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Abstract8

We study the learnability of symbolic finite state automata, a model shown useful in many applications9

in software verification. The state-of-the-art literature on this topic follows the query learning10

paradigm, and so far all obtained results are positive. We provide a necessary condition for efficient11

learnability of SFAs in this paradigm, from which we obtain the first negative result. The main focus12

of our work lies in the learnability of SFAs under the paradigm of identification in the limit using13

polynomial time and data. We provide a necessary condition and a sufficient condition for efficient14

learnability of SFAs in this paradigm, from which we derive a positive and a negative result.15
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1 Introduction23

Symbolic finite state automata, SFAs for short, are an automata model in which transitions24

between states correspond to predicates over a domain of concrete alphabet letters. Their25

purpose is to cope with situations where the domain of concrete alphabet letters is large or26

infinite. As an example for automata over finite large alphabets consider automata over the27

alphabet 2AP where AP is a set of atomic propositions; these are used in model checking [21].28

Another example, used in string sanitizer algorithms [32], are automata over predicates on29

the Unicode alphabet which consists of over a million symbols. An infinite alphabet is used30

for example in event recording automata, a determinizable class of timed automata [2] in31

which an alphabet letter consists of both a symbol from a finite alphabet, and a non-negative32

real number. Formally, the transition predicates in an SFA are defined wrt. an effective33

Boolean algebra as defined in §2.34

SFAs have proven useful in many applications [23, 44, 10, 34, 45, 39] and consequently35

have been studied as a theoretical model of automata. Many algorithms for natural operations36

and decision problems regarding these automata already exist in the literature, in particular,37

Boolean operations, determinization, and emptiness [49]; minimization [22]; and language38

inclusion [35]. Recently the subject of learning automata in verification has also attracted39

attention, as it has been shown useful in many applications, see Vaandrager’s survey [48].40

There already exists substantial literature on learning restricted forms of SFAs [31, 36, 11,41

37, 19], as well as general SFAs [25, 9], and even non-deterministic residual SFAs [20]. For42

other types of automata over infinite alphabets, [33] suggests learning abstractions, and [47]43

presents a learning algorithm for deterministic variable automata. All these works consider44
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27:2 Inferring Symbolic Automata

the query learning paradigm, and provide extensions to Angluin’s L∗ algorithm for learning45

DFAs using membership and equivalence queries [4]. Unique to these works is the work [9]46

which studies the learnability of SFAs taking as a parameter the learnability of the underlying47

algebras, providing positive results regarding specific Boolean algebras.48

While Argyros and D’Antoni’s work [9] is a major advancement towards a systematic49

way for obtaining results on learnability of SFAs, as it examines the learnability of the50

underlying algebra, the obtained result allows inferring only positive results, as it relies on a51

specific query learning algorithm, and does not provide means for obtaining a negative result52

regarding query learning of SFAs over certain algebras. We provide a necessary condition for53

efficient learnability of SFAs in the query learning paradigm. From this result we obtain a54

negative result regarding query learning of SFAs over the propositional algebra. This is, to55

the best of our knowledge, the first negative result on learning SFAs with membership and56

equivalence queries and thus gives useful insights into the limitations of the L∗ framework in57

this context.58

The main focus of our work lies on the learning paradigm of identification in the limit59

using polynomial time and data, or its strengthened version efficient identifiability. We60

provide a necessary condition a class of SFAs M should meet in order to be identified in the61

limit using polynomial time and data, and a sufficient condition a class of SFAs M should62

meet in order to be efficiently identifiable. These conditions are expressed in terms of the63

existence of certain efficiently computable functions, which we call GeneralizeM, ConcretizeM,64

and DecontaminateM. We then provide positive and negative results regarding the learnability65

of specific classes of SFAs in this paradigm. In particular, we show that the class of SFAs66

over any monotonic algebras is efficiently identifiable.67

2 Preliminaries68

2.1 Effective Boolean Algebra69

A Boolean Algebra A can be represented as a tuple (D,P, J·K,⊥,⊤,∨, ∧,¬) where D is a set70

of domain elements; P is a set of predicates closed under the Boolean connectives, where71

⊥,⊤ ∈ P; the component J·K : P → 2D is the so-called semantics function. It satisfies72

the following three requirements: (i) J⊥K = ∅, (ii) J⊤K = D, and (iii) for all φ,ψ ∈ P,73

Jφ ∨ ψK = JφK ∪ JψK, Jφ ∧ ψK = JφK ∩ JψK, and J¬φK = D \ JψK. A Boolean Algebra is74

effective if all the operations above, as well as satisfiability, are decidable. Henceforth, we75

implicitly assume Boolean algebras to be effective.76

One way to define a Boolean algebra is by defining a set P0 of atomic formulas that77

includes ⊤ and ⊥ and obtaining P by closing P0 for conjunction, disjunction and negation.78

For a predicate ψ ∈ P we say that ψ is atomic if ψ ∈ P0. We say that ψ is basic if ψ is a79

conjunction of atomic formulas.80

We now introduce two Boolean algebras that are discussed extensively in the paper.81

The Interval Algebra is the Boolean algebra in which the domain D is the set Z∪{−∞,∞}82

of integers augmented with two special symbols with their standard semantics, and the set83

of atomic formulas P0 consists of intervals of the form [a, b) where a, b ∈ D and a ≤ b. The84

semantics associated with intervals is the natural one: J[a, b)K = {z ∈ D | a ≤ z and z < b}.85

The Propositional Algebra is defined wrt. a set AP = {p1, p2, . . . , pk} of atomic proposi-86

tions. The set of atomic predicates P0 consists of the atomic propositions and their negations87

as well as ⊤ and ⊥. The domain D consists of all the possible valuations for these propositions,88
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[0, 100) [0, 200)

[100, ∞) [200, ∞)
Figure 1 The SFA M over AN

thus it is Bk where B= {0, 1}. The semantics of an atomic predicate p is given by JpiK =89

{v ∈ Bk | v[i] = 1}, and similarly J¬piK = {v ∈ Bk | v[i] = 0}.190

2.2 Symbolic Automata91

A symbolic finite automaton (SFA) is a tuple M = (A, Q, qι, F,∆) where A is a Boolean92

algebra, Q is a finite set of states, qι ∈ Q is the initial state, F ⊆ Q is the set of final states,93

and ∆ ⊆ Q× PA ×Q is a finite set of transitions, where PA is the set of predicates of A.94

We use the term letters for elements of D where D is the domain of A and the term95

words for elements of D∗. A run of M on a word a1a2 . . . an is a sequence of transitions96

⟨q0, ψ1, q1⟩⟨q1, ψ2, q2⟩ . . . ⟨qn−1, ψn, qn⟩ satisfying that ai ∈ JψiK, that ⟨qi, ψi+1, qi+1⟩ ∈ ∆ and97

that q0 = qι. Such a run is said to be accepting if qn ∈ F . A word w = a1a2 . . . an is said to be98

accepted by M if there exists an accepting run of M on w. The set of words accepted by an SFA99

M is denoted L(M). We use L̂(M) for the set {⟨w, 1⟩ | w ∈ L(M)} ∪ {⟨w, 0⟩ | w /∈ L(M)}.100

