
The Normalized Edit Distance with Uniform
Operation Costs Is a Metric
Dana Fisman #

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Joshua Grogin #

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Oded Margalit #

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Gera Weiss #

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

Abstract
We prove that the normalized edit distance proposed in [Marzal and Vidal 1993] is a metric when
the cost of all the edit operations are the same. This closes a long standing gap in the literature
where several authors noted that this distance does not satisfy the triangle inequality in the general
case, and that it was not known whether it is satisfied in the uniform case – where all the edit
costs are equal. We compare this metric to two normalized metrics proposed as alternatives in the
literature, when people thought that Marzal’s and Vidal’s distance is not a metric, and identify key
properties that explain why the original distance, now known to also be a metric, is better for some
applications. Our examination is from a point of view of formal verification, but the properties and
their significance are stated in an application agnostic way.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases edit distance, normalized distance, triangle inequality, metric

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.17

Related Version Previous Version: https://arxiv.org/abs/2201.06115

Funding This work was supported in part by ISF grants 2714/19 and 2507/21.

1 Introduction

The edit distance [5], also called Levenshtein distance, is the minimal number of insertions,
deletions or substitutions of characters needed to edit one word into another. This is a
commonly used measure of the distance between strings. It is used in error correction, pattern
recognition, computational biology, and other fields where the data is represented by strings.

One limitation of the edit distance is that it does not contain a normalization with respect
to the lengths of the compared strings. This limits its use because, in many applications,
having many edit operations when comparing short strings is more significant than having
the same number of edit operations in a comparison of longer strings, i.e., some applications
require a measure that captures the “average” number of operations per letter, in some sort.

There are several approaches in the literature to add a normalization factor to the edit
distance, as follows. The simplest idea that comes to mind is, of course, to divide the edit
distance by the sum of lengths of the strings. However, Vidal and Marzal [8] showed that this
function, termed post-normalized edit distance in [8], does not satisfy the triangle inequality,
and thus is not a metric. Dividing by the length of the minimal or maximal among the
strings also breaks the triangle inequality [2]. The fact that a distance measure is (or is not)
a metric allows (resp. prevents) optimizations in many applications. For example, many
efficient algorithms for searching shortest paths in graphs, such as Dijkstra’s algorithm, make
use of the fact that the underlying distance is a metric.

© Dana Fisman, Joshua Grogin, Oded Margalit, and Gera Weiss;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dana@cs.bgu.ac.il
mailto:joshuag@post.bgu.ac.il
mailto:odedm@post.bgu.ac.il
mailto:geraw@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.CPM.2022.17
https://arxiv.org/abs/2201.06115
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Vidal and Marzal propose thus another function, that we will focus on in this paper, that
they term the normalized edit distance (ned) and say that this function, “seems more likely
to fulfill the triangle inequality”. They however, show that when the sum of the costs of
deleting and inserting a particular symbol is much smaller than any other elemental edit cost
the function that they suggest is also non-triangular. The question of whether this distance
is triangular in less contrived situations is given only an empirical answer – “triangular
behavior has actually been observed in practice for the normalized edit distance”. This state
of affairs opened the way for attempts to define edit distance functions that are normalized
and satisfy the triangle inequality, as discussed in the following two paragraphs.1

Li and Liu [6] proposed an alternative normalization method. They open their paper
by saying that “Although a number of normalized edit distances presented so far may offer
good performance in some applications, none of them can be regarded as a genuine metric
between strings because they do not satisfy the triangle inequality”. They, then, define a
new distance, the generalized edit distance (ged), that is a simple function of the lengths of
the compared strings and the edit distance between them and show that it is a metric.

De la Higuera and Mic̀o [2] propose the contextual normalised edit distance (ced). Their
normalization goes by dividing each edit operation locally by the length of the string on
which it is applied. Specifically, instead of dividing the total edit costs by the length of the
edit path, they propose to divide the cost of each edit operation by the length of the string
at the time of edit. They prove that this is a metric, provide an efficient approximation
procedure for it, and demonstrate its performance in several application domains.

In this paper we prove that ned, the original edit normalization approach proposed
by Vidal and Marzal [8] does satisfy the triangle inequality when the cost of all the edit
operations are the same. Since this setup is very common in many applications of the
edit distance, our result gives a simple normalization technique that satisfies the triangle
inequality. While there are other normalized edit distance functions that are a metric, in
particular the two mentioned above (ged and ced), their definition is more complicated and
they capture a different notion of distance than that of ned.

The motivation that led us to engage in distances between words came from the field
of formal methods; specifically, for software verification. In this field, it is customary to
represent runs of a system using words and analyze the relationship between the set of words
that satisfy a given specification and the set of words that the system under examination
produces. Naturally, the main question asked is whether there is a word that the system
produces that does not satisfy the requirement, but an appropriate concept of distance
opens up the possibility of asking further questions. For example, for systems that meet the
specifications, the robustness question would be, “is there a run that is closer than a given
threshold to not meeting the requirements?”. In this context, we would like the distance to
measure how much “disturbance” in a word we can afford without risking non-compliance.
Naturally, since editing model symmetric disturbances, we use uniform weights. As we will
explain in Subsection 3.2 below, the ned distance satisfies certain properties required for
use in formal the field of formal methods that other metrics do not. Another advantage
of ned in the context of formal methods is that its definition allows direct use of a Ptime
algorithm proposed by Filliot et al. [3] for computing the distance between regular sets of

1 The complexity of computing ned was first shown to be O(mn2) with experimental data that suggested
that it is actually O(mn) [9]. It was later proven to be O(mn log n) in the uniform case [1]. Here, n ≥ m
are the lengths of the compared words.

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:3

words represented using finite automata. This is useful since verification tools work with
automata to represent the specification and the program runs, and verification questions are
usually reduced to questions on automata.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ the set of all finite strings over Σ. The length of string
w = σ1σ2 . . . σn, denoted |w|, is n. We use w[i] for the i-th letter of w, and w[i..] for the
suffix of w starting at i, namely w[i..] = σiσi+1 . . . σn.

Basic and extended edit letters. The literature on defining distance between words over Σ
uses the notion of edit paths, which are strings over edit letters defining how to transform a
given string s1 to another string s2. The standard operations are deleting a letter, inserting
a letter, or swapping one letter with another letter. Formally, the basic edit letters alphabet Γ
is defined as Γ = {n, c, v, x} where:

c stands for change: the relevant letter in
the source string is replaced with another
letter.
v stands for insert: a new letter is added
to the destination string.

x stands for delete: the current letter
from the source string is deleted and not
copied to the destination string.
n stands for no-change: the current letter
is copied as is from the source string to
the destination string.

