , Lk is its representative.

Thm.17 states that the desired relation betweenAf and f holds. Its correctness follows
from the stronger inductive claim, Clm.18.

Theorem 17. The FOLA Af of Def.13 correctly computes f . That is, f(w) = Af (w)
for every w ∈ Σ∗.

Claim 18 Let f : Σ∗ → {0, . . . , k} be a formal series, and let Af be the FOLA from
Def.13. Let u ∈ Σ∗. Then repf (u) = ri iff δ∗(q0, u) = ri and Af (u) = f(u).

4 The Learning Algorithm

The learning algorithm FOL∗ tries to distinguish the equivalence classes of ≡f . It does
so by maintaining an observation table which keeps track of queried words. Starting
with S = {ϵ} ∪ Σ and E = {ϵ} it fills the missing entries of the table using value
queries. This is done by procedure Fill. To extract a FOLA from a table, it is necessary
to have for every distinguished equivalence class s, and any letter σ of the alphabet, a
row for s · σ. When this criterion holds we say that the table is closed as defined next.

Definition 19 (Closed Table). An observation table T = (S,E, T) is termed closed if
for every s ∈ reps(T) and every σ ∈ Σ there exists s′ ∈ reps(T) such that s′ ≈T sσ.

After extracting a FOLA the algorithm asks an equivalence query (EQ).5 If the answer
is “yes” the algorithm terminates. Otherwise the algorithm adds all suffixes of the coun-
terexample w to the columns of the table and fills the table using value queries (VQ) s
and repeats the process as specified in Alg.1. We show in Thm. 22 that the addition of
the suffixes to the columns guarantees the learner makes progress towards identifying
the correct formal series.6

5 An EQ receives as an argument a FOLAA, and checks if JAK = f where f is the target formal
series. If so it returns “yes”, otherwise, it returns “no” with a counterexample, a word w such
that JAK(w) ̸= f(w). A value query (VQ) receives as an argument a word w and returns f(w).

6 The proof shows that Rivest and Schapire’s optimization of adding just one of these suf-
fixes [26] is possible here as well.

Learning and Characterizing Fully-Ordered Lattice Automata 11

For each sσ that is added to S (for s ∈ S∗, σ ∈ Σ), the algorithm checks (in lines 5-8)
whether sσ should be a new representative. There are three options to consider:

1. If for every s′ ∈ S∗ we have sσ ̸≈T s′, then sσ is indeed a new representative, and
the algorithm sets S∗ ← S∗ ∪ {sσ}

2. If there exists s′ ∈ S∗ such that s′ ≽T sσ and sσ ≈T s′ then no update needs to
be done (and practically the algorithm defines repT (sσ) = s′).

3. Otherwise, there exists s′ ∈ S∗ such that sσ ≻T s′ and sσ ≈T s′. In this case sσ
replaces a current representative: S∗ ← (S∗ \ {s′}) ∪ {sσ}. Note that there exists
exactly one row s′ as such in the current case, as we prove in Clm.20.

Algorithm 1 FOL∗

1: S := {ϵ} ∪Σ, E := {ϵ}, S∗ = {ϵ}, T := (S,E, T), Fill(T)
2: while True do
3: if exists s ∈ S∗ and σ ∈ Σ such that s · σ /∈ S then
4: S := S ∪ {s · σ}, Fill(T)
5: if sσ ̸≈T s∗ for all s∗ ∈ S∗ then
6: S∗ ← S∗ ∪ {sσ} ▷ a new equivalence class is discovered
7: else if sσ ≈T s∗ for some s∗ ∈ S∗ and sσ ≻T s∗ then
8: S∗ ← (S∗ \ {s∗}) ∪ {sσ} ▷ the potential of an equivalence class increased
9: A = ExtractAut(S,E, T) ▷ the procedure ExtractAut applies Def.13 on ≡T

10: if EQ(A) = (“no”, w) then ▷ w is the counterexample
11: E := E ∪ Suffs(w), Fill(T)
12: else
13: return A

A running example is provided in App.C.

The following claim asserts that S∗ never contains two representatives of the same class.
Since the observation table T at every step of the algorithm is a subset of the Hankel
MatrixHf of the target series f , the size of S∗ is bounded by n, the index of ≡f .

Claim 20 In every step of the algorithm, ∀s, s′ ∈ S∗ we have s ̸≈T s′.

The following lemma asserts that if the algorithm terminates, it returns a minimal
FOLA.

Lemma 21. Let T = (S,E, T) be a closed observation table, and let S∗ = reps(T).
Any FOLA consistent with T must have at least |S∗| states.