An SFA is said to be deterministic if for every state q ∈ Q and every letter a ∈ D we have101

that |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≤ 1, namely from every state and every concrete letter there102

exists at most one transition. It is said to be complete if |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≥ 1 for103

every q ∈ Q and a ∈ D, namely from every state and every concrete letter there exists at least104

one transition. It is not hard to see that, as is the case for finite automata (over concrete105

alphabets), non-determinism does not add expressive power but does add succinctness. When106

A is deterministic we use ∆(q, w) to denote the state A reaches on reading word w from107

state q. If ∆(qι, w) = q then w is termed an access word to state q.108

▶ Example 1. Consider the SFA M given in Fig.1. It is defined over the algebra AN which109

is the interval algebra restricted to the domain D = N ∪ {∞}. The language of M is the set110

of all words over D of the form w1 · d · w2 where w1 is some word over the domain D, the111

letter d satisfies 0 ≤ d < 100 and all letters of the word w2 are numbers smaller than 200.112

3 Learning SFAs113

In grammatical inference, loosely speaking, we are interested in learning a class of languages114

L over an alphabet Σ, from examples which are words over Σ. Examples for classes of115

languages can be the set of regular languages, the set of context-free languages, etc. A116

learning algorithm, aka a learner, is expected to output some concise representation of the117

language from a class of representations R for the class C. For instance, in learning the118

class Lreg of regular languages one might consider the class Rdfa of DFAs, or the class119

Rlin of right linear grammars, since both are capable of expressing all regular languages.2120

We often say that a class of representations R is learnable (or not) when we mean that a121

class of languages L is learneable (or not) via the class of representations R. Complexity of122

learning an unknown language L ∈ L via R is typically measured wrt. the size of the smallest123

1 In this case a basic formula is a monomial.
2 The class of regular languages was shown learnable via various representations including DFAs [4],

NFAs [16], and AFAs (alternating finite automata) [7].
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27:4 Inferring Symbolic Automata

representation RL ∈ R for L. For instance, when learning Lreg via Rdfa a learner is expected124

to output a DFA for an unknown language in time that is polynomial in the number of states125

of the minimal DFA for L.126

In our setting we are interested in learning regular languages using as a representation127

classes of SFAs over a certain algebra. To measure complexity we must agree on how to128

measure the size of an SFA. For DFAs, the number of states is a common measure of size,129

since the DFA can be fully described by a representation of size polynomial in the number of130

states. In the case of SFA the situation is different, as the size of the predicates labeling the131

transitions can vary greatly. In fact, if we measure the size of a predicate by the number of132

nodes in its parse DAG, then the size of a formula can grow unboundedly. The size and133

structure of the predicates influence the complexity of their satisfiability check, and thus the134

complexity of the corresponding algorithms. Another thing to note is that there might be a135

trade-off between the size of the transition predicates and the number of transitions; e.g. a136

predicate of the form ψ1 ∨ ψ2 . . . ∨ ψk can be replaced by k transitions, each one labeled by137

one ψi for 1 ≤ i ≤ k.138

The literature defines an SFA as normalized if for every two states q and q′ there exists139

at most one transition from q to q′. This definition prefers fewer transitions over potentially140

complicated predicates. By contrast, preferring simple transitions at the cost of increasing141

the number of transitions, leads to neat SFAs. An SFA is termed neat if all transition142

predicates are basic predicates. In [27] we proposed to measure the size of an SFA by three143

parameters: the number of states (n), the maximal out-degree of a state (m) and the size of144

the most complex predicate (l); we then analyzed the complexity of the standard operations145

on SFAs, with particular attention to the mentioned special forms. Another important factor146

regarding size and canonical forms of SFAs, is the underlying algebra, specifically, whether it147

is monotonic or not.148

Monotonicity A Boolean algebra A over domain D is said to be monotonic if there exists a149

total order < on the elements of D, there exist two elements d−∞, d∞ such that d−∞ ≤ d and150

d ≤ d∞ for all d ∈ D, and an atomic predicate ψ ∈ P0 can be associated with two concrete151

values a and b such that JψK = {d ∈ D | a ≤ d < b}. The interval algebra (given in §2.1) is152

clearly monotonic, as is the similar algebra obtained using R (the real numbers) instead of Z153

(the integers). On the other hand, the propositional algebra is clearly non-monotonic.154

Learning Paradigms The exact definition regarding learnability of a class depends on the155

learning paradigm. In this work we consider two widely studied paradigms: learning with156

membership and equivalence queries, and identification in the limit using polynomial time157

and data. Their definitions are provided in the respective sections.158

Non-Trivial Classes of SFAs In the sequel we would like to prove results regarding non-trvial159

classes of SFAs, which are defined as follows.160

▶ Definition 2. A class of SFAs M over a Boolean Algebra A with a set of predicates P is161

termed non-trivial if for every predicate φ ∈ P the SFA Mφ = (A, {qι, qac, qrj}, qι, {qac},∆)162

where ∆ = {⟨qι, φ, qac⟩, ⟨qι,¬φ, qrj⟩, ⟨qrj ,⊤, qrj⟩, ⟨qac,⊤, qrj⟩} is in M. Note that Mφ accepts163

only words of length one consisting of a concrete letter satisfying φ, and it is minimal among164

all complete deterministic SFAs accepting this language (minimal in both number of states165

and number of transitions).166
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4 Efficient Identifiability167

While in active learning (e.g. query learning) the learner can select any word and query168

about its membership in the unknown language, in passive learning the learner is given a set169

of words, and for each word w in the set, a label bw indicating whether w is in the unknown170

language or not. Formally, a sample for a language L is a finite set S consisting of labeled171

examples, that is, pairs of the form ⟨w, bw⟩ where w is a word and bw ∈ {0, 1} is its label,172

satisfying that bw = 1 if and only if w ∈ L. The words that are labeled 1 are termed positive173

words, and those that are labeled 0 are termed negative words. Note that if L is recognized174

by M, we have that S ⊆ L̂(M) (as defined in §.2.2). If S is a sample for L we often say175

that S agrees with L. Given two words w,w′, we say that w and w′ are not equivalent wrt.176

S, denoted w ̸∼S w′, iff there exists z such that ⟨wz, b⟩, ⟨w′z, b′⟩ ∈ S and b ̸= b′. Otherwise177

we say that w and w′ are equivalent wrt. S, and write w ∼S w′.178

Given a sample S for a language L over a concrete domain D, it is possible to construct a179

DFA that agrees with S in polynomial time. Indeed one can create the prefix-tree automaton,180

a simple automaton that accepts all and only the positively labeled words in the sample.181

Clearly the constructed automaton may not be the minimal automaton that agrees with182

S. There are several algorithms, in particular the popular RPNI [42], that minimize the183

prefix-tree automaton, and due to state merging may accept an infinite language. Obviously184

though, this procedure is not guaranteed to return an automaton for the unknown language,185

as the sample may not provide sufficient information. For instance if L = aL1 ∪ bL2 and186

the sample contains only words starting with a, there is no way for the learner to infer L2187

and hence also L correctly. One may thus ask, given a language L, what should a sample188

contain in order for a passive learning algorithm to infer L correctly, and can such sample be189

of polynomial size with respect to a minimal representation (e.g., a DFA) for the language.190