The edit letters in Γ do not carry enough information to transform a string w over Σ to an
unknown string over Σ, since for instance the letter v does not provide information on which
letter σ ∈ Σ should be inserted. To this aim we define the alphabet ΓΣ that provides all
the information required. Formally, ΓΣ = {lσ| σ ∈ Σ, l ∈ {n, v, x}} ∪ {c(σ1,σ2)| σ1, σ2 ∈ Σ}.
We call strings over ΓΣ edit paths. Throughout this document we use w, w1, w2, w′, . . . and
s, s1, s2, s′, . . . for strings over Σ and p, p1, p2, p′, . . . for edit paths.

Weights and length of edit paths. Given a function wgt : ΓΣ → N, that defines a weight
to each edit letter, we define the weight of an edit path wgt : Γ∗

Σ → N as the sum of
weights of the letter it is composed from, namely for an edit path p = γ1γ2 . . . γm ∈ Γ∗

Σ,
wgt(γ1 . . . γm) =

∑m
i=1 wgt(γi).

In our case we are interested in uniform costs where the weight of n is 0 and the weight
of all other operations is the same. For simplicity we can assume that the weight of all other
operations is 1. Thus, we can define the weight over Γ instead of ΓΣ simply as wgt : Γ → N
where wgt(γ) = 0 if γ = n and wgt(γ) = 1 otherwise, namely if γ ∈ {c, v, x}. We also define
the function len : ΓΣ → N as len(γ) = 1 and len : Γ∗

Σ → N as len(γ1 . . . γm) =
∑m

i=1 len(γi).
Clearly here we have len(p) = |p|. Later on we will introduce new edit letters whose length
is different from 1, thus the need for a definition of len that is not just the count of letters.

▶ Example 1. Let w1 = abcd and w2 = badee. Then p = xa · nb · cc,a · nd · ve · ve is an edit
path transforming w1 to w2. We have that wgt(p) = wgt(xncnvv) = 4 and len(p) = 6.

Applying an edit path to a string. Given a string w over Σ, and an edit path p over ΓΣ
we can now define the result of applying p to w.

CPM 2022

17:4 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

▶ Definition 2. We define a function apply : Σ∗ × Γ∗
Σ → (Σ ∪ {⊥})∗ that given a string w

over Σ, and an edit path p over ΓΣ returns a new string w′ over Σ ∪ {⊥}. If p is a valid edit
path for w it returns a string over Σ, otherwise a string that contains ⊥.

apply(p, w) =



ε if p = w = ε

σ′ · apply(p[2..], w) if p[1]=vσ′

σ′ · apply(p[2..], w[2..]) if p[1]=c(σ,σ′) and w[1]=σ

σ · apply(p[2..], w[2..]) if p[1]=nσ and w[1]=σ

apply(p[2..], w[2..]) if p[1]=xσ and w[1]=σ

⊥ otherwise

We say that a string pij over ΓΣ is an edit path from string si to string sj over Σ if
apply(pij , si) = sj . With a bit of overriding, we say that a string pij over Γ is an edit path
from strings si to sj over Σ if there exists an extension of pij with subscripts from Σ that
results in an edit path from si to sj .

▶ Example 3. Following on Ex. 1, we have that apply(xanbcc,andveve, abcd) = badee, and
that xncnvv is an edit path from abcd to badee.

The normalized edit distance. Let p be an edit path. The cost of p, denoted cost(p) is
defined to be the weight of p divided by the length of p, if the length is not zero, and zero
otherwise. That is, cost(p) = 0 if |p| = 0 and cost(p) = wgt(p)

len(p) otherwise.
Using the definition of cost we can define the notion we study in this paper, namely the

normalized edit distance, ned, of Marzal and Vidal [8].

▶ Definition 4 (The normalized edit distance, ned [8]). The normalized edit distance between
si and sj, denoted ned(si, sj) is the minimal cost of an edit path pij from si to sj. That is,

ned(si, sj) = min {cost(pij) | pij ∈ Γ∗
Σ and apply(pij , si) = sj}

Note that while, in general, wgt may assign arbitrary weights to edit letters, in this paper
we assume the uniform weights as defined above.

▶ Example 5. Let Σ = {a, b, c}, s1 = acbb and s2 = cc. Then the string xnxc denotes an
edit path taking s1, deleting the first letter (a), copying the second letter (c), deleting the
third letter (b), and replacing the fourth letter (b) by c. This edit path indeed transforms s1
to s2. Its cost is 1+0+1+1

4 = 3
4 . It is not hard to verify that this cost is minimal, therefore

ned(s1, s2) = 3
4 .

The alignment view. Recall that distance functions defined by dividing the weight by the
sum, max or min of the given strings does not yield a metric [2,8]. The main contribution of
the paper is to show that the choice to use the length of the edit path in the denominator,
makes the resulting definition, ned, a metric. To understand the motivation behind dividing
by the length of the edit path, note that an edit path can be thought of as defining an
alignment between the given words s1 and s2 by padding the first string with some blank
symbol, denote it _, whenever an insert operation is conducted, and padding the second
string with _ symbols whenever a delete operation is conducted. The resulting words s′

1 and
s′

2 would thus be of the same length, and the weight of the edit path would correspond to
the Hamming distance between the words. (The Hamming distance applies only to words
of same length and counts the number of positions i in which the two words differ.) When
dealing with words of the same length it makes sense to normalize them by dividing by their
length, and the length of the padded words equals the length of the edit paths.

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:5

▶ Example 6. In Ex. 5 we used s1 = acbb, s2 = cc. The edit path xnxc corresponds to the
alignment s′

1 = acbb and s′
2 = _c_c, and since the length of s′

1 and s′
2 is 4 and they differ in

all positions but one the corresponding cost is 3/4.
In Ex. 1, we used w1 = abcd and w2 = badee and considered the edit path xncnvv. This

path correspond to the alignment w′
1 = abcd__ and w′

2 = _badee. Since w′
1 and w′

2 differ in
four out of the six positions, we have that the cost of this path is 4/6.

A metric space. A metric space is an ordered pair (M, d) where M is a set and d : M×M → R
is a metric, i.e., it satisfies the following for all m1, m2, m3 ∈ M:

1. d(m1, m2) = 0 iff m1 = m2;
2. d(m1, m2) = d(m2, m1);

3. d(m1, m3) ≤ d(m1, m2) + d(m2, m3).