Termination follows from the following theorem, that guarantees that when a counterex-
ample is received, the algorithm makes progress towards inferring the target series. It
shows that either a new pair of rows is differentiated, namely a new equivalence class
has been discovered, or the potential of one of the equivalence classes increases.

Theorem 22. Let T = (S,E, T) be an observation table, and let T ′ = (S′, E′, T ′) be
the table after processing the counterexample (i.e. after line 11). Then either ∃s, s′ ∈ S

12 Dana Fisman and Sagi Saadon

such that s ≡T s′ and s ̸≈T ′ s′ or ≡T ′ is the same as ≡T and ∃s ∈ S for which
potT ′(repT ′(s)) > potT (repT (s)).

Proof. Let w = σ1σ2 . . . σm be the counterexample received for a FOLA A extracted
from the table T . Let si = δ(s0, w[..i]), that is, si is the state reached by the constructed
FOLAAwhen reading the prefix of w of length i. Consider the following sequence (and
recall that the states si of A are also strings).

r0 = VQ(s0 · w[1..])
r1 = potT (s0 · σ1) ∧ VQ(s1 · w[2..])
r2 = potT (s0 · σ1) ∧ potT (s1 · σ1) ∧ VQ(s2 · w[3..])

...
rm = potT (s0 · σ1) ∧ potT (s1 · σ2) ∧ . . . ∧ potT (sm−1 · σm) ∧ VQ(sm · ϵ)

Note that r0, the result of the first line in the sequence, is f(w) since s0 = ϵ and
w[1..] = w, hence r0 = VQ(w). While rm, the result of the last row, is A(w) because
rm corresponds exactly to the returned value of A on w. Since w is a counterexample
r0 ̸= rm. Consider the first i for which ri ̸= r0. Let r0 = ri−1 = ℓ and ri = ℓ′. I.e.

ℓ = ri−1 = potT (s0 · σ1) ∧ . . . potT (si−2 · σi−1) ∧ VQ(si−1 · w[i..])
ℓ′ = ri = potT (s0 · σ1) ∧ . . . potT (si−2 · σi−1) ∧ potT (si−1 · σi) ∧ VQ(si · w[i+1..])

There are two cases to consider.

1. Case ℓ′ > ℓ:
Since all components of the row ri−1 but the last one are also components of the
row ri, their value must be at least ℓ′ (as otherwise the value of ri will be less than
ℓ′). It follows that the value of the last component of ri−1, namely VQ(si−1 ·w[i..]),
is exactly ℓ (since ℓ′ > ℓ, and VQ(si−1, σi) is the only component in ri−1 that is
not in ri). While the values of potT (si−1 · σi) and VQ(si · w[i+1..]) must be at
least ℓ′. Consider the words s = si−1σi and s′ = si. In T the row si was the
representative of si−1σ (as per ExtractAut, namely Def.13), i.e., si−1σi ≡T si.
From potT ′(si−1σi) ≥ ℓ′ and repT (si−1σi) = si we get that also potT ′(si) ≥
potT (si) ≥ potT (si−1σi) ≥ ℓ′. Recall that we added all suffixes of w as columns
in T ′. Considering the column w[i+1..] we have that T ′(si−1σi, w[i+1..]) =
T ′(si−1, w[i..]) = ℓ while T ′(si, w[i+1..]) ≥ ℓ′ > ℓ. Therefore si−1σi ̸∼ℓ′

T ′ si
proving si−1σi ̸≈T ′ si.

2. Case ℓ′ < ℓ:
Since all but the last two components of row ri are also in row ri−1 their values
must be at least ℓ (as otherwise the value of ri−1 will be less than ℓ). The value of
the last two components must be at least ℓ′, and at least one should be exactly ℓ′.
We investigate both cases.

(a) Case VQ(siw[i+ 1..]) = ℓ′.
Consider rows si−1σi and si. From VQ(si−1w[i..]) ≥ ℓ we get that T (si−1σi,
w[i+ 1..]) ≥ ℓ > ℓ′ while T (si, w[i+ 1..]) = ℓ′. Since si is the representative
of si−1σi in T , we know from Claim 12 that for all columns e ∈ E (before
adding the suffixes of the counterexample) we have T (si, e) ≥ T (si−1σi, e).

Learning and Characterizing Fully-Ordered Lattice Automata 13

(i) If for one of the columns the relation is strict, namely T (si, e) > T (si−1σi, e)
then since in column w[i + 1..] we have the opposite relation by Claim 5
si ̸≈T ′ si−1σi so the claims hold since we separated states.