One approach to answer these questions is captured in the paradigm of identification in191

the limit using polynomial time and data. This model was proposed by Gold [28], who also192

showed that it admits learning of regular languages represented by DFAs. We follow de la193

Higuera’s more general definition [24].3 This definition requires that for any language L in a194

class of languages L represented by R, there exists a sample SL of size polynomial in the195

size of the smallest representation R ∈ R of L (e.g., the smallest DFA for L), such that a196

valid learner can infer the unknown language L from the information contained in SL. The197

set SL is then termed a characteristic sample.4 Here, a valid learner is an algorithm that198

learns the target language exactly and efficiently. In particular, a valid learner produces in199

polynomial time a representation that agrees with the provided sample. The learner also has200

to correctly learn the unknown language L when given the characteristic sample SL as input.201

Moreover, if the input sample S subsumes SL yet is still consistent with L, the additional202

information in the sample should not “confuse” the learner; the latter still has to output203

a correct representation for L. (Intuitively, this requirement precludes situations in which204

the sample consists of some smart encoding of the representation that the learner simply205

deciphers. In particular, the learner will not be confused if an adversary “contaminates” the206

3 This paradigm may seem related to conformance testing. The relation between conformance testing for
Mealy machines and automata learning of DFAs has been explored in [14].

4 De la Higuera’s notion of characteristic sample is a core concept in grammatical inference, for various
reasons. Firstly, it addresses shortcomings of several other attempts to formulate polynomial-time
learning in the limit [5, 43]. Secondly, this notion has inspired the design of popular algorithms for
learning formal languages such as, for example, the RPNI algorithm [42]. Thirdly, it was shown to bear
strong relations to a classical notion of machine teaching [30]; models of the latter kind are currently
experiencing increased attention in the machine learning community [50].

CSL 2022



27:6 Inferring Symbolic Automata

characteristic sample by adding labeled examples for the target language.) We provide the207

formal definition after the following informal example.208

▶ Example 3. For the class of DFAs, let us consider the regular language L = a∗ over the209

alphabet {a, b}. Further, consider a sample set S = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨b, 0⟩, ⟨bb, 0⟩, ⟨ba, 0⟩} for L.210

There is a valid learner for the class of all DFAs that uses the sample S as a characteristic211

sample for L. By definition, such a learner has to output a DFA for L when fed with S, but212

also has to output equivalent DFAs whenever given any superset of S as input, as long as this213

superset agrees with L. Naturally, the sample S is also consistent with the regular language214

L′ = {ϵ, a}. However, this does not pose any problem, since the same learner can use a215

characteristic sample for L′ that disagrees with L, for example, S ′ = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨aa, 0⟩}.216

When defining a system of characteristic samples like that, the core requirement is that the217

size of a sample be bounded from above by a function that is polynomial in the size of the218

smallest DFA for the respective target language.219

▶ Definition 4 (identification in the limit using polynomial time and data). A class of languages220

L is said to be identified in the limit using polynomial time and data via representations in221

a class R if there exists a learning algorithm A such that the following requirements are met.222

1. Given a finite sample S of labeled examples, A returns a hypothesis R ∈ R that agrees223

with S in polynomial time.224

2. For every language L ∈ L, there exists a sample SL, termed a characteristic sample, of225

size polynomial in the minimal representation R ∈ R for L such that the algorithm A226

returns a correct hypothesis when run on any sample S for L that subsumes SL.227

Note that the first condition ensures polynomial time and the second polynomial data.228

However, the latter is not a worst-case measure; the algorithm may fail to return a correct229

hypothesis on arbitrarily large finite samples (if they do not subsume a characteristic set).230

Note also that the definition does not require the existence of an efficient algorithm that231

constructs a characteristic sample for each language in the underlying class. When such232

an algorithm is also available we say that the class is efficiently identifiable. In the full233

version of the paper we provide an example of a class of languages that possesses polynomial-234

size characteristic sets, yet without the ability to construct such sets effectively. Since we235

are concerned with learning classes of automata we formulate the definition of efficient236

identification directly over classes of automata.237

▶ Definition 5 (efficient identification). A class of automata M over an alphabet Σ is said to238

be efficiently identified if the following two requirements are met.239

1. There exists a polynomial time learning algorithm Infer : 2(Σ∗×{0,1}) → M such that, for240

any sample S, we have S ⊆ L̂(Infer(S)).241

2. There exists a polynomial time algorithm Char : M → 2(Σ∗×{0,1}) such that, for every242

M ∈ M and every sample S satisfying Char(M) ⊆ S ⊆ L̂(M), the automaton Infer(S)243

recognizes the same language as M.244

When we apply this definition for a class of SFAs over a Boolean algebra A with domain245

D and predicates P, the characteristic sample is defined over the concrete set of letters D246

rather than the set of predicates P because this is the alphabet of the words accepted by247

an SFA (inferring an SFA from a set of words labeled by predicates can be done using the248

methods for inferring DFAs, by considering the alphabet to be the set of predicates).249

Throughout this section we study whether a class of SFAs M is efficiently identifiable.250

That is, we are interested in the existence of algorithms InferM and CharM satisfying the251

requirements of Def.5. In §4.1 we provide a necessary condition for a non-trivial class of SFAs252

to be identified in the limit using polynomial time and data. In §4.2 we provide a sufficient253
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condition for a non-trivial class of SFAs to be efficiently identifiable. On the positive side,254

we show in §4.3 that the class of SFAs over the interval algebra is efficiently identifiable. On255

the negative side, we show in §4.4 that SFAs over the general propositional algebra cannot256

be identified in the limit using polynomial time and data.257

Efficient Identification of DFAs258

Before investigating efficient identification of SFAs, it is worth noting that DFAs are efficiently259

identifiable. We state a result that provides more details about the nature of these algorithms,260

since we need it later, in §.4.3, to provide our positive result. Intuitively, it says that there261

exists a valid learner such that if D is a minimal DFA recognizing a certain language L then262

the learner can infer L from a characteristic sample consisting of access words to each state of263

D and their extensions with distinguishing words (words showing each pair of states cannot264

be merged) as well as one letter extensions of the access words that are required to retrieve265

the transition relation.266

▶ Theorem 6 ([42]). I. The class of DFAs is efficiently identifiable via procedures CharDFA267

and InferDFA. II. Furthermore, these procedures satisfy that if D is a minimal and complete268

DFA and CharDFA(D) = SD then the following holds:269

1. SD contains a prefix-closed set A of access words. Moreover, A can be chosen to contain270

only lex-access words, i.e., only the lexicographically smallest access word for each state.271

2. For every u1, u2 ∈ A it holds that u1 ̸∼SD u2.272

3. For every u, v ∈ A and σ ∈ Σ, if ∆(qι, uσ) ̸= ∆(qι, v) then uσ ̸∼SD v.273

We briefly describe CharDFA and InferDFA.274

The algorithm CharDFA works as follows. It first creates a prefix-closed set of access275

words to states. This can be done by considering the graph of the automaton and running an276

algorithm for finding a spanning tree from the initial state. Choosing one of the letters on each277

edge, the access word for a state is obtained by concatenating the labels on the unique path278

of the obtained tree that reaches that state. If we wish to work with lex-access words, we can279

use a depth-first search algorithm that spans branches according to the order of letters in Σ,280

starting from the smallest. The labels on the paths of the spanning tree constructed this way281

will form the set of lex-access words. Let S be the set of access words (or lex-access words).282