The first condition is referred to as identity of indiscernibles, the second as symmetry, the
third as the triangle inequality.

Basic properties of NED. It is not hard to see that ned satisfies the first and second
condition of being a metric. The following proposition establishes that the distance of a string
to itself, according to ned, is zero, and that the distance between two strings is symmetric.

▶ Proposition 7. Let s, s1, s2 ∈ Σ∗. Then
1. ned(s, s) = 0
2. if s1 ̸= s2 then ned(s1, s2) > 0

3. ned(s1, s2) = ned(s2, s1)

Its straight forward proof can be found in the archived version [4].
The challenge is proving that ned satisfies the third condition, the triangle inequality.

We do this in Section 4. Before that we investigate some properties of ned and other edit
distance functions.

3 Properties of the various normalized edit distance functions

3.1 Other edit distance functions
In the introduction we mentioned several edit distance functions known to be a metric. We
use the term edit distance for functions between words to values that are based on delete,
insert and swaps. In general these definition may allow arbitrary weight assignment to edit
letters, but we consider the case of uniform weights. We start by introducing the edit distance
functions, ed, ged, and ced, and then turn to compare their properties, with those of ned.

We start with the commonly used edit distance, introduced by Levenstein [5].

▶ Definition 8 (The edit (Levenstein) distance, ed). The edit distance between si and sj,
denoted ed(si, sj), is the minimal weight of a path pij from si to sj. That is,

ed(si, sj) = min {wgt(pij) | pij ∈ Γ∗
Σ and apply(pij , si) = sj}

This function is a metric, but it completely ignores the lengths of the words, thus it is not
normalized.

We turn to introduce the generalized normalized edit distance proposed and proven to be
a metric by Li and Liu [6].

▶ Definition 9 (The generalized edit distance). ged(si, sj) = 2·ed(si,sj)
|si|+|sj |+ed(si,sj) .

CPM 2022

17:6 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Last, we define of the contextual edit distance, proposed and proven to be a metric by de
la Higuera and Micó [2]. It starts with a definition of distance between two strings whose
Levenstein distance is 1, from which it builds the distance for an arbitrary set of words, by
looking at a sequence of intermediate transformations.

▶ Definition 10 (The contextual edit distance). Let s, s′ be such that ed(s, s′) = 1 their
contextual edit distance is defined by ced(s, s′) = 1

max(|s|,|s′|) . Note that given ed(s, s′) = 1 the
difference between the lengths of s and s′ is at most one, thus max(|s|, |s′|) ≤ min(|s|, |s′|)+1.

Given a sequence of strings α = (s0, s1, . . . , sk) such that ed(si, si+1) = 1 for all 0 ≤ i < k,
one can define ced(α) =

∑k
i=1 ced(si−1, si). To define the contextual edit distance between

arbitrary strings sx and sy one considers the minimum of ced(α) among all sequence of
strings α = s0, s1, . . . , sk as above such that s0 = sx, sk = sy. That is, ced(sx, sy) =
min

{
ced(α)

∣∣ α = (s0, s1, . . . , sk), s0 = sx, sk = sy, ed(si, si+1) = 1
}

.

3.2 Comparison to other edit distance functions
Comparing ned and ed is easy. The ned distance (like ced and ged) measures the average
number edits, not just the total count. To see why this is needed, consider two short words
x1, x2 that differ in k letters and two long word y1, y2 that also differ in k letters. In the
context of software verification, for example, the latter represent runs that are more similar
to one another than the former. We thus, expect the distance between the ys to be less than
the distances between the xs but this is not the case in ed, as can be observed by inspecting
the following words.

ed(aabcde, abpcg) = 4 ned(aabcde, abpcg) = 4/7
ed(a96b4, a100) = 4 ned(a96b4, a100) = 4/100

We turn to a comparisons of ned with the other normalized edit distances, ged and
ced. Usually, being normalized means that the values of the distance functions are bounded
within a given range, but this is not always the case. The lower bound is clearly 0 for ned,
ged, and ced, since they are metric. The upper value of ned and ged is 1 but the values
for ced are not bounded:

▶ Claim 11. The values of ned and ged cannot exceed 1 and may reach 1, the values of
ced are unbounded.

Proof. For ned the numerator is the weight of an edit path, which is always smaller than the
denominator which is the length of the edit path, thus ned(w1, w2) ≤ 1 for all w1, w2 ∈ Σ∗.
Since ned(ε, a) = 1 the upper bound is 1.

For ged the numerator is twice the weight of the edit path, and the denominator is once
the weight of the edit path, plus the sum of length of the strings which is at least the size
of the edit path, thus clearly at least the weight of the edit path. This shows ged cannot
exceed 1. The fact that ged(ε, a) = 1 shows that 1 is the upper bound.

To see why ced is not bounded consider the sequence of words {ai}i∈N. That is, the
sequence ε, a, aa, aaa, We have that ced(ε, ai) = 1 + 1

2 + 1
3 + . . . + 1

i . Thus ced(ε, ai) is
the sum of the Harmonic sequence up to the ith element, and since the Harmonic sequence
diverges, ced is unbounded. ◀

Towards the second property of metrics that we consider, recall that the first requirements
of a metric, identity of indiscernibles, is that d(s1, s2) = 0 if and only if s1 = s2. That is, the
distance between two strings (in our case) is zero if and only if it is the exact same string. In
the case of strings, when working with a normalized distance with an upper bound 1, we

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:7

expect the distance to be 1, the maximal possible, if the strings are completely different,
namely they do not have any letter in common, that is, for all σ ∈ Σ if σ appears in s1 it
does not appear in s2 and vice versa. In software verification, for example, this means that
the system produced a run that is completely unrelated to the specification, thus we expect
the distance to be 1, indicating it is as far away as possible from the specification.

Since ced is unbounded, we consider for the purpose of the next property, a slightly
different version, that we call ced’, defined as ced’(s1, s2) = min(1, ced(s1, s2)).2

▶ Property 12 (max variance of antitheticals). Let d : Σ∗ × Σ∗ → [0, 1] be an edit distance
function. We say that d has the property of max variance of antitheticals if d(s1, s2) = 1 if
and only if s1 and s2 have no letter in common.

We show that ned has this property while ged and ced’ do not.3

▶ Claim 13. The property of max variance of antitheticals holds for ned, but does not hold
for ged and ced’.

