Computer Vision: Models, Learning and Inference –
Markov Random Fields, Part 3

Oren Freifeld and Ron Shapira-Weber
Computer Science, Ben-Gurion University

Mar 11, 2019
Consider an $n \times n$ image

- Pixels define a regular 2D lattice
- $x = (x_s)_{s \in S}$, a latent ("clean" / "uncorrupted") image
- $y = (y_s)_{s \in S}$, an observed ("corrupted-by-noise") image

Problem: Recover x from y.
The Bayesian approach is based on

\[p(x|y) = \frac{p(x, y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)} \propto p(y|x)p(x) \]

- \(p(x|y) \): posterior
- \(p(y|x) \): likelihood
- \(p(y) \): evidence
- \(p(x) \): prior
Consider Binary Latent Images with an MRF prior

- $x_s \in \{-1, 1\}$ (binary, with -1 instead of 0); i.e., $x \in \{-1, 1\}^{|S|}$
- Prior model:
 \[
p(x) \propto \prod_{c \in C} H_c(x_c)
 \]
 \[\text{(1)}\]
- Observation/likelihood model 1 (\mathbb{R}-valued, additive):
 \[
 \mathbb{R} \ni y_s = x_s + n_s \quad s \in S \quad \mathbb{R} \ni n_s \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)
 \]
- Observation/likelihood model 2 (binary, multiplicative):
 \[
 \{-1, 1\} \ni y_s = x_s n_s \quad s \in S \quad n_s \in \{-1, 1\} \quad (n_s + 1)/2 \overset{iid}{\sim} \text{Bernoulli}(\theta)
 \]
- In both cases, the overall likelihood is:
 \[
p(y|x) = \prod_{s \in S} p(y_s|x) = \prod_{s \in S} p(y_s|x_s)
 \]
 The first “\equiv”: the y_s’s are conditionally independent given x.
 The second “\equiv” is stronger: $y_s \perp \perp (s_x, s_y)|x_s \forall s \in S$.

 iid = independent and identically distributed
Case 1:

\[
p(x|y) = \frac{\prod_{s \in S} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(y_s - x_s)^2}{2\sigma^2} \right) \prod_{c \in C} H_c(x_c)}{\sum_{(x'_s)_{s \in S} \in \{-1,1\}^{|S|}} \left[\prod_{s \in S} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(y_s - x'_s)^2}{2\sigma^2} \right) \right] \prod_{c \in C} H_c(x'_c)}
\]

\[
\propto \left[\prod_{s \in S} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(y_s - x_s)^2}{2\sigma^2} \right) \right] \prod_{c \in C} H_c(x_c)
\]

\[
\propto \prod_{c \in C} F_c(x_c)
\]

(singleton s – w.r.t. \(G_A\) – absorbed into the \(H_c\)'s; renamed the resulting clique functions \(F_c\)'s where \(F_c(x_c) = F_c(x_c, y)\)
Case 2:

\[p(x|y) \propto (1 - \theta)|\{s \in S : y_s = -x_s\}| \theta|\{s \in S : y_s = x_s\}| \prod_{c \in C} H_c(x_c) \]

= \prod_{c \in C} F_c(x_c)

(singleton terms with respect to \(G_A\) are absorbed into the \(H_c\)'s; renamed the resulting clique functions \(F_c\)'s where \(F_c(x_c) = F_c(x_c, y)\))
Digression: What if y_s Depends on more than x_s?

E.g., y obtained from x by convolving it with a 3×3 filter. We get products of $p(y_s|3 \times 3 \text{ n’hood of } x_s)$

$\Rightarrow \ln p(x|y)$, each 3×3 block is a clique, with (partial) overlaps between nearby cliques.
What We Want

- Sample from \(p(x|y) \), compute posterior expectations (e.g., \(E(x|y) \) or \(E(g(x)|y) \) for some function \(g \)), and posterior \(\arg \max_x p(x|y) \).