Next the algorithm turns to find a distinguishing word vi,j for every pair of state si, sj ∈ S283

(where si ̸= sj). It holds that any pair of states of the minimal DFA has a distinguishing284

word of size quadratic in the size of the DFA. Let E be the set of all such distinguishing285

words. Then the algorithm returns the set SD = {⟨w,D(w)⟩ | w ∈ (S ·E) ∪ (S · Σ ·E)} where286

D(w) is the label D gives w (i.e. 1 if it is accepted, and 0 otherwise). It is easy to see that287

SD satisfies the properties of Thm.6.288

The algorithm InferDFA, given a sample of words S, infers from it in polynomial time289

a DFA that agrees with S. Moreover, if S subsumes the characteristic set SD of a DFA D290

then InferDFA returns a DFA that recognizes D. Let W be the set of words in the given291

sample S (without their labels). Let R be the set of prefixes of W and C the set of suffixes292

of W . Note that ϵ ∈ R and ϵ ∈ C. Let r0, r1, . . . be some enumeration of R and c0, c1, . . .293

some enumeration of C where r0 = c0 = ϵ. The algorithm builds a matrix M of size |R| × |C|294

whose entries take values in {0, 1, ?}, and sets the value of entry (i, j) as follows. If ricj is295

not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled 1 in S. We get296

that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different than ? we have297

that M(i, k) = M(j, k). The algorithm sets R0 = {ϵ}. Once Ri is constructed, the algorithm298
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27:8 Inferring Symbolic Automata

tries to establish whether for r ∈ Ri and σ ∈ Σ, rσ is distinguished from all words in Ri. It299

does so by considering all other words r′ ∈ Ri and checking whether r ∼S r′. If rσ is found300

to be distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm proceeds301

until no new words are distinguished. Let k be the iteration of convergence. If not all words302

in Rk are in W (that is M(i, 0) =? for some ri ∈ Rk), the algorithm returns the prefix-tree303

automaton. Otherwise, the states of the constructed DFA are set to be the words in Rk. The304

initial state is ϵ and a state ri is classified as accepting iff M(i, 0) = 1 (recall that the entry305

M(i, 0) stands for the value of ri · ϵ in S). To determine the transitions, for every r ∈ Rk306

and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be distinguished307

from rσ. The algorithm then adds a transition from r on σ to r′.308

4.1 Necessary Condition309

We make use of the following definitions. A sequence ⟨Γ1, . . . ,Γm⟩ consisting of sets of concrete310

letters Γi ⊆ D is termed a concrete partition of D if the sets are pairwise disjoint (namely311

Γi ∩ Γj = ∅ for every i ̸= j). Note that we do not require that in addition
⋃

1≤i≤k Γi = D.312

We use Πconc(D,m) to define the set of all concrete partitions of size m over D. A sequence313

of predicates ⟨ψ1, . . . , ψm⟩ over a Boolean algebra A on a domain D is termed a predicate314

partition if JψiK ∩ JψjK = ∅ for every i ≠ j, and in addition
⋃

≤i≤kJψiK = D. That is, here we315

do require the assignments to the predicates cover the domain. We use Πpred(P,m) to define316

the set of all predicate partitions of size m over P.317

▶ Definition 7. A function fg from a concrete partition to a predicate partition is termed318

generalizing if fg(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψk⟩ implies k = m and JψiK ⊇ Γi for all319

1 ≤ i ≤ m.320

A function fc from a predicate partition to a concrete partition is termed concretizing if321

fc(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γk⟩ implies k = m and Γi ⊆ JψiK for all 1 ≤ i ≤ m.322

Note that fg and fc are variadic functions (i.e. can take any number of parameters). We323

can define their k-adic versions as those that work only on partitions of size k. In particular,324

their dyadic versions work only on partitions of size 2.325

We say that fg (resp. fc) is efficient if it can be computed in polynomial time. Note that326

if fc is efficient then the sets Γi in the constructed concrete partition are of polynomial size.327

We are now ready to provide a necessary condition for identifiability in the limit using328

polynomial time and data.329

▶ Theorem 8. A necessary condition for a non-trivial class of SFAs MA over a Boolean330

algebra A to be identified in the limit using polynomial time and data is that there exist331

efficient dyadic concretizing and generalizing functions, ConcretizeA : Πpred(P, 2) → Πconc(D, 2)332

and GeneralizeA : Πconc(D, 2) → Πpred(P, 2), satisfying that333

if ConcretizeA(⟨ψ1, ψ2⟩) = ⟨Γ1,Γ2⟩334

and GeneralizeA(⟨Γ′
1,Γ′

2⟩) = ⟨φ1, φ2⟩335

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ 2336

then JφiK = JψiK for every 1 ≤ i ≤ 2.337

Proof. Assume that MA is identified in the limit using polynomial time and data. That338

is, there exist two algorithms CharSFA : MA → 2D∗×{0,1} and InferSFA : 2D∗×{0,1} →339

MA satisfying the requirements of Def.4. We show that efficient dyadic concretizing and340

generalizing functions do exist.341

We start with the definition of ConcretizeA . Let ⟨φ1, φ2⟩ be the argument of ConcretizeA .342

Note that φ2 = ¬φ1 by the definition of a predicate partition. The implementation of343
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ConcretizeA invokes CharSFA on the SFA Mφ1 accepting all words of length one consisting344

of a concrete letter satisfying φ1, as defined in Def.2. Let S be the returned sample. Let Γ1345

be the set of positively labeled words in the sample. Note that all such words are of size one,346

namely they are letters. Let Γ2 be the set of letters that are first letters in a negative word347

in the sample. Then ConcretizeA returns ⟨Γ1,Γ2⟩.348

We turn to the definition of GeneralizeA . Given ⟨Γ1,Γ2⟩ the implementation of GeneralizeA349

invokes InferSFA on sample S = {⟨γ, 1⟩ | γ ∈ Γ1}∪{⟨γ, 0⟩ | γ ∈ Γ2}∪{⟨γγ′, 0⟩ | γ, γ′ ∈ Γ1∪Γ2}.350

That is, all one-letter words satisfying Γ1 are positively labeled, all one-letter words satisfying351

Γ2 are negatively labeled, and all words of length 2 using some of the given concrete letters,352

are negatively labeled. Let M be the returned SFA when given S ′ ⊇ S as an input. Let Ψ1353

be the set of all predicates labeling some edge from the initial state to an accepting state,354

and let Ψ2 be the set of all predicates labeling some edge from the initial state to a rejecting355

state. Let φ = (
∨
ψ∈Ψ1

ψ) ∧ (
∧
ψ∈Ψ2

¬ψ). Then GeneralizeA returns ⟨φ,¬φ⟩.356

It is not hard to verify that the constructed methods GeneralizeA and ConcretizeA satisfy357

the requirements of the theorem. ◀358

The following example shows that for some Boolean algebras, such functions exist, even359

for a generalization of the requirement for variadic versions of Concretize and Generalize.360