Proof. Consider aa and bb. Since they have no common letter, we expect their distance to
be 1. The fact that ged(aa, bb) = 2/3 shows that ged violates the property of max variance
of antitheticals.4 Consider a and aaaa. Since they do have a common letter, we expect their
distance to be strictly less than 1. The fact that ced′(a, aaaa) = 1 shows that ced’ violates
the property of max variance of antitheticals.

To see that ned has this property, note that it results in a value of 1 iff the numerator
equals the denominator, i.e., the weight of the edit path is the same as its length; which
holds iff there are no edit letters with weight zero. Since the only zero weight edit letter is
no-change, n, the value of ned is 1 if and only if the words have no common letter. ◀

For the third metric comparison property, consider two words u and v and suppose
d(u, v) = c for the concerned edit distance function d. When considering normalized edit
distance, we expect that d(ui, vi) will not exceed c since by repeating i times the edit
operations for transforming u into v we should be able to transform ui into vi and the
“average” number of edits will not change. It could be that when considering the longer
words ui and vi there is a better sequence of edits, thus we do not expect equality. As before,
our motivation for requiring this property comes from software verification. Specifically,
when considering periodic runs, generated, e.g., by code with loops, one would expect that
the distance between the periodic runs is not larger than the distance between the periods
because an error that repeats regularly should only be counted once in a normalized measure
that models average error rate.

▶ Property 14 (Non escalation of repetitions). Let d be an edit distance function. Let
u, v ∈ Σ∗. If d(uk, vk) ≤ d(u, v) for any k > 1 we say that d does not escalate repetitions.

▶ Claim 15. The ned and ged distances satisfy the property of non escalation of repetitions.
The ced and ced’ distances do not.

2 This is inspired by [7] that explains this choice as follows: “This measure is not normalized to a particular
range. Indeed, for a string of infinite length and a string of 0 length, the contextual normalized edit
distance would be infinity. But so long as the relative difference in string lengths is not too great, the
distance will generally remain below 1.0”.

3 Note that extending this property to require that d(s1, s2) equals the maximal value (be it 1 or more)
only for antitheticals, so that it can be applied to the original ced, would not make ced satisfy it since
ced(ε, a) = 1 < ∞.

4 We note that, moreover, ged(aab, b) is also 2/3 though we expect ged(aab, b) < ged(aa, bb) since the
average number of edits is smaller in the first case.

CPM 2022

17:8 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Proof. Consider u = aab and v = aaab. The following shows that ced and ced’ escalate
repetitions.

ced((aab)1, (aaab)1) = 1
4 = 0.25

ced((aab)2, (aaab)2) = 1
7 + 1

8 = 15
56 = 0.2678

ced((aab)3, (aaab)3) = 1
10 + 1

11 + 1
12 = 181

660 = 0.2742

To see that ned does not escalate repetitions, assume puv is an optimal edit path
transforming u to v. Since (puv)k, the edit path obtained by repeating k times puv, is an
edit path transforming uk to vk:

ned(uk, vk) ≤ k·wgt(puv)
k·len(puv) = wgt(puv)

len(puv) = ned(u, v).

The same reasoning shows that ged does not escalate repetitions.

ged(uk, vk) ≤ 2k·ed(u,v)
k(|u|+|v|)+k·ed(u,v) = 2·ed(u,v)

|u|+|v|+ed(u,v) = ged(u, v). ◀

The last property we consider is referred to as pure uniformity of operations. While we
assume the weights of delete, insert and substitution are uniform, the resulting edit distance
function may not be purely uniform, in the following sense. Consider two strings s1 and s2
such that s1 is shorter than s2. Then to transform s1 to s2 we would need some insertion
operations. Consider now a word s′

1 that is longer than s1 but not longer than s2 and is
obtained by padding s1 with some new letter σnew in some arbitrary set of positions. Since
insert and substitution weigh the same, we expect d(s1, s2) to be equal to d(s′

1, s2).
To define this formally we use the following notations. Let Σ′ ⊆ Σ and s ∈ Σ∗ we

use πΣ′(s) for the string obtained from s by leaving only letters in Σ′. For instance, if
Σ = {a, b, c} and s = abcbacc then π{a,b} = abba.

▶ Property 16 (pure uniformity). Let Σ, Σ1, Σ2 be disjoints alphabets, and let s1, s2 ∈ Σ∗.
We call d purely uniform if d(s1, s2) = min{d(s′

1, s′
2) | s′

i ∈ (Σ ⊎ Σi)∗ and πΣ(s′
i)=si for i ∈

{1, 2}}.

We can now show that ned satisfies this property while ged and ced do not.

▶ Claim 17. The ned distance is purely uniform. The ged and ced distances are not.

Proof. To see why ged and ced are not purely uniform consider the words s1 = a50,
s2 = a100 and s′

1 = a50c50 and note that π{a,b}(s′
1) = s1. We have that ged(a50, a100) = 2 ·

50/(150+50) = 1/2 whereas ged(a50c50, a100) = 100/(200+100) = 1/3. Considering ced, we
have that ced(a50, a100) =

∑100
i=51

1
i ≈ 0.68817 whereas ced(a50c50, a100) =

∑100
i=51

1
100 = 0.5.

Since all values are below 1, the same is true for ced’.
To show that ned is purely uniform we first note that s1, s2 ∈ Σ∗ implies s1, s2 are in

(Σ ⊎ Σ1)∗ and (Σ ⊎ Σ2)∗, respectively, thus the ≥ direction of the equality in Property 16
clearly holds. For the ≤ direction, we turn to Claim 18 below, which essentially formalized the
intuition provided regarding the alignment view of ned. Thus, given s′

1 and s′
2 establishing

the min in the RHS of Property 16, and p′ ∈ Γ∗ an edit path transforming s′
1 into s′

2, we
can build an edit path p ∈ Γ∗ transforming πΣ(s′

1) into πΣ(s′
2) such that cost(p) ≤ cost(p′).

This shows that ned(s1, s2) ≤ ned(s′
1, s′

2) for every such s′
1, s′

2. Thus ned satisfies the pure
uniformity property. ◀

▶ Claim 18. Let Σ, Σ1, Σ2 be disjoints nonempty alphabets. Let s′
1 ∈ Σ ⊎ Σ1 and s′

2 ∈ Σ ⊎ Σ2
and p′ an edit path transforming s′

1 to s′
2. There exists an edit path p transforming πΣ(s′

1) to
πΣ(s′

2) such that cost(p) ≤ cost(p′).

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:9

4 A Proof of the Triangle Inequality

This section is the main contribution of the paper – showing that ned with uniform costs
satisfies the triangle inequality.

Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. We would like to define a method cmps : Γ∗

Σ × Γ∗
Σ → Γ∗

Σ that given
the two edit paths p12, p23 returns an edit path p13 from s1 to s3. In addition, using the
notations d∗ = wgt(p∗) and l∗ = len(p∗) for ∗ ∈ {12, 23, 13}, we would like to show that
both of the following hold:

d13 ≤ d12 + d23 (1) l13 ≥ max{l12, l23} (2)

From these two equations we can deduce that the cost of the resulting path p13 is at
most the sum of costs of the given paths p12 and p23 proving that ned satisfies the triangle
inequality.

Introducing a new edit letter. To do this we need, for technical reasons, to introduce a
new edit letter, which we denote b (for blank). This is actually an abbreviation of vx, that
is, it signifies that a new letter is added and immediately deleted. We enhance the weight
and length definition from Γ to Γ ∪ {b} as follows.

wgt(γ) =


0 if γ = n

1 if γ ∈ {c, v, x}
2 if γ = b

len(γ) =
{

1 if γ ∈ {n, c, v, x}
2 if γ = b

As before we use the natural extensions of wgt and len from letters to strings and define
cost(p) to be wgt(p)/ len(p).

The compose method. We define a helper function cmpsh that produces a string over
(ΓΣ ∪ {b})∗ (rather than over Γ∗

Σ). Given such a sequence we can convert it into a sequence
over ΓΣ by deleting all b symbols. The method cmpsh : Γ∗

Σ × Γ∗
Σ → (ΓΣ ∪ {b})∗ ∪ {⊥} is

defined inductively, in Def. 19, by scanning the letters of the given edit paths p12, p23. We
say that cmpsh is well defined if it does not return ⊥. We show that, when applied on edit
paths p12 and p23 transforming some s1 into s2 and s2 into s3, respectively, cmpsh is well
defined.

▶ Definition 19. Let p12, p23 be edit paths over ΓΣ. We define cmpsh(p12, p23) inductively
as follows.

cmpsh(p12, p23) =



ε if p12 = p23 = ε (0)
xσ · cmpsh(p12[2..], p23) if p12[1] = xσ (1)
vσ · cmpsh(p12, p23[2..]) if p23[1] = vσ (2)
nσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, nσ) (3)
c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ′ , c(σ′,σ)) (4)
xσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, xσ) (5)
c(σ1,σ3) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)) (6)
xσ1 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), xσ2) (7)
c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ′,σ), nσ) (8)
vσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, nσ) (9)
vσ2 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)) (10)
b · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, xσ) (11)
⊥ otherwise (12)

CPM 2022

17:10 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

2
3

4
-

5

6

c
v

n
v

n

n

b

a

b

a
b c b b a b

(a) An optimal edit path p12 for w1, w2.

1
2

3
4

5

6

v
c

v
n

n

n

b

a

b

a
a b a b a b

(b) The composed edit path p13 using Def. 19.

1
2

3

4

-

5

6

v
n

c

n

x

n

n

b

a

b

b

c

b

a b a b a b

(c) An optimal edit path p23 for w2, w3.

p12 = cvnvnn
p23 = vncnxnn
cmpsh(p12, p23) =
= cmpsh(cvnvnn, vncnxnn)
=1 v · cmpsh(cvnvnn, ncnxnn) case (2) ε va

=2 vc · cmpsh(vnvnn, cnxnn) case (8) cb,a nb

=3 vcv · cmpsh(nvnn, nxnn) case (10) vc cc,a

=4 vcvn · cmpsh(vnn, xnn) case (3) nb nb

=− vcvnb · cmpsh(nn, nn) case (11) vb xb

=5 vcvnbn · cmpsh(n, n) case (3) na na

=6 vcvnbnn case (3) nb nb

p13 = h(cmpsh(p12, p23)) = h(vcvnbnn) = vcvnnn

Figure 1 Let w1 = abab, w2 = bcbbbab, w3 = ababab. Figure 1a shows an optimal edit path p12 between w1
to w2, Figure 1c shows an optimal edit path p23 between w2 to w3. Figure 1b shows the edit path p13 composed
from p12 and p23 using Def. 19. The edit operations in Figure 1b are marked with numbers 1 to 6. A number n in
between 1 and 6 in Figure 1a and Figure 1c signifies that the corresponding edge contributed to the construction of
the edge marked n in Figure 1b (thus for the operations corresponding to cases (1) and (2) of Def. 19, there is one
corresponding marking in Figure 1a and Figure 1c and for the others there are two). The labels − in Figure 1a and
Figure 1c correspond to case (11) dealing with adding a letter when going from s1 to s2 and deleting it when going
from s2 to s3, which yields the edit symbol b . Note that p13 is not optimal; still its cost is better than the sum of
the costs of p12 and p23.

We further show that if the resulting string is p13 then applying the function apply to
s1 and the edit path obtained from p13 by deleting all b results in the string s3. Figure 1
shows an example of the application of cmpsh on two given edit paths. In the sequel we will
further show that the desired equations (Equation 1) and (Equation 2) hold.

Note that if we reach case (12) then we cannot claim that the result is an edit path. We
thus first show that if cmpsh is applied to two edit paths p12, p23 such that apply(p12, s1) = s2,
and apply(p23, s2) = s3, then the recursive application of cmpsh(p12, p23) will never reach
the (12) case. That is, cmpsh(p12, p23) is well defined.

▶ Lemma 20. Let s1, s2, s3 ∈ Σ∗ and p12, p23 ∈ Γ∗
Σ be edit paths, such that apply(p12, s1) = s2

and apply(p23, s2) = s3. Then p13 = cmpsh(p12, p23) is well-defined.

Proof. The proof is by structural induction on cmpsh. For the base case, we have that
p12 = p23 = ε. Then p13 = ε. Thus cmpsh reaches case (0) and is well defined.

For the induction step we have p12 ̸= ε or p23 ≠ ε. If p12 = ε then it follows from
the definition of apply that s1 = s2 = ε. Given that apply(p23, ε) is defined we get that
p23[1] = vσ. From the definition of apply we have s3 = σ · apply(p23[2..], s2). Hence
s3[2..] = apply(p23[2..], s2). Therefore, cmpsh reaches case (2) and will never reach case (12)
since from the induction hypothesis it follows that cmpsh(p12, p23[2..]) is well defined.