(ii) Otherwise if the relation is = in all columns e ∈ E then potT (si) =
potT (si−1σi).

– If potT (si−1σi) = potT (repT (si−1σi)) < ℓ then the potential in-
creased since now potT ′(repT ′(si−1σi)) ≥ ℓ.

– Otherwise potT (si−1σi) ≥ ℓ. Since potT (si) ≥ ℓ we get that si ̸∼ℓ
T ′

si−1σi (as evident by column w[i+ 1..]).
(b) Case VQ(siw[i+ 1..]) > ℓ′ and potT (si−1σi) = ℓ′.

Since s1 is the representative of s0σ1 we get that T (s1, w[2..]) ≥ ℓ. This in turn
implies from the same reasoning that T (s1σ2, w[3..]) ≥ ℓ and T (s2, w[3..]) ≥
ℓ. If we keep going on this way we get that T (siσi−1, w[i + 1..]) ≥ ℓ. The
potential of si−1σi in T is ℓ′ < ℓ. If the potential of its representative si was
also ℓ′ then the potential of this equivalence class in T ′ increased since it is
now at least ℓ > ℓ′. If the potential of si is more than ℓ′ then si ̸∼ℓ′+1 si−1σi

since the potential of both is at least ℓ′ + 1 and in column w[i + 1..] only one
of them is less than ℓ′ + 1. ⊓⊔

Corollary 23. Let FOLA be the class of languages represented by FOLAs. The algo-
rithm FOL∗ terminates and correctly learns any target language L ∈ FOLA.

Following Thm.22 we can bound the number of equivalence queries, call it mEQ by
n|L|, since every counterexample either reveals a new equivalence class, or provides
evidence that the potential of a class is higher. The number of VQs is bounded by the
size of the obtained table. The table has at most n|L|+ n|L||Σ| rows since a new row
is added to S∗ only if it revealed a new equivalence class or it increased the potential of
a known class, and when a row is added to S∗ all its one letter extensions are added to
S. The number of columns is bounded by c times mEQ where c is the size of the longest
counterexample.7 While these theoretical bounds are the same as L∗ for SFOLA, as
discussed in page.3 they cannot be better, and as we show in Sec.5, in practice the
number of EQ and VQ issued by our algorithm is significantly smaller than that by L∗.

5 Empirical Results
We implemented the algorithm and compared its performance on randomly generated
FOLAs against the straightforward extension of L∗ to learn SFOLAs.8 We compared
them in terms of (a) the number of states obtained (b) the number of issued value
queries and (c) the number of issued equivalence queries. We used a binary alphabet
Σ = {a, b}, the number of states N was chosen uniformly at random amongst the val-
ues {1, ..., 70} and the size of the lattice K was chosen uniformly at random amongst
{2, ..., 70} (i.e. L = {0, ...,K}). For each state q and letter σ, the state to transit to was

7 This can be strengthened to log(c) times mEQ using the optimization that finds one suffix to
add to the columns, as described in the proof of Thm.22.

8 In this extension the observation table has answers to value queries (as in FOL∗) but two rows
are determined equivalent iff they are exactly the same. All transitions values are set to⊤, and
the state values are determined by the value of the respective row in the column ϵ.

14 Dana Fisman and Sagi Saadon

chosen uniformly at random amongst {1, ..., N} and the transition value was chosen
uniformly at random amongst {1, ...,K}. The initial state was fixed to be 1. Finally, for
each state the state-value was chosen uniformly at random amongst {1, ...,K}.

Note that the generated automata may not necessarily be minimal in terms of the number
of states, and may not utilize all the available K + 1 lattice values. We thus define n to
be the number of states in the minimal FOLA for the formal series f : Σ∗ → {0, ...,K}
computed by the generated automaton, and k as the number of values that are possible
outputs of this automaton, meaning k = |Image(f)|.9 In addition, we define ns to be
the number of states in the minimal SFOLA for that language. The implementation of
the algorithm and the tests are available in https://github.com/sagisaa/Learning FOLA.

We generated 10334 automata as specified, and ran both algorithms L∗ and FOL∗ on
the languages induced by these automata. A VQ for a word w was answered by running
the word on the generated automata, and the EQs were answered using a complete
equivalence check, as specified in [14]. The gray bars on the graphs show the number of
samples for a certain x, (denoted ‘Count’) and their scale is placed on the right y-axis.
Each point on the graphs indicates the average result of the samples with the same x.