▶ Example 9. Consider the class MAN of SFAs over the algebra AN of Ex.1 and consider the361

functions ConcretizeAN(⟨[d1, d
′
1), [d2, d

′
2), . . . , [dm, d′

m)⟩) = ⟨{d1}, . . . , {dm}⟩ and GeneralizeAN362

(⟨Γ1, . . . ,Γm⟩) = ⟨[min Γπ(1),min Γπ(2)), [min Γπ(2),min Γπ(3)), . . . , [min Γπ(m),∞)⟩ where π363

is the permutation on (1, . . . ,m) satisfying max Γπ(i) < min Γπ(i+1) for every 1 ≤ i < m.364

Then, ConcretizeAN and GeneralizeAN satisfy the variadic generalization of the conditions of365

Thm.8.366

We would like to relate the necessary condition on the learnability of a class of SFAs367

over a Boolean algebra A to the learnability of the Boolean algebra A itself. For this368

we need to first define efficient identifiability of a Boolean algebra A. Since to learn an369

unknown predicate we need to supply two sets: one of negative examples and one of positive370

examples, it makes sense to say that a Boolean algebra A with predicates P over domain D371

is efficiently identifiable if there exist efficient dyadic concretizing and generalizing functions,372

ConcretizeA : Πpred(P, 2) → Πconc(D, 2) and GeneralizeA : Πconc(D, 2) → Πpred(P, 2) satisfying373

the criteria of Theorem 8. Using this terminology we can state the following corollary.374

▶ Corollary 10. Efficient identifiability of the Boolean algebra A is a necessary condition for375

identification in the limit using polynomial time and data of any non-trivial class of SFAs376

over A.377

4.2 Sufficient Condition378

We turn to discuss a sufficient condition for the efficient identifiability of a class of SFAs MA379

over a Boolean algebra A. To prove that MA is efficiently identifiable, we need to supply380

two algorithms CharSFAMA and InferSFAMA as required in Def.5. The idea is to reduce381

the problem to efficient identifiablity of DFAs, namely to use the algorithms CharDFA382

and InferDFA provided in Thm.6. The implementation of CharSFA, given an SFA M383

will transform it into a DFA DM by applying ConcretizeA on the partitions induced by the384

states of the DFA. The resulting DFA DM will not be equivalent to the given SFA M, but385

it may be used to create a sample of words SM that is a characteristic set for M, see Fig.2.386

To implement InferSFA we would like to use InferDFA to obtain, as a first step, a DFA387

from the given sample, then at the second step, apply GeneralizeA on the concrete-partitions388
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Concretize CharDFA

DecontaminateGeneralize InferDFA

Figure 2 A schematic description of algorithms CharSFA and InferSFA XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do
5 if Èq,Â, qÕÍ œ � and d œ JÂK then
6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do
4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . ,ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq,Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

Algorithm 1 ConcretizeMA (M)

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do
5 if Èq,Â, qÕÍ œ � and d œ JÂK then
6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do
4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . ,ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq,Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

Algorithm 2 GeneralizeMA (M)

induced by the DFA states. A subtle issue that we need to cope with is that inference should389

succeed also on samples subsuming the characteristic sample. The fact that this holds for390

inference of the DFA does not suffice, since we are guaranteed that the inference of the DFA391

will not be confused if the sample contains more labeled words, as long as the new words392

are over the same alphabet. In our case the alphabet of the sample can be a strict subset393

of the concrete letters D (and if D is infinite, this surely will be the case).5 So we need an394

additional step to remove words from the given sample if they are not over the alphabet of395

the characteristic sample. We call a method implementing this DecontaminateMA .396

Formally, we first define the extension of ConcretizeA and GeneralizeA to automata instead397

of partitions, which we term ConcretizeMA and GeneralizeMA (with M in the subscript).398

The formal definition of ConcretizeMA is given in Alg.1. Let M = (A, Q, qι, F,∆) be an SFA.399

Then ConcretizeMA (M) is the DFA DM = (Σ, Q, qι, F,∆D) where ∆D is defined as follows.400

For each state q ∈ Q let πq = ⟨ψ1, . . . , ψm⟩ be the predicate partition consisting of all401

predicates labeling a transition exiting q in M. Intuitively, in D, the outgoing transitions402

of each state q correspond to ConcretizeA(πq). That is, let ConcretizeA(πq) = ⟨Γ1, . . . ,Γm⟩.403

Then, if ⟨q, ψi, q′⟩ ∈ ∆, then ⟨q, γ, q′⟩ ∈ ∆D for every γ ∈ Γi.404

The formal definition of GeneralizeMA is given in Alg.2. Let D = (Σ, Q, qι, F,∆D) be a405

DFA. We define GeneralizeMA (D) wrt. an algebra A as follows. Let M = (A, Q, qι, F,∆M)406

where ∆M is defined as follows. For each state q ∈ Q let ⟨Γ1, . . . ,Γm⟩ be the concrete407

partition consisting of letters labeling outgoing transitions from q. Note that ⟨Γ1, . . . ,Γm⟩408

is a concrete partition, since D is a DFA. Let GeneralizeA(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩.409

Then, ⟨q, ψi, q′⟩ ∈ ∆M if Γi is the set of letters labeling transitions from q to q′ in D.410

We are now ready to define the conditions the decontaminating function has to satisfy.411

5 In the full version of this paper we provide an example illustrating this problem for the class of SFAs
over a monotonic algebra Am , for which respective methods ConcretizeAm and GeneralizeAm exist.
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▶ Definition 11. A function fd : 2(D∗×{0,1}) → 2(D∗×{0,1}) is called decontaminating for a412

class of SFAs M and a respective ConcretizeM function if the following holds. Let M ∈ M be413

an SFA, and D = ConcretizeM(M). Let SD = CharDFA(D). Then, for every S ′ ⊇ SD s.t.414

S ′ agrees with M, it holds that SD ⊆ fd(S ′) ⊆ (S ′ ∩ ΓD), where ΓD is the alphabet of SD.415

As before we say that fd is efficient if it can be computed in polynomial time. We can416

now provide the sufficient condition.417

▶ Theorem 12. Let MA be a class of SFAs over a Boolean algebra A. If there exist efficient418

functions ConcretizeA and GeneralizeA satisfying that419

if ConcretizeA(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γm⟩420

and GeneralizeA(⟨Γ′
1, . . . ,Γ′

m⟩) = ⟨φ1, . . . , φm⟩421

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ m422

then JφiK = JψiK for every 1 ≤ i ≤ m423

and in addition there exists an efficient decontaminating function DecontaminateMA , then the424

class MA is efficiently identifiable.425

Given functions ConcretizeA , GeneralizeA and DecontaminateMA for a class MA of SFAs426

over a Boolean algebra A meeting the criteria of Thm.12, we show that MA can be efficiently427

identified by providing two algorithms CharSFA and InferSFA, described bellow. These428

algorithms make use of the respective algorithms CharDFA and InferDFA guaranteed in429