If p23 = ε we get s2 = s3 = ε and p12[1] = xσ. Hence cmpsh reaches case (1) and similar
reasoning shows that the induction hypothesis holds for the recursive application, and thus
the result is well defined.

Otherwise the first character of p12 is not x and the first character of p23 is not v. We
consider the remaining cases, by examining first the first letter of p12.

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:11

1. Case p12[1] = vσ1 .
From the definition of apply we get that s2 = σ1 · s2[2..] and s2[2..] = apply(p12[2..], s1).

a. Subcase p23[1] = c(σ2,σ3).
From the definition of apply it follows that σ1 = σ2, s3 = σ3 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (10) and the induction hypothesis
holds for the recursive application.

b. Subcase p23[1] = nσ2 .
Similarly, from the definition of apply we get that σ1 = σ2, s3 = σ2 · s3[2..] and
furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (9) and the
induction hypothesis holds for the recursive application.

c. Subcase p23[1] = xσ2 .
Similarly, from the definition of apply we get that σ1 = σ2 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (11) and the induction hypothesis
holds for the recursive application.

2. Case p12[1] = c(σ1,σ2).
From the definition of apply we get that s1 = σ1 · s1[2..], s2 = σ2 · s2[2..] and furthermore
s2[2..] = apply(p12[2..], s1[2..]).

a. Subcase p23[1] = c(σ3,σ4).
From the definition of apply we get that σ2 = σ3, s3 = σ4 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (6) and the induction hypothesis holds
for the recursive application.

b. Subcase p23[1] = nσ3 .
Similarly, from the definition of apply it follows that σ2 = σ3, s3 = σ3 · s3[2..] and
s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (8) and the induction hypo-
thesis holds for the recursive application.

c. Subcase p23[1] = xσ3 .
Similarly, from the definition of apply we get that σ2 = σ3 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (7) and the induction hypothesis
holds for the recursive application.

3. Case p12[1] = nσ

From the definition of apply we get that s1 = σ · s1[2..], s2 = σ · s2[2..] and s2[2..] =
apply(p12[2..], s1[2..]).

a. Subcase p23[1] = c(σ1,σ2).
From the definition of apply it follows that σ = σ1, s3 = σ2 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (4) and the induction hypothesis holds
for the recursive application.

b. Subcase p23[1] = nσ2 .
Similarly, from the definition of apply it follows that σ = σ2, s3 = σ2 · s3[2..] and
furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (3) and the
induction hypothesis holds for the recursive application.

c. Subcase p23[1] = xσ2 .
Similarly, from the definition of apply we get that σ = σ2 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (5) and the induction hypothesis
holds for the recursive application. ◀

CPM 2022

17:12 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Recall that the cmpsh returns a string over ΓΣ ∪ {b} while apply first argument is
expected to be a string over ΓΣ. We can convert the string returned by cmpsh to a string
over ΓΣ by simply removing the b symbols. To make this precise we introduce the function
h : ΓΣ ∪ {b} → ΓΣ defined as follows h(γ) = ε if γ = b and h(γ) = γ otherwise; and its
natural extension h : (ΓΣ ∪ {b})∗ → Γ∗

Σ defined as h(γ1γ2 · · · γn) = h(γ1)h(γ2) · · · h(γn).
We are now ready to state that cmpsh fulfills its task, namely if it returns p13 then h(p13)

is an edit path from s1 to s3 and its weight and length satisfy Equation 1 and Equation 2.
Note that even if p12 and p23 are optimal, h(p13) is not necessarily an optimal path from
s1 to s3. Since the optimal path is no worse than h(p13), it is enough for our purpose that
h(p13) is better than going through s2.

▶ Proposition 21. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Let d∗ = wgt(p∗) and l∗ = len(p∗) for
∗ ∈ {12, 23, 12}. Then the following holds
1. apply(h(p13), s1) = s3 2. d13 ≤ d12 + d23 3. l13 ≥ max{l12, l23}

Proof. The proof is by structural induction on cmpsh. For the base case, we have that
p12 = p23 = ε. Then p13 = ε, by definition of apply we get that s1 = s2 = s3 = ε. Thus
1. apply(h(p13), s1) = apply(ε, ε) = ε = s1 = s3
2. and 3. we have that d13 = 0 ≤ d12 + d23 = 0 and l13 = 0 ≥ max{l12, l23} = 0

For the induction steps, we have p12 ̸= ε or p23 ̸= ε. Recall that p13 = cmpsh(p12, p23).
Thus, from Lem. 20 we can conclude p13 is a string over ΓΣ∪{b}. Let s′

∗ = s∗[2..], p′
∗ = p∗[2..],

d′
∗ = wgt(p′

∗), l′
∗ = len(p′

∗) for ∗ ∈ {12, 23, 13}. The proof proceeds with the case analysis of
cmpsh, going over cases (1)-(11) of Def. 19.

(1) Here p12[1] = xσ.
Then from apply we have s1 = σ · s′

1, from definition of cmpsh we have p13 = xσ · p′
13

Since s2 = apply(p12, s1) = apply(xσ ·p′
12, σ ·s′

1) = apply(p′
12, s′

1) and apply(p23, s2) = s3,
by applying the induction hypotheses on s′

1, s2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d23 3. l′

13 ≥ max{l′
12, l23}

Therefore
1. apply(h(p13), s1) = apply(xσ · h(p′

13), σ · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l23} ≥ max{1 + l′

12, l23} = max{l12, l23}.

(2) Here p23[1] = vσ.
Then from apply we have s3 = σ · s′

3, from definition of cmpsh we have p13 = vσ · p′
13.

Since apply(p23, s2) = apply(vσ · p′
23, s2) = σ · apply(p′

23, s2) = s3 = σ · s′
3 we get

apply(p′
23, s2) = s′

3 and apply(p12, s1) = s2, by applying the induction hypotheses on
s1, s2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d12 + d′
23 3. l′

13 ≥ max{l12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(vσ · h(p′

13), s1) = σ · apply(h(p′
13), s1) = σ · s′

3 = s3
2. d13 = 1 + d′

13 ≤ d12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l12, l′

23} ≥ max{l12, 1 + l′
23} = max{l12, l23}.