Fig. 8: L∗and FOL∗comparison: Number of states, VQs, EQs

The graphs are organized as three pairs, measuring number of states of the resulting
automaton, number of issued VQ, and number of issued EQ. The upper row measures
these with respect to the actual number of states (n), and the lower row with respect to
the actual lattice size (k).

The first pair of graphs (a) and (d) provide the number of states of the resulting automa-
ton in L∗ vs FOL∗ measured with respect to n and k, resp. Recall that the output of
L∗ is an SFOLA and the output of FOL∗ is a FOLA, and both algorithms return the

9 Note that k, the number of lattice values occurring in transitions or state-values, is bounded by
n+ n|Σ| where n is the number of states. Thus, for a constant-size alphabet it is O(n).

https://github.com/sagisaa/Learning_FOLA

Learning and Characterizing Fully-Ordered Lattice Automata 15

minimal one. These graphs show that the number of states in SFOLA is about k times
bigger than the minimal FOLA. This conclusion is supported with regression testing on
the relation between k and the number of states in each type given in App. D.

The second pair of graphs (b) and (e) provide the number of VQs issued by L∗ vs FOL∗

measured with respect to to n and k, resp. These graphs show that the relation between
the number of states in the minimal matching representation and the number of VQs is
roughly quadratic. This result is compatible with the structure of the algorithm, since
the data of the VQs is organized in a table in which the number of rows and the number
of columns are O(n) each.10

Last important factor we looked at is the number of EQs required in order for the al-
gorithm to converge. The third pair of graphs (c) and (f) provide the number of EQs

Fig. 9: EQs in relation to k

issued by L∗ vs FOL∗ measured with respect to n and
k, resp. These graphs show that the number of EQs
required by the FOL∗algorithm decreases when the
lattice size k increases. This can be explained by the
fact that the higher the lattice size is, the easier it is to
distinguish between rows. With that said, less EQs are
needed since states are discovered sooner when clos-
ing the table. To make sure of that result, we use con-
fidence interval method (CI) of 99% to distinguish be-
tween the 2 methods, see Fig.9.

6 Conclusions
We provided a definition of equivalence classes for a formal series recognizable by a
FOLA, which yields a canonical minimal FOLA and a Myhill-Nerode theorem, namely
a one-to-one relation between the equivalence classes and the canonical FOLA. Based
on it we designed a specialized learning algorithm that outputs the canonical FOLA
and compared it against L∗ on synthetically generated FOLAs. Our experiments show
a clear advantage to using FOL∗ as it outperforms L∗ in the number of states of the
obtained FOLA, the number of issued VQs, and the number of issued EQs.

References
1. F. Aarts and F. Vaandrager. Learning I/O automata. In CONCUR, 2010.
2. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2),

1987.
3. D. Angluin, T. Antonopoulos, and D. Fisman. Strongly unambiguous Büchi automata are

polynomially predictable with membership queries. In 28th Computer Science Logic CSL,
2020.

4. D. Angluin, S. Eisenstat, and D. Fisman. Learning regular languages via alternating au-
tomata. In Proc. of the 24th Intr. Joint Conf. on Artificial Intelligence, IJCAI, 2015.

5. D. Angluin and D. Fisman. Learning regular omega languages. In Algorithmic Learning
Theory - 25th Intr. Conf., ALT, Proc., 2014.

6. A. Bakhirkin, T. Ferrère, and O. Maler. Efficient parametric identification for stl. In Proc. of
the 21st Intr. Conf. on Hybrid Systems: Computation and Control, HSCC ’18, 2018.

10 The number of columns is bounded by nc where c is the size of the longest counterexample.

16 Dana Fisman and Sagi Saadon

7. B. Balle and M.r Mohri. Learning weighted automata. In Algebraic Informatics - 6th Intr.
Conf., CAI. Proc., 2015.

8. A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning func-
tions represented as multiplicity automata. J. ACM, 47(3), 2000.

9. B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of NFA. In IJCAI
Proc. of the 21st Intr. Joint Conf. on Artificial Intelligence, 2009.

10. W. Chan. Temporal-locig queries. In Computer Aided Verification, 12th Intr. Conf., CAV,
Proc., 2000.

11. D. Drews and L. D’Antoni. Learning symbolic automata. In Tools and Algorithms for the
Construction and Analysis of Systems - 23rd Intr. Conf., TACAS, 2017.

12. S. M. Easterbrook, M. Chechik, B. Devereux, A. Gurfinkel, A. Y. C. Lai, V. Petrovykh,
A. Tafliovich, and C. D. Thompson-Walsh. A model checker for multi-valued reasoning. In
Proc. of the 25th Intr. Conf. on Software Engineering, 2003.

13. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Computer Aided
Verification, 9th Intr. Conf., CAV, Proc., 1997.

14. S. Halamish and O. Kupferman. Minimizing deterministic lattice automata. ACM Trans.
Comput. Log., 16(1), 2015.

15. T. A. Henzinger. From boolean to quantitative notions of correctness. In The 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, 2010.

16. S. Huang and R. Cleaveland. Temporal-logic query checking over finite data streams. In
Formal Methods for Industrial Critical Systems - 25th Intr. Conf., FMICS, 2020.

17. A. Hussain and M. Huth. On model checking multiple hybrid views. Theor. Comput. Sci.,
404(3), 2008.

18. S. Jakšić, E. Bartocci, R. Grosu, and D. Ničković. An algebraic framework for runtime
verification. IEEE Trans. on Computer-Aided Design of Integ. Circuits and Systems, 2018.

19. V. Kumar, P. Madhusudan, and M. Viswanathan. Minimization, learning, and conformance
testing of boolean programs. In CONCUR, 2006.

20. O. Kupferman and Y. Lustig. Lattice automata. In Verification, Model Checking, and Ab-
stract Interpretation, 2007.

21. K. Mamouras, A. Chattopadhyay, and Z. Wang. A compositional framework for quantitative
online monitoring over continuous-time signals. In Runtime Verification, 2021.

22. M. Mohri. Finite-state transducers in language and speech processing. Comput. Linguistics,
23(2), 1997.

23. J. Myhill. Finite automata and the representation of events. Technical report, Wright Patter-
son AFB, Ohio, 1957.

24. A. Nerode. Linear automaton transformations. In Proc. of the American Mathematical
Society, 9(4), 1958.

25. D. Nitay, D. Fisman, and M. Ziv-Ukelson. Learning of structurally unambiguous probabilis-
tic grammars. In 35th AAAI Conf. on Artificial Intelligence, AAAI.

26. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In
Machine Learning: From Theory to Applications, volume 661 of LNCS, 1993.

27. V. Sakakibara. Learning context-free grammars from structural data in polynomial time. In
Proc. of the First Ann. Workshop on Computational Learning Theory, COLT, 1988.

28. M. Shahbaz and R. Groz. Inferring Mealy machines. In FM Formal Methods, Second World
Congress. Proc., 2009.

29. J. Streb and P. Alexander. Using a lattice of coalgebras for heterogeneous model composi-
tion. In MoDELS’06, 2006.

30. F. W. Vaandrager. Model learning. Commun. ACM, 60(2), 2017.
31. G. van Heerdt, M. Sammartino, and A. Silva. Learning automata with side-effects. In Coal-

gebraic Methods in Computer Science - 15th IFIP WG 1.3 Intr. Workshop, CMCS, 2020.

Learning and Characterizing Fully-Ordered Lattice Automata 17

Appendix

A a smallest SFOLA equivalent to the FOLA of Fig.2

Recall the FOLA provided in Fig.2, page.2.

An equivalent SFOLA, is shown in Fig.10. As explained in the introduction (on page
2), it require |L| times more states.

1 2 3 k − 1 k

1 2 3 k − 1 k − 1

1 2 3 k − 2 k − 2

◦ ◦ ◦

1 2 3 3 3

1 2 2 2 2 1

a

b b

a

...

a

b

a

b

a

a

b b

a

... b

a

b

a

a

b b

a

...

a

b

a

b

a

a

b b

a

...

a

ba

b

a

a

b b

a

...

a

b

a

b

a

a, b

Fig. 10: An equivalent SFOLA for the FOLA in Fig 2

B Omitted Proofs

Lemma 5 (restated) Let T = (S,E, T). Let s1, s2 ∈ S and e1, e2 ∈ E. If T (s1, e1) <
T (s2, e1) while T (s1, e2) > T (s2, e2) then s1 ̸≈T s2.

Proof. Let T (si, ej) = ℓij . Then ℓ11 < ℓ21 and ℓ12 > ℓ22. Assume w.l.o.g. that ℓ12 ≤
ℓ21. Clearly, potT (s1) ≥ ℓ12. Since ℓ21 ≥ ℓ12 we get that potT (s2) ≥ ℓ12. Looking
at column e2 we have that T (s1, e2) ≥ ℓ12 while T (s2, e2) < ℓ12. Thus s1 ̸∼ℓ12 s2
implying s1 ̸≈T s2. ⊓⊔
Lemma 7 (restated) Let s1, s2, s3 ∈ S. If s1 ≈T s2, s2 ≈T s3, s2 ≽T s1 and s2 ≽T
s3 then s1 ≈T s3.