Thm.6.I., as well as the methods provided by the theorem.430

We briefly describe these two algorithms, and then turn to prove Thm.12. The algorithm431

CharSFA receives an SFA M ∈ M, and returns a characteristic sample for it. It does so by432

applying ConcretizeMA (M) (Alg.1) to construct a DFA DM and generating the sample SM433

using the algorithm CharDFA applied on the DFA DM.434

Algorithm InferSFA, given a sample set S, if S subsumes a characteristic set of an SFA435

M, returns an equivalent SFA. Otherwise it suffices with returning an SFA that agrees with436

the sample. First, it applies DecontaminateMA to find a subset S ′ ⊆ S over the alphabet437

of the subsumed characteristic sample, if such a subsumed sample exists. Then it uses S ′
438

to construct a DFA by applying the inference algorithm InferDFA on S ′. From this DFA439

it constructs an SFA, MS , by applying GeneralizeMA (Alg.2). If the resulting automaton440

disagrees with the given sample it resorts to returning the prefix-tree automaton. In brief,441

CharSFA(M) = CharDFA(ConcretizeMA (M))442

InferSFA(S)=
{

MS :=GeneralizeMA (InferDFA(DecontaminateMA (S))) if S ⊆L̂(MS)
The prefix-tree automaton of S otherwise

443

In §4.3 we provide methods ConcretizeA , GeneralizeA and DecontaminateMA for SFAs over444

monotonic algebras, deriving their identification in the limit result. We now prove Thm.12.445

Proof of Thm.12. Given functions ConcretizeA , GeneralizeA , and DecontaminateMA , we show446

that the algorithms CharSFA and InferSFA satisfy the requirements of Def.5.447

For the first condition, given that CharDFA, DecontaminateMA and GeneralizeA run in448

polynomial time, and that the prefix-tree automaton can be constructed in polynomial449

time, it is clear that so does InferSFA. In addition, the test performed in the definition of450

InferSFA ensures the output agrees with the sample.451

For the second condition, note that the sample generated by CharSFA is polynomial in452

the size of DM, from the correctness of CharDFA. In addition, since ConcretizeA is efficient,453

DM is polynomial in the size of M, and thus SM generated by CharSFA is polynomial in454
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M as well. It is left to show that given SM is the concrete sample produced by CharSFA455

when running on an SFA M, then when InferSFA runs on any sample S ⊇ SM it returns456

an SFA for L(M). Since DecontaminateMA is a decontaminating function, and S ⊇ SM, the457

set S ′ = DecontaminateMA (S) satisfies S ′ ⊇ SM and is only over the alphabet ΓM, which is458

the alphabet of the DFA DM generated in Alg.1.459

From the correctness of InferDFA, given S ′ ⊇ SM, applying InferDFA on the output S ′
460

of DecontaminateMA results in a DFA D that is equivalent to DM constructed in Alg.1. Since461

DM is complete wrt. its alphabet ΓM, for state q of D, the concrete partition ⟨Γ1, . . . ,Γn⟩462

generated in Alg.2 line 4, covers ΓM and subsumes the output of ConcretizeMA on πq (Alg.1,463

line 2). Thus, since GeneralizeA and ConcretizeA satisfy the criteria of Thm.12, it holds that464

the constructed predicates agree with the original predicates. In addition, since S, and465

therefore S ′, agrees with M, the test performed in the definition of InferSFA fails and the466

returned SFA is equivalent to M. ◀467

4.3 Positive Result468

We present the following positive result regarding monotonic algebras.469

▶ Theorem 13. Let MAm be the set of SFAs over a monotonic Boolean algebra Am . Then470

MAm is efficiently identifiable.471

In order to prove Thm.13, we show that the sufficient condition holds for the case of472

monotonic algebras. In the full version we provide an example that demonstrates how to473

apply CharSFA and InferSFA in order to learn an SFA over the algebra AN.474

▶ Proposition 14. There exist functions ConcretizeAm and GeneralizeAm for a monotonic475

Boolean algebra Am , satisfying the criteria of Thm.12.476

Proof. Let D be the domain of Am . We provide the functions ConcretizeAm and GeneralizeAm477

and prove that the criteria of Thm.12 hold for them. For ease of presentation, for the function478

Concretize we consider basic predicates. Note that for monotonic algebras, basic predicates479

are in fact intervals, as a conjunction of intervals is an interval. We can assume all predicates480

are basic since, as we show in [27, Lemma 3], for monotonic algebras the transformation481

from a general formula to a DNF formula of basic predicates is linear. Then, each basic482

predicate in the formula corresponds to a different predicate in the predicate partition. The483

definitions of ConcretizeAm and GeneralizeAm are generalizations of the functions ConcretizeAN484

and GeneralizeAN given in Ex.9. We define ConcretizeAm (⟨ψ1, . . . ψm⟩) = ⟨Γ1, . . . ,Γm⟩ where485

we set Γi = { min{d ∈ D | d ∈ JψiK}} for 1 ≤ i ≤ m. Since Am is monotonic, Γi is well defined486

and contains a single element, thus ConcretizeAm is an efficient concretizing function.487

We define GeneralizeAm (⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩, where ψi is defined as follows. Let488

Γ =
⋃

1≤i≤m Γi. First, for all 1 ≤ i ≤ m we set ψi = ⊥. Then, we iteratively look for the489

minimal element γ ∈ Γ. Let i be such that γ ∈ Γi, and let γ′ be the minimal element in Γ490

satisfying γ′ /∈ Γi. We then set ψi = ψi ∨ [γ, γ′), and remove all elements γ ≤ γ′′ < γ′ from491

Γ. We repeat the process until for the found γ ∈ Γj , there is no γ′ > γ such that γ′ /∈ Γj . In492

that case, we define ψj = ψj ∨ [γ, d∞). Then, Γi ⊆ JψiK and the predicates are disjoint, thus493

GeneralizeAm is an efficient generalizing function.494

Now, let ⟨Γ1, . . . ,Γm⟩ be the concrete partition obtained from ConcretizeAm when ap-495

plied on the predicate partition ⟨ψ1, . . . , ψm⟩. Assume further that the predicate partition496

⟨Γ′
1, . . . ,Γ′

m⟩ satisfies Γi ⊆ Γ′
i ⊆ JψiK for 1 ≤ i ≤ m. In particular, min(Γ′

i) = min(Γi), since497

Γi contains the minimal elements in JψiK, and Γi ⊆ Γ′
i ⊆ JψiK. Thus applying GeneralizeAm498

will result in the same interval, satisfying the criterion of Thm.12. ◀499
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XX:

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

Input: set S over alphabet �
Output: set S Õ over alphabet �Õ

1 function DecontaminateMAm
(S)

2 Aw := {‘}, �Õ := {dinf}, ‡max := dinf
3 repeat
4 for all u œ Aw, by lexicographic order do
5 for all ‡ œ �, by lexicographic order do
6 if ‡ > ‡max and u‡ ”≥S u‡max then
7 if ’‡Õ. ‡max < ‡Õ < ‡ : u‡Õ ≥S u‡max then
8 �Õ := �Õ fi {‡}
9 if ’uÕ œ Aw. u‡ ”≥S uÕ then Aw := Aw fi {u‡}