(3) Here (p12[1], p23[1]) = (nσ, nσ).
From the definition of cmpsh we have p13 = nσ · p′

13 and from apply we have
apply(p12, s1) = apply(nσ · p′

12, σ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:13

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3 , by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(nσ · h(p′

13), σ · s′
1) = σ · apply(h(p′

13), s′
1) = σ · s′

3 = s3
2. d13 = d′

13 ≤ d′
12 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(4) Here (p12[1], p23[1]) = (nσ′ , c(σ′,σ)).
By definition of compose we get p13 = c(σ′,σ) · p′

13. From apply we have
apply(p12, s1) = apply(nσ′ · p′

12, σ′ · s′
1) = σ′ · apply(p′

12, s′
1) = σ′ · s′

2 = s2 and
apply(p23, s2) = apply(c(σ′,σ) · p′

23, σ′ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3, by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ′,σ) ·h(p′

13), σ′ ·s′
1) = σ ·apply(h(p′

13), s′
1) = σ ·s′

3 = s3
2. d13 = 1 + d′

13 ≤ d′
12 + 1 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(5) Here (p12[1], p23[1]) = (nσ, xσ).
By definition of compose we get that p13 = xσ · p′

13. From apply we have
apply(p12, s1) = apply(nσ · p′

12, σ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(xσ · p′

23, σ · s′
2) = apply(p′

23, s′
2) = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s3 , by applying the induction hypotheses

on s′
1, s′

2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(xσ · h(p′

13), σ · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(6) Here (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)).
By definition of compose we get that p13 = c(σ1,σ3) · p′

13. From apply we have
apply(p12, s1) = apply(c(σ1,σ2) · p′

12, σ1 · s′
1) = σ2 · apply(p′

12, s′
1) = σ2 · s′

2 = s2 and
apply(p23, s2) = apply(c(σ2,σ3) · p′

23, σ2 · s′
2) = σ3 · apply(p′

23, s′
2) = σ3 · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3 , by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ1,σ3) ·h(p′

13), σ1 ·s′
1) = σ3 ·apply(h(p′

13), s′
1) = σ3s′

3 =
s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 < 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(7) Here (p12[1], p23[1]) = (c(σ1,σ2), xσ2).
By definition of compose we get that p13 = xσ1 · p′

13. From apply we have
apply(p12, s1) = apply(c(σ1,σ2) · p′

12, σ1 · s′
1) = σ2 · apply(p′

12, s′
1) = σ2 · s′

2 = s2 and
apply(p23, s2) = apply(xσ2 · p′

23, σ2 · s′
2) = apply(p′

23, s′
2) = s3.

CPM 2022

17:14 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s3 , by applying the induction hypotheses

on s′
1, s′

2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(xσ1 · h(p′

13), σ1 · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 < 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(8) Here (p12[1], p23[1]) = (c(σ′,σ), nσ).
By definition of compose we get that p13 = c(σ′,σ) · p′

13. From apply we have
apply(p12, s1) = apply(c(σ′,σ) · p′

12, σ′ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3, by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ′,σ) ·h(p′

13), σ′ ·s′
1) = σ ·apply(h(p′

13), s′
1) = σ ·s′

3 = s3
2. d13 = 1 + d′

13 ≤ 1 + d′
12 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(9) Here (p12[1], p23[1]) = (vσ, nσ).
By definition of compose we get that p13 = vσ · p′

13. From apply we have
apply(p12, s1) = apply(vσ · p′

12, s1) = σ · apply(p′
12, s1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s′
3, by applying the induction hypotheses

on s1, s′
2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

1. apply(h(p13), s1) = apply(vσ · h(p′
13), s1) = σ · apply(h(p′

13), s1) = σ · s′
3 = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(10) Here (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)).
By definition of compose we get that p13 = vσ2 · p′

13. From apply we have
apply(p12, s1) = apply(vσ1 · p′

12, s1) = σ1 · apply(p′
12, s1) = σ1 · s′

2 = s2 and
apply(p23, s2) = apply(c(σ1,σ2) · p′

23, σ1 · s′
2) = σ2 · apply(p′

23, s′
2) = σ2 · s′

3 = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s′
3, by applying the induction hypotheses

on s1, s′
2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(vσ2 · h(p′

13), s1) = σ2 · apply(h(p′
13), s1) = σ2 · s′

3 = s3
2. d13 = 1 + d′

13 ≤ 1 + d′
12 + d′

23 < 1 + d′
12 + 1 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(11) Here (p12[1], p23[1]) = (vσ, xσ).
By definition of compose we get that p13 = b · p′

13. From apply we have
apply(p12, s1) = apply(vσ · p′

12, s1) = σ · apply(p′
12, s1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(xσ · p′

23, σ · s′
2) = apply(p′

23, s′
2) = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s3, by applying the induction hypotheses
on s1, s′

2, s3 we get

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:15

1. apply(h(p′
13), s1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(h(p′

13), s1) = s3

2. d13 = 2 + d′
13 ≤ 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 2 + l′
13 > 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}. ◀

The sequel makes use of the following lemmas regarding non-negative integers d and l.

▶ Lemma 22. If d ≤ l then d+1
l+1 ≥ d

l

Proof. d+1
l+1 = l(d+1)

l(l+1) ≥ d(l+1)
l(l+1) = d

l . ◀

▶ Lemma 23. If d13 ≤ d12 + d23 and l13 ≥ max{l12, l23} then d12
l12

+ d23
l23

≥ d13
l13

.

Proof. d13
l13

≤ d12+d23
l13

= d12
l13

+ d23
l13

≤ d12
l12

+ d23
l23

. ◀

Recall that cost is defined as wgt divided by len. Let p13 be the string obtained by
compose in Prop. 21. Then by items 2 and 3 we know that

wgt(p13) ≤ wgt(p12) + wgt(p23) (3) len(p13) ≥ max{len(p12), len(p23)} (4)

We can thus conclude from Lem. 23 that the cost of the path obtained by cmpsh is at most
the sum of the costs of the edit paths from which it was obtained, as stated in the following
corollary.

▶ Corollary 24. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Then cost(p13) ≤ cost(p12) + cost(p23).

We are not done yet, since p13 contains b symbols, and thus it is not really an edit
path. Let k be the number of b’s in p13. Then wgt(p13) = 2k + wgt(h(p13)) and len(p13) =
2k + len(h(p13)), applying 2k times Lem. 22, we conclude that wgt(p13)

len(p13) ≥ wgt(h(p13))
len(h(p13)) .

▶ Corollary 25. cost(p) ≥ cost(h(p))

▶ Proposition 26. The normalized edit distance obeys the triangle inequality.