18 Dana Fisman and Sagi Saadon

Proof. Let s1, s2, s3 ∈ S and suppose that s1 ≈T s2, s2 ≈T s3 and s2 ≽T s1, s3.
Assume toward contradiction that s1 ̸≈T s3, therefore there exists l ∈ L such that
potT (s1), potT (s3) ≥ l and there exists e ∈ E for which w.l.o.g. T (s1, e) ≥ l and
T (s3, e) < l. Consider T (s2, e): If T (s2, e) ≥ l, then s2 ̸∼l

T s3, and therefore
s2 ̸≈T s3. Otherwise, T (s2, e) < l, and since potT (s2) ≥ l, we get that s2 ̸≈T s1. A
contradiction is achieved in both cases. ⊓⊔

Lemma 10 (restated) The relation ≡f is an equivalence relation.

Proof. Trivially, x ≡ x for any x, thus ≡f is reflexive. Clearly, x ≡f y iff y ≡f x
thus ≡f is symmetric. It remains to show that ≡f is transitive. Assume x ≡f y and
y ≡f z. Let rx = repf (x), ry = repf (y) and rz = repf (z). It follows from Def.9 that
rx = ry = rz implying x ≡f z. ⊓⊔

Lemma 11 (restated) The relation ≡f is a right congruence relation. That is, x ≡f y
implies xz ≡f yz for all z ∈ Σ∗.

Proof. Assume towards contradiction that ∃x, y, z ∈ Σ∗ s.t. x ≡f y yet xz ̸≡f yz.
Then ∃l ∈ L, s.t. potf (xz) ≥ l, potf (yz) ≥ l and ∃w ∈ Σ∗ s.t. f(xz,w) ≥ l and
f(yz, w) < l or vice versa. This implies that potf (x) ≥ l, potf (y) ≥ l and ∃w ∈ Σ∗

s.t. f(x, zw) ≥ l and f(y, zw) < l or vice versa, which contradicts that x ≡f y. ⊓⊔

Lemma 16 (restated) Let L be a leaf in layer l of Tf and let u be the biggest word in
L according to the ≽f order. Then L = {u′ | u′ ≡f u} ∩Wl.

Proof. Let u′ ∈ L. By definition of Tf since L is in layer l it must be that u′ ∈ Wl.
We show that u′ ≡f u. If u′ ̸≡f u then by Def.9 they have a different representative,
namely u′ ̸≈f u. From Def.4 we get that u ̸≈l′

f u′ for some l′ ∈ L. Thus u and u′ will
be separated in layer l′ of the tree contradicting that both reside in leaf L. Thus u′ ≡f u.

Let u′ ∈Wl s.t. u′ ≡f u. We show that u′ ∈ L. Since u′ ∈Wl then u′ ∈Wl′ for every
l′ < l. Since u′ ≡f u we have that u′ ≈l

f u for every l ∈ L. Thus u′ and u will not be
separated. ⊓⊔

Lemma 18 (restated) Let f : Σ∗ → {0, . . . , k} be a formal series, and let Af be the
FOLA from Def.13. Let u ∈ Σ∗. Then repf (u) = ri iff δ∗(q0, u) = ri and Af (u) =
f(u).

Proof. The proof is by induction on the length of the word. For w = ϵ we have that

1. repf (ϵ) = q0 and δ∗(q0, ϵ) = q0.
2. Af (ϵ) = trvl(ϵ) ∧ F (ϵ) = ⊤ ∧ f(ϵ) = f(ϵ).

Let w = uσ for u ∈ Σ∗ and σ ∈ Σ.

1. δ∗(q0, uσ) = δ(δ∗(q0, u), σ) by def of δ∗. By induction hypothesis δ∗(q0, u) =
repf (u), thus δ(δ∗(q0, u), σ) = δ(repf (u), σ). By def of Af , δ(repf (u), σ) =
repf (uσ).