10 ‡max := ‡

11 ‡max := dinf
12 until �Õ is remained unchanged
13 return S Õ := S fl �Õú

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

▶ Example 15. Let Γ1 = {0, 100, 400, 500} and Γ2 = {150, 200} over the algebra AN with500

domain N ∪ {∞}. Then, GeneralizeAN sets Γ = {0, 100, 150, 200, 400, 500}, and finds the501

minimal element in γ which is 0. Since 0 ∈ Γ1, it then looks for the minimal element γ ∈ Γ502

such that γ /∈ Γ1, and finds 150 ∈ Γ2. Therefore ψ1 = [0, 150) and Γ is updated to be503

Γ = {150, 200, 400, 500}. Next, it finds the minimal element, which is 150 and is in Γ2, and504

the minimal element that is not in Γ2 is 400. Then, ψ2 is set to be ψ2 = [150, 400) and505

Γ = {400, 500}. Last, ψ1 = [0, 150) ∨ [400,∞) since 400 ∈ Γ1 and there is no greater element506

that is not in Γ1.507

To show that any class of SFAs MAm over a monotonic algebra Am is efficiently iden-508

tifiable, we define in Alg.3 an algorithm that implements a decontaminating function509

DecontaminateMAm
, fulfilling the requirements of Thm.12. Loosely speaking, the idea of510

the algorithm is to simultaneously collect elements into two sets Aw and Σ′ s.t. Aw will511

consist of the minimal representative according to the lexicographic order of each equivalence512

class in ∼S and Σ′ will consist of minimal letters aiding to distinguishing these words. When513

this process terminates the algorithm returns the subset of words in the sample that consist514

of only letters in Σ′.515

▶ Lemma 16. Assume the input to DecontaminateMAm
is S with S ⊇ SM for some M ∈ MAm516

s.t. SM = CharDFA(ConcretizeMAm
(M)), and DM = ConcretizeMAm

(M) is over alphabet517

ΓM. Then for Σ′ constructed by DecontaminateMAm
(Alg.3) it holds that Σ′ =ΓM.518

Proof sketch. Let M = (A, Q, qι, F,∆M), DM = ConcretizeMAm
(M) where DM = (ΓM, Q,519

qι, F,∆D), and SM = CharDFA(DM). We inductively show that for DecontaminateMAm
520

given in Alg.3, if its input S satisfies S ⊇ SM then the set Aw is exactly the set of all521

lex-access words of states in DM and that Σ′ = ΓM (where ΓM is the alphabet of DM).522

First, we show that every u ∈ Aw is a lex-access word and that Σ′ ⊆ ΓM. For the base523

case, we have Aw = {ϵ} and Σ′ = {d−∞}. Since ϵ is the minimal element in the lexicographic524

order, it holds that ϵ ∈ Aw is indeed a lex-access word (of the state qι). For d−∞ ∈ Σ′, since525

ConcretizeAm returns the minimal element of each interval, it holds that d−∞ ∈ ΓM.526

For the induction step, assume that Aw contains only lex-access words and that the527

current Σ′ is a subset of ΓM. Then, when considering u ∈ Aw in line 4, it holds that u is a528

lex-access word of some state q. Then, if σ is added to Σ′ it must be a minimal element of529
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some interval labeling an outgoing transition from q, thus it is in ΓM, and hence Σ′ ⊆ ΓM.530

Let uσ be a word added to Aw in line 9. Thus, for all u′ ∈ Aw it holds that uσ ̸∼S u′.531

Claim. In this setting, uσ ̸∼S u′ implies uσ ̸∼SM u′.532

See the full version for a detailed proof of the lemma, and in particular, a proof of this claim.533

Then, for all u′ ∈ Aw we have ∆D(qι, uσ) ̸= ∆D(qι, u′) where ∆D is the transition relation534

of DM. Since u is a lex-access word and σ is minimal, uσ is a lex-access word for ∆D(qι, uσ).535

This concludes the first direction.536

For the second direction, we show that every lex-access word is in Aw and that ΓM ⊆ Σ′.537

The lex-access word ϵ is in Aw. Let uσ be a lex-access word. For all lex-access words u′
538

found in previous iterations it holds that uσ ̸∼SM u′ from item 2 of Thm.6.II, and thus539

uσ ̸∼S u′ since SM ⊆ S. Thus, uσ satisfies the condition of line 9 in Alg.3 and is added to540

Aw. For ΓM ⊆ Σ′, let σ ∈ ΓM. From the construction of ConcretizeAm it holds that σ is the541

left endpoint of some interval that is an outgoing transition from qι. Then, indeed σ is found542

in the first iteration of line 4. Inductively, since Aw contains all lex-access words, for every543

state q, the outgoing transitions of q will be considered in some following iteration. Thus, all544

minimal letters indicating new intervals are added to Σ′ and we have that ΓM ⊆ Σ′. ◀545

▶ Proposition 17. The sufficient condition of Thm.12 holds for the class MAm of SFAs over546

a monotonic Boolean algebra Am .547

Proof. In Prop.14 we have shown that there exist functions ConcretizeAm and GeneralizeAm548

for a monotonic Boolean algebra Am , satisfying the criteria of Thm.12. It is left to show549

that DecontaminateMAm
is an efficient decontaminating function. Assume that S ⊇ SM550

where SM = CharDFA(ConcretizeMAm
(M)), and ConcretizeMAm

(M) is over alphabet ΓM. In551

Lemma 16 we showed that under these assumptions it holds that the alphabet Σ′ of the552

returned sample S ′ is ΓM. Then, for the set S ′ returned in line 13 (Alg.3) it holds that553

S ′ = S ∩ Γ∗
M. Since S ⊇ SM and Γ∗

M ⊇ SM, it holds that S ′ ⊇ SM and S ′ is defined over554

the alphabet ΓM. Therefore, DecontaminateMAm
is a decontaminating function. In addition,555

it runs in time polynomial in the size of S, thus the conditions of Thm.12 are met. ◀556

4.4 Negative Result557

The result of Thm.13 does not extend to the non-monotonic case, as stated in Thm.18558

regarding SFAs over the general propositional algebra. Let DB = {Bk}k∈N. Let PB =559

{PBk
}k∈N where PBk

is the set of predicates over at most k variables. Let AB be the Boolean560

algebra defined over the discrete domain DB and the set of predicates PB, and the usual561

operators ∨, ∧ and ¬. Let MAB be the class of SFAs over the Boolean algebra AB. We show562

that unless P = NP , this class of SFAs is not efficiently identifiable.563

▶ Theorem 18. The class MAB is not efficiently identifiable unless P = NP .564

Proof. We show that there is no pair of efficient concretizing and generalizing functions565

fc : Πpred(PB, 2) → Πconc(DB, 2) and fg : Πconc(DB, 2) → Πpred(PB, 2) unless P = NP . From566

Thm.8 it follows that MB is not efficiently identifiable unless P = NP .567

Assume towards contradiction that such a pair of functions exist. We provide a polynomial568

time algorithm ASAT for SAT. On predicate φ, the algorithm ASAT invokes fc(⟨φ,¬φ⟩).569