In fact, if we can sample somehow, we can use this for the other tasks as well; for example (and regardless of MRF’s):

\[
\begin{align*}
&(x^i_s)_{s \in S} \overset{iid}{\sim} p((x_s)_{s \in S}|y) \\
&\Rightarrow \frac{1}{N} \sum_{i=1}^{N} g((x^i_s)_{s \in S}) \xrightarrow{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} g(x^i) \xrightarrow{\text{by LLN}} E(g((X_s)_{s \in S}|Y = y))
\end{align*}
\]

\((x^i \) is a sample of an entire image)

Remark: usually \(E(X|Y = y) \) is in \([-1, 1]|^S| \) (as opposed to \(\{-1, 1\}|^S| \))

LLN: Law of Large Numbers
The Ising Model Prior

\[p(x) = \frac{1}{Z} \exp \left(\beta \sum_{s \sim t} x_s x_t \right) \quad (s \sim t \text{ means } s \text{ is a neighbor of } t) \]

Samples from \(p(x) \) with three different betas where, from left to right, \(\beta_1 < \beta_2 < \beta_3 \)

Figure from Winkler’s monograph, “Image Analysis: Random Fields and Markov Chain Monte Carlo Methods”
Example

If $\beta = \frac{1}{1.8}$ and $y_s = x_s + n_s$ where $n_s \sim \mathcal{N}(0, 4)$, $s \in S$ then

$$p(x | y) \propto \exp \left(\frac{1}{1.8} \left(\sum_{s \sim t} x_s x_t \right) - \frac{1}{8} \sum_s (y_s - x_s)^2 \right)$$
Left: the true x where $x \sim p(x)$ (using the Ising Model)
Right: y – the noisy image.
Left: $x \sim p(x)$ (using the Ising Model)
Right: a posterior sample, $x \sim p(x|y)$
Left: $x \sim p(x)$ (using the Ising Model)
Right: the maximum-a-posteriori (MAP) solution, $\arg \max_x p(x|y)$
Interpretations of the Ising Model

- WLOG, let $\beta = 1$.

\[
\frac{\exp \left(\sum_{s \sim t} x_s x_t \right)}{\sum_{x'} \exp \left(\sum_{s \sim t} x'_s x'_t \right)} = \frac{\exp \left(\sum_{s \sim t} x_s x_t + c \right)}{\sum_{x'} \exp \left(\sum_{s \sim t} x'_s x'_t + c \right)} \quad \forall c \in \mathbb{R} \quad (2)
\]

\[
\Rightarrow p(x) \propto \frac{\exp \left(\sum_{s \sim t} x_s x_t + c \right)}{\sum_{x'} \exp \left(\sum_{s \sim t} x'_s x'_t + c \right)} \quad (3)
\]

- Take $c = |S|$ (# pixels) \Rightarrow
 \[
 \sum_{s \sim t} x_s x_t + c = \# \text{ like n'brs pairs} - \# \text{ unlike n'brs pairs} + |S| = 2 \times \# \text{ like n'brs pairs}
 \Rightarrow p(x) \propto \exp(2 \times \# \text{ like n'brs pairs})
\]

- Take $c = -|S|$ \Rightarrow
 \[
 \# \text{ like n'brs pairs} - \# \text{ unlike n'brs pairs} - |S| = -2 \times \# \text{ unlike n'brs pairs} = -2 \times \text{boundary length}
 \Rightarrow p(x) \propto \exp(-2 \times \text{boundary length})
\]
When Sampling from the Conditionals is Easy

Regardless of MRFs

Assume the following setting:

- X, Y, and Z: 3 random vectors (of possibly-different dimensions) with a joint pdf/pmf $p(x, y, z)$
- Want to sample $x, y, z \sim p(x, y, z)$ – but it’s hard or don’t know how.
- Can relatively easily sample from the conditionals:

\[
\begin{align*}
p(x | y, z) \\
p(y | x, z) \\
p(z | x, y)
\end{align*}
\]
Gibbs Sampling [Geman and Geman, 1984]

- The algorithm:
 1. $x^{[0]}, y^{[0]}, z^{[0]} \sim g(x, y, z)$ using some easy-to-sample-from $g(x, y, z)$ of the same support as $p(x, y, z)$ (e.g., take $g(x, y, z) = g(x)g(y)g(z)$).
 2. Iterate:
 - $x^{[i]} \sim p(x | y^{[i-1]}, z^{[i-1]})$
 - $y^{[i]} \sim p(y | x^{[i]}, z^{[i-1]})$
 - $z^{[i]} \sim p(z | x^{[i]}, y^{[i]})$

\[
p(x^{[n]}, y^{[n]}, z^{[n]}) \xrightarrow{n \to \infty} p(x, y, z) \text{ (in some sense)}
\]

- The resulting sequence is clearly a Markov Chain:

\[
p(x^{[i]}, y^{[i]}, z^{[i]} | x^{[0:(i-1)]}, y^{[0:(i-1)]}, z^{[0:(i-1)]}) = p(x^{[i]}, y^{[i]}, z^{[i]} | x^{[i-1]}, y^{[i-1]}, z^{[i-1]})
\]

- Gibbs sampling is a particular case of MCMC
Gibbs Sampling [Geman and Geman, 1984]