Learning and Characterizing Fully-Ordered Lattice Automata 19

2. Assume f(w) = l and w = σ1σ2 . . . σm. Let ri = repf (w[..i]) for 0 ≤ i ≤ m.
NowAf (w) = δ(q0, σ1)∧ δ(r1, σ2)∧ . . .∧ δ(rm−1, σm)∧F (rm).ThusAf (w) =
potf (r0σ1) ∧ potf (r1σ2) ∧ . . . ∧ potf (rm−1σm) ∧ f(rm). For every 0 ≤ i < m
we have potf (riσi+1) ≥ potf (w[..i]σi+1) ≥ potf (w) (where first inequality holds
since ri is the representative of w[..i] and the second since w[..i]σi+1 is a prefix of
w). In addition f(rm) ≥ f(w), again since rm is the representative of w (Clm.12).
Thus Af (w) ≥ potf (w) ∧ f(w) ≥ f(w).
If f(rm) = f(w) then the value of Af (w) is correct. Otherwise, we show that
potf (riσi+1) = l for some 0 ≤ i < m, which proves the claim. Assume not, then
potf (riσi+1) > l for all 0 ≤ i < m. This implies that potf (repf (riσi+1)) > l
for all 0 ≤ i < m. Since repf (riσi+1) = ri+1 we get potf (repf (ri)) > l for all
1 ≤ i ≤ m. In addition, potf (q0) = ⊤ > l. Thus ri are in layer l′ > l of Tf for all
0 ≤ i ≤ m. It follows from Def.14 and Claim 16, that ri is in Wl′ for some l′ > l
for all 0 ≤ i ≤ m. In particular, since w ≡f rm (by Claim 16) we get that w ∈Wl′

for some l′ > 1 contradicting that f(w) = l. ⊓⊔

Lemma 20 (restated) In every step of the algorithm, ∀s, s′ ∈ S∗ we have s ̸≈T s′.

Proof. Let Si denote the set S∗ in the i-the iteration. When the algorithm starts we
have S0 = {ϵ} for which the claim holds. It is enough to show that every update of the
representatives set does not change the status of this claim. It is clear why the first two
cases in the update do not affect it. As for the third case, assume toward contradiction
that at some point ∃s, s′ ∈ S∗ such that s ≈T s′ and let Sk be the first in which this
happened. That is, this occurred after applying Sk ← (Sk−1 \ {s′}) ∪ {sσ}. Since the
claim holds for Sk−1, the change is due to the addition of {sσ}, so we have s′′ ∈ Sk

such that sσ ≈T s′′ and sσ ≻T s′′ (or else sσ would not have been added). From case
3 we have the same for s′: sσ ≈T s′ and sσ ≻T s′. Since s′, s′′ ∈ Sk−1, it holds that
s′ ̸≈T s′′. Assume w.l.o.g that s′ ≽T s′′, so ∃l ∈ L, e ∈ E such that potT (s

′) ≥ l,
potT (s

′′) ≥ l and ∃e ∈ E s.t. T (s′, e) ≥ l and T (s′′, e) < l. Since sσ ≈T s′ and
sσ ≻T s′ we get from Clm.12 that potT (sσ) ≥ l and T (sσ, e) ≥ l, and therefore
sσ ̸≈T s′′, contradiction.

Lemma 21 (restated) Let T = (S,E, T) be a closed observation table, and let S∗ =
reps(T). Any FOLA consistent with T must have at least |S∗| states.

Proof. Assume toward contradiction that there exists a FOLA with less than |S∗| states
that is consistent with the table. Then by Clm.20 there must exist s, s′ ∈ S∗ such that
s ̸≡T s′ but A on reading s and s′ reaches the same state. From the definition of ≡T
and reps this implies s ̸≈T s′. But from Lemma.6 this contradicts that s, s′ reach the
same state. ⊓⊔

20 Dana Fisman and Sagi Saadon

C Running Example
q0/2 q1/2

q2/1

a/2

b/0

a/0

b/2

a/1

b/2

Fig. 11: A FOLAM

Consider the FOLA M given in Fig.11 where Σ = {a, b}
and L = {0, 1, 2} and let f = [[M]] be the formal series in-
duced byM. The algorithm maintains the observation table,
starting with the rows {ϵ, a, b} and column {ϵ}, and fills the
entries using VQ, resulting in the table marked in the inner
frame (in blue) of Fig.12.

Looking at ϵ and a, we can see that a ≈T ϵ since for every ℓ ∈ L we have a ∼ℓ
T ϵ.

We make the same conclusion for b. As ϵ ≽T a, b, we define repT (a) = repT (b) = ϵ,
which means that reps(T) = {ϵ}. The table is closed since ∀s∗ ∈ reps(T) and σ ∈ Σ
we have s∗ · σ ∈ S. An automaton can thus be extracted. The extracted automaton is
A0 depicted in Fig.12.

SinceA0 does not recognize the target formal series, we get a counterexample. Suppose
the counterexample is w = aa (for which A0 gives the value of 2, but the correct value
is 0). We add the suffixes of w, i.e. a and aa, to the columns E, and use VQs to fill the
missing entries.