Suppose the returned concrete partition is ⟨Γ1,Γ2⟩. Then ASAT returns “true” if and only570

if Γ1 ̸= ∅. Correctness follows from the fact that if there exists a system of characteristic571

samples for PB then the set of positive examples associated with a satisfiable predicate φ572

must be non-empty, as otherwise fg cannot distinguish φ from ⊥. ◀573
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5 Query Learning574

The paradigm of query learning stipulates that the learner can interact with an oracle575

(teacher) by asking it several types of allowed queries. Angluin showed, on the negative576

side, that regular languages cannot be learned (in the exact model) from only membership577

queries (mq) [3] or only equivalence queries (eq) [6]. On the positive side, she showed that578

regular languages, represented as DFAs, can be learned using both mq and eq [4]. The579

celebrated algorithm, termed L∗, was extended to learning many other classes of languages580

and representations, e.g. [46, 15, 1, 16, 7, 38, 8, 41], see the survey [26] for more references.581

In particular, an extension of L∗, termed MAT∗, to learn SFAs was provided in [9] which582

proved that SFAs over an algebra A can be efficiently learned using MAT∗ if and only if the583

underlying algebra is efficiently learnable, and the size of disjunctions of k predicates doesn’t584

grow exponentially in k.6 From this it was concluded that SFAs over the following underlying585

algebras are efficiently learnable: Boolean algebras over finite domains, equality algebra, tree586

automata algebra, and SFAs algebra. Efficient learning of SFAs over a monotonic algebra587

using mq and eq was established in [19], which improved the results of [36, 37] by using a588

binary search instead of a helpful teacher.589

The result of [9] provides means to establish new positive results on learning classes of590

SFAs using mq and eq, but it does not provide means for obtaining negative results for query591

learning of SFAs using mq and eq. We strengthen this result by providing a learnability592

result that is independent of the use of a specific learning algorithm. In particular, we show593

that efficient learnability of a Boolean algebra A using mq and eq is a necessary condition594

for the learnability of the class of SFAs over A, as we state in Thm. 19.595

▶ Theorem 19. A non-trivial class of SFAs M over a Boolean algebra A is polynomially596

learnable using mq and eq, only if A is polynomially learnable using mq and eq.597

Proof. Assume that M is polynomially learnable using mq and eq, using an algorithm QM.598

We show that there exists a polynomial learning algorithm QA for the algebra A using mq and599

eq. The algorithm QA uses QM as a subroutine, and behaves as a teacher for QM. Whenever600

QM asks a M-mq on word γ1 . . . γk, if k > 1 then QA answers “no”. If k=1 then the M-mq601

is essentially an A-mq, thus QA issues this query and passes the answer to QM. Whenever602

QM asks a M-eq on SFA M, if M is of the form Mψ for some ψ (as defined in Def.2) then603

QA answers “no” to the M-eq and returns some word w ∈ L(M) s.t. |w| > 1 and w was not604

provided before, as a counterexample. Otherwise (if the SFA is of the form Mψ for some605

ψ) QA asks an A-eq on ψ. If the answer is “yes” then QA terminates and returns ψ as the606

result of the learning algorithm; if the answer to the A-eq on ψ is “no”, then the provided607

counterexample ⟨γ, bγ⟩ is passed back to QM together with the answer “no” to the M-eq. It608

is easy to verify that QA terminates correctly in polynomial time. ◀609

From Thm. 19 we derive what we believe to be the first negative result on learning SFAs610

from mq and eq, as we show that SFAs over the propositional algebra over k variables ABk
611

are not polynomially learnable using mq and eq. Polynomiality is measured with respect612

to the parameters ⟨n,m, l⟩ representing the size of the SFA and the number k of atomic613

propositions. Note that the algebra ABk
is a restriction of the algebra AB considered in §.4.4614

and therefore implies a negative result also with regard to the algebra AB considered there.615

6 As is the case, for instance, in the OBDD (Ordered Binary Decisions Diagrams) algebra [17].
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We achieve this by showing that no learning algorithm A for the propositional algebra616

using mq and eq can do better than asking 2k mq/eq, where k is the number of atomic617

propositions.7 We assume the learning algorithm is sound, that is, if S+
i and S−

i are the sets618

of positive and negative examples observed by the algorithm up to stage i, then at stage619

i+ 1 the algorithm will not ask a mq for a word in S+
i ∪ S−

i or an eq for an automaton that620

rejects a word in S+
i or accepts a word in S−

i .621

▶ Proposition 20. Let A be a sound learning algorithm for the propositional algebra over622

Bk. There exists a target predicate ψ of size k, for which A will be forced to ask at least623

2k − 1 queries (either mq or eq).624

Proof. Since A is sound, at stage i+ 1 we have S+
i+1 ⊇ S+

i and S−
i+1 ⊇ S−

i and at least one625

inclusion is strict. Since the size of the concrete alphabet is 2k, for every round i < 2k, an626

adversarial teacher can answer both mq and eq negatively. In the case of eq there must be an627

element in Bk \ (S−
i ∪ S+

i ) with which the provided automaton disagrees. The adversary will628

return one such element as a counterexample. This forces A to ask at least 2k−1 queries. Note629

that for any element v in Bk there exists a predicate φv of size k such that JφvK = {v}. ◀630

▶ Corollary 21. SFAs over the propositional algebra ABk
with k propositions cannot be learned631

in poly(k) time using mq and eq.632

The propositional algebra ABk
is a special case of the n-dimensional boxes algebra.633

Learning n-dimensional boxes was studied using mq and eq [29, 18, 12], as well as in the634

PAC setting [13]. The algorithms presented in [29, 18, 12, 13] are mostly exponential in n.635

Alternatively, [29, 18] suggest algorithms that are exponential in the number of boxes in the636

union. In [12] a linear query learning algorithm for unions of disjoint boxes is presented. Since637

n-dimensional boxes subsume the propositional algebra, Corollary 21 implies the following.638

▶ Corollary 22. The class of SFAs over the n-dimensional boxes algebra cannot be learned in639

poly(n) time using mq and eq.640

6 Discussion641

We examine the question of learnability of a class of SFAs over certain algebras where642

the main focus of our study is on passive learning. We provide a necessary condition for643

identification of SFAs in the limit using polynomial time and data, as well as a necessary644

condition for efficient learning of SFAs using mq and eq. We note that a positive result645

on learning SFAs using mq and eq implies a positive result for identification of SFAs in646

the limit using polynomial time and data. The latter follows because a systematic set of647

characteristic samples {SL}L∈L for a class of languages L may be obtained by collecting648

the words observed by the query learner when learning L. However, it does not imply a649

positive result regarding the stronger notion of efficient identifiability, as the latter requires650

the set to be also constructed efficiently. We thus provide a sufficient condition for efficient651

identification of a class of SFAs, and show that the class of SFAs over any monotonic algebra652

satisfies these conditions.653

We hope that these sufficient or necessary conditions will help to obtain more positive654

and negative results for learning of SFAs, and spark an interest in investigating characteristic655

samples in other automata models used in verification.656

7 In [40] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with mq
and eq. However, [40] measures the size of an OBDD by its number of nodes, which can be exponential
in the number of propositions.
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