Proof. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be optimal edit paths. That is, apply(p12, s1) = s2
and apply(p23, s2) = s3 and ned(s1, s2) = cost(p12) and ned(s2, s3) = cost(p23). Let
p13 = cmpsh(p12, p23). From Cor. 24 we get that cost(p13) ≤ cost(p12) + cost(p23). From
Prop. 21 it holds that h(p13) is a valid edit path over ΓΣ. From Cor. 25 we get that
cost(h(p13)) ≤ cost(p13). By definition of ned as it chooses the minimal cost of an edit path,
ned(s1, s3) ≤ cost(h(p13)). To conclude, we get ned(s1, s3) ≤ ned(s1, s2) + ned(s2, s3). ◀

▶ Theorem 27. The Normalized Levenshtein Distance ned (provided in Def. 4) with uniform
costs (i.e., where the cost of all inserts, deletes and swaps are some constant c) is a metric
on the space Σ∗.

Proof. The first two conditions of being a metric follow from Prop. 7. The third condition,
namely triangle inequality, follows from Prop. 26. ◀

CPM 2022

17:16 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

5 Conclusions

We closed a gap regarding the normalized version of the editing distance proposed by Marzal
and Vidal, denoted here as ned. Marzal and Vidal noted that ned is not a metric in
general and left open the question of whether it is a metric in case all weights are equal.
This open point, spawned two versions of a normalized editing distance that have been
proven to be metrics – ged and ced. We proved that, with uniform weights, ned is also a
metric. To pinpoint the benefits of ned over the other distances we have defined a number of
properties that ned maintains and ced and/or ged do not. The motivation for formulating
the properties as we did comes from formal verification, so is our interest in uniform weights.

References
1 Abdullah N Arslan and Omer Egecioglu. Efficient algorithms for normalized edit distance.

Journal of Discrete Algorithms, 1(1):3–20, 2000.
2 Colin de la Higuera and Luisa Micó. A contextual normalised edit distance. In Proceedings of

the 24th International Conference on Data Engineering Workshops, ICDE 2008, April 7-12,
2008, Cancún, Mexico, pages 354–361. IEEE Computer Society, 2008.

3 Emmanuel Filiot, Nicolas Mazzocchi, Jean-François Raskin, Sriram Sankaranarayanan, and
Ashutosh Trivedi. Weighted transducers for robustness verification. In 31st International
Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria
(Virtual Conference), pages 17:1–17:21, 2020.

4 Dana Fisman, Joshua Grogin, Oded Margalit, and Gera Weiss. The normalized edit distance
with uniform operation costs is a metric. CoRR, abs/2201.06115, 2022. arXiv:2201.06115.

5 Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710, February 1966. Doklady Akademii Nauk
SSSR, V163 No4 845-848 1965.

6 Yujian Li and Bi Liu. A normalized levenshtein distance metric. IEEE Trans. Pattern Anal.
Mach. Intell., 29(6):1091–1095, 2007.

7 Christopher C. Little. https://abydos.readthedocs.io/en/latest/abydos.distance.
html#abydos.distance.HigueraMico.

8 Andrés Marzal and Enrique Vidal. Computation of normalized edit distance and applications.
IEEE Trans. Pattern Anal. Mach. Intell., 15(9):926–932, 1993.

9 Enrique Vidal, Andrés Marzal, and Pablo Aibar. Fast computation of normalized edit distances.
IEEE Trans. Pattern Anal. Mach. Intell., 17(9):899–902, 1995. doi:10.1109/34.406656.

A Appendix

We provide here two proofs that we could not fit in the body of the paper.

▶ Proposition 7 (restated). Let s, s1, s2 ∈ Σ∗. Then
1. ned(s, s) = 0
2. if s1 ̸= s2 then ned(s1, s2) > 0

3. ned(s1, s2) = ned(s2, s1)

Proof. First clearly, if s ̸= ε then n|s| is an edit path from s to s, and thus ned(s, s) = 0
|s| = 0.

Second, if s1 ̸= s2 then any edit path from s1 to s2 must contain at least one non-n character.
Thus, its cost is d

l for some d > 0, implying ned(s1, s2) > 0. Third, assume p12 = γ1γ2 . . . γk

is an edit path from s1 to s2. Define p12 = γ1 γ2 . . . γk where

γ =


nσ if γ = nσ

c(σ2,σ1) if γ = c(σ1,σ2)
xσ if γ = vσ

vσ if γ = xσ

http://arxiv.org/abs/2201.06115
https://abydos.readthedocs.io/en/latest/abydos.distance.html#abydos.distance.HigueraMico
https://abydos.readthedocs.io/en/latest/abydos.distance.html#abydos.distance.HigueraMico
https://doi.org/10.1109/34.406656

D. Fisman, J. Grogin, O. Margalit, and G. Weiss 17:17

Then p12 is an edit path from s2 to s1 and the cost they induce is the same. Hence, if p12 is
a minimal edit path from s1 to s2 then p12 is a minimal edit path from s2 to s1 implying
ned(s1, s2) = ned(s2, s1). ◀

▶ Claim 18 (restated). Let Σ, Σ1, Σ2 be disjoints nonempty alphabets. Let s′
1 ∈ Σ ⊎ Σ1

and s′
2 ∈ Σ ⊎ Σ2 and p′ an edit path transforming s′

1 to s′
2. There exists an edit path p

transforming πΣ(s′
1) to πΣ(s′

2) such that cost(p) ≤ cost(p′).

Proof. Let γ ∈ Γ, p′ ∈ Γ∗
Σ∪⊎Σ1⊎Σ2

. We define f : ΓΣ⊎Σ1⊎Σ2 → ΓΣ as follows

f(γ) =


lσ if γ = lσ for some l ∈ {v, x, n} and σ ∈ Σ
cσ,σ′ if γ = cσ,σ′ and σ, σ′ ∈ Σ
vσ if γ = cσ1,σ and σ1 ∈ Σ1, σ ∈ Σ
xσ if γ = cσ,σ2 and σ ∈ Σ, σ2 ∈ Σ2
ε otherwise

Let p = f(p′) where f : Γ∗
Σ⊎Σ1⊎Σ2

→ Γ∗
Σ is the natural extension of f defined by f(γ1 . . . γm) =

f(γ1) . . . f(γn).
It is not hard to see that p is an edit path from πΣ(s′

1) to πΣ(s′
2). Since all removed edit

operations have cost 1 we get from Lem. 22 that cost(p) ≤ cost(p′) ◀

CPM 2022

	1 Introduction
	2 Preliminaries
	3 Properties of the various normalized edit distance functions
	3.1 Other edit distance functions
	3.2 Comparison to other edit distance functions

	4 A Proof of the Triangle Inequality
	5 Conclusions
	A Appendix