We now realize that a ̸≈T ϵ since, considering ℓ = 2, we have that potT (ϵ) ≥ 2 and
potT (a) ≥ 2 but the column a distinguishes them since T (ϵ, a) ≥ 2 while T (a, a) < 2,
thus a ̸∼2

T ϵ. However, we still have b ≈T ϵ and a ≈T b. Since ϵ ≽T a, we have
repT (b) = ϵ and repT (a) = a. Thus, the representatives are reps(T) = {ϵ, a}. For
the purpose of closing the table, we add the rows a · Σ = {aa, ab}. Considering ab,
we get that ab ̸≈T ϵ since ab ̸∼1

T ϵ because aa is a distinguishing column (indeed
potT (ϵ) ≥ 1, potT (ab) ≥ 1, T (ϵ, aa) < 1 and T (ab, aa) ≥ 1). Similarly, we get that
ab ̸≈T a. Thus, the representatives are now reps(T) = {ϵ, a, ab}. Once again we close
the table, with the rows ab ·Σ. Since the table is closed and no new representative was
found, we construct the automaton A1 depicted in Fig.12.

While the automaton A1 has the correct number of states it is still incorrect. Suppose
the returned counterexample is now abb (on which A1 returns 1 but the correct answer

qϵ/2

A0 :

a/2, b/0

qϵ/2

A1 :

qa/2

qab/1

a/2

b/0

a/0

b/1

a/1

b/2

qϵ/2

A2 :

qa/2

qab/1

a/2

b/0

a/0

b/2

a/1

b/2

Fig. 12: The observation table maintained by FOL∗ in learning f = [[M]] from Fig.1, the first,
second and third conjectures, A0, A1 and A2 respectively.

Learning and Characterizing Fully-Ordered Lattice Automata 21

is 2). The algorithm adds all suffixes of abb namely {abb, abb, b} to the table, and fills
in the missing entries. The new entry T (ab, b) has value 2 increasing the potential of ab
from 1 to 2. The new extracted automaton A2 depicted in Fig.12 (which differs from
A1 in the transition value of b from qa) correctly recognizes the target language. This
conjecture is indeed correct, and so the algorithm terminates. Note that the resulting
FOLA is different from the target FOLA, but it is a minimal FOLA accepting the same
formal series, and is the canonical one.

D Regressions

Below we provide the results using regression analysis.

Regression for ns/n and k We use the method of least squares to check the dependency
of the number of states n in the minimal FOLA and the number of states ns in the
minimal SFOLA, with respect to k, the actual size of the lattice in the smallest FOLA.

Dependent Variable: ns/n
Method: Least Squares
Sample (adjusted): 1 10334
Included observations: 10334 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

k 0.484337 0.000987 490.7155 0.0000

R-squared 0.804151 Mean dependent var 6.876312
Adjusted R-squared 0.804151 S.D. dependent var 3.546382
S.E. of regression 1.569447 Akaike info criterion 3.739420
Sum squared resid 25451.86 Schwarz criterion 3.740121
Log likelihood −19320.58 Hannan-Quinn criter. 3.739657

Table 1: ns/n and k

The results are shown in Table.1. We can see that Prob. is 0 which supports that k, the
lattice size explains the difference.

Regression for VQFOL∗/VQL∗ and n/ns (Table 2) We use the method of least squares
to check the dependency of the number of VQ issued by FOL∗ which we denote VQFOL∗

and the the number of VQ issued by L∗ which we denote VQL∗ , with respect to n
ns

the ratio between the number of states in the smallest FOLA and smallest SFOLA.
The results are shown in Table.2. We can see that the coefficient of the dependency of
VQFOL∗/VQL∗ in n

ns
is 1 (approximately) indicating a tightest correlation.

22 Dana Fisman and Sagi Saadon

Dependent Variable: VQFOL∗/VQL∗

Method: Least Squares
Sample: 1 10335
Included observations: 10335

Variable Coefficient Std. Error t-Statistic Prob.

n/ns 1.002312 0.005571 179.9041 0.0000

R-squared 0.541265 Mean dependent var 0.194035
Adjusted R-squared 0.541265 S.D. dependent var 0.205058
S.E. of regression 0.138885 Akaike info criterion −1.110237
Sum squared resid 199.3344 Schwarz criterion −1.109536
Log likelihood 5738.150 Hannan-Quinn criter. −1.110000

Table 2: VQFOL∗/VQL∗ and n/ns

	Learning and Characterizing Fully-Ordered Lattice Automata