It is OK even if we know p only up to a multiplicative constant:

- Know $g(x, y, z)$, a non-normalized nonnegative function, where

$$p(x, y, z) = \frac{1}{Z} g(x, y, z)$$

$$Z = \int g(x, y, z) \, dx \, dy \, dz$$

but can’t (or don’t want to) compute the integral.

$$p(x | y, z) = \frac{p(x, y, z)}{p(y, z)} = \frac{p(x, y, z)}{\int p(x', y, z) \, dx'}$$

$$= \frac{\frac{1}{Z} g(x, y, z)}{\int \frac{1}{Z} g(x', y, z) \, dx'} = \frac{g(x, y, z)}{\int g(x', y, z) \, dx'}$$

or, in the discrete case:

$$p(x | y, z) = \frac{g(x, y, z)}{\sum_{x'} g(x', y, z)}$$
Gibbs Sampling [Geman and Geman, 1984]

More generally: want \((x_1, \ldots, x_n) \sim p(x_1, \ldots, x_n)\).

Gibbs sampling \(n\) RV’s:

1. \(x_1^{[0]}, x_2^{[0]}, \ldots, x_n^{[0]} \sim g(x_1, \ldots, x_n)\) using some easy-to-sample-from \(g(x_1, \ldots, x_n)\) of the same support as \(p(x_1, \ldots, x_n)\)

2. Iterate:
 - Update \(x_1\) by sampling \(x_1\) given the rest
 - Update \(x_2\) by sampling \(x_2\) given the rest
 -
 - Update \(x_n\) by sampling \(x_n\) given the rest

One such iteration over all \(n\) variables is called a sweep.
Motivation

Assume

- p is “local” (MRF with modest n’hood size)
- $p(y|x)$ is “local”

$\Rightarrow p(x|y)$ is MRF with “local” n’hood structure.

But: in an $n \times n$ lattice structure (e.g., images), max boundary is of order n – can’t use Dynamic Programming. So try MCMC.

- Gibbs sampling [Geman and Geman, 1984] is a particular case of MCMC methods.
- In principle, Gibbs sampling is applicable in general distributions, not just in Gibbs distributions (i.e., MRFs), but it is particularly easy to do Gibbs sampling in Gibbs distributions.
Gibbs Sampling in MRFs [Geman and Geman, 1984]

- Pick a (possibly-random) site-visitation scheme, and then, when visiting \(s \), sample

\[
x_s \sim p(x_s|x) \overset{\text{MRF}}{=} p(x_s|x_{\eta_s})
\]

- \(p(x_s|x_{\eta_s}) \), which involves only the local neighborhood, is usually easy to sample from.

- It is ok if know \(p \) only up to a multiplicative constant (which is often the case with MRFs):

\[
p(x) \propto \prod_{c \in C} F_c(x_c)
\]

- Asymptotically great, but takes a long time if the graph is too large/complicated

- Often, particularly for images, it can be massively parallelized (but even then this can take a long time)
Gibbs Sampling in the Ising Model: Sampling from $p(x)$

\[p(x) \propto \exp \left(\beta \sum_{s \sim t} x_s x_t \right) \]

\[p(x_s |_{s \neq t}) = \frac{p(x_s, x)}{p(x)} = \frac{1}{Z} \exp \left(\beta \sum_{s \sim t} x_s x_t \right) \]

\[= \frac{\exp \left(\beta \sum_{t: t \in \eta_s} x_s x_t \right)}{\sum_{x'_s} \exp \left(\beta \sum_{t: t \in \eta_s} x'_s x_t \right)} = \frac{\exp \left(\beta \sum_{t: t \in \eta_s} x_s x_t \right)}{\exp \left(-\beta \sum_{t: t \in \eta_s} x_t \right) + \exp \left(\beta \sum_{t: t \in \eta_s} x_t \right)} \]

\[\Rightarrow \]

\[\begin{cases}
 p(x_s = 1 |_{s \neq t}) = \frac{\exp \left(\beta \sum_{t: t \in \eta_s} x_t \right)}{\exp \left(-\beta \sum_{t: t \in \eta_s} x_t \right) + \exp \left(\beta \sum_{t: t \in \eta_s} x_t \right)} \propto \exp \left(\beta \sum_{t: t \in \eta_s} x_t \right) \\
 p(x_s = -1 |_{s \neq t}) = \frac{\exp \left(-\beta \sum_{t: t \in \eta_s} x_t \right)}{\exp \left(-\beta \sum_{t: t \in \eta_s} x_t \right) + \exp \left(\beta \sum_{t: t \in \eta_s} x_t \right)} \propto \exp \left(-\beta \sum_{t: t \in \eta_s} x_t \right)
\end{cases} \]
Gibbs Sampling in the Ising Model: Sampling from $p(x|y)$

 iid Additive Gaussian Noise

$$p(x|y) \propto \exp \left(\beta \left(\sum_{s \sim t} x_s x_t \right) - \frac{1}{2\sigma^2} \sum_s (y_s - x_s)^2 \right)$$

$$p(x_s|x, y) = \frac{p(x_s, sx|y)}{p(sx|y)} = \frac{p(x|y)}{p(sx|y)}$$

$$= \frac{\exp \left(\beta \left(\sum_{s \sim t} x_s x_t \right) - \frac{1}{2\sigma^2} \sum_s (y_s - x_s)^2 \right)}{\sum_{x'_s} \exp \left(\beta \left(\sum_{s \sim t} x'_s x_t \right) - \frac{1}{2\sigma^2} \sum_s (y_s - x'_s)^2 \right)}$$

$$\propto \exp \left(\beta \left(\sum_{t:t \in \eta_s} x_s x_t \right) - \frac{1}{2\sigma^2} (y_s - x_s)^2 \right)$$

$$p(x_s = 1|x, y) \propto \exp \left(\beta \left(\sum_{t:t \in \eta_s} x_t \right) - \frac{1}{2\sigma^2} (y_s - 1)^2 \right)$$

$$p(x_s = -1|x, y) \propto \exp \left(\beta \left(- \sum_{t:t \in \eta_s} x_t \right) - \frac{1}{2\sigma^2} (y_s + 1)^2 \right)$$

Nothing more than flipping a biased coin.
Gibbs Sampling in the Ising Model: Sampling from $p(x|y)$

Multiplicative flips (AKA binary symmetric channel)

\[
p(x|y) \propto \exp \left(\beta \sum_{s \sim t} x_s x_t \right) \theta \{s \in S : y_s = x_s\} (1 - \theta) \{s \in S : y_s = -x_s\}
\]

\[
p(x_s|x, y) = \frac{p(x_s, x|y)}{p(x|x|y)} = \frac{p(x|y)}{p(x|x|y)}
\]

\[
\propto \exp \left(\beta \sum_{t : t \in \eta_s} x_t \right) \theta \mathbb{1}_{y_s = x_s} (1 - \theta) \mathbb{1}_{y_s = -x_s}
\]

\[
\Rightarrow
\]

\[
p(x_s = 1|x, y) \propto \exp \left(\beta \sum_{t : t \in \eta_s} x_t \right) \theta \mathbb{1}_{y_s = 1} (1 - \theta) \mathbb{1}_{y_s = -1}
\]

\[
p(x_s = -1|x, y) \propto \exp \left(-\beta \sum_{t : t \in \eta_s} x_t \right) \theta \mathbb{1}_{y_s = -1} (1 - \theta) \mathbb{1}_{y_s = 1}
\]

Again, this is just flipping a biased coin.
Markov Chain Monte Carlo (MCMC)

Regardless of MRFs

- Let p be the pdf/pmf of interest, known as the target distribution
- Find a Markov Chain, $X(0), X(1), \ldots$ with $X(t) \in \mathcal{R}^{|S|}$ such that:
 - $\Pr(X(t) = x) \to p(x)$ as $t \to \infty$ ("sampling")
 - $\Pr(X(t) \in M) \to 1$ as $t \to \infty$ where
 $$M = \{x : p(x) = \max_{x'} p(x')\}$$ ("annealing")
 - $$\frac{1}{T} \sum_{t=1}^{T} H(X(t)) \xrightarrow{t \to \infty} E_p H(X)$$ ("ergodicity")

for some function of interest H
Stochastic matrix

Definition

A square matrix P of nonnegative values is called a stochastic matrix if each of its row sums to 1.

- **Remark:** It is called doubly stochastic if both P and P^T are stochastic matrices.
- **Remark:** a stochastic vector is a vector of nonnegative values whose sum is 1.
- **This terminology can be confusing** – we often use “random” and “stochastic” interchangeably, but here neither a stochastic matrix nor a stochastic vector are “random”.

Markov Chain Monte Carlo (MCMC) – Regardless of MRFs

- For simplicity, assume finite-state space (but more generally, MCMC is also applicable for the countable or continuous settings).
- The MC is said to be stationary if the transition probability

\[P_{x,y} \triangleq \Pr(X(t) = y | X(t-1) = x) \]

is independent of \(t \) \(\forall x, y \in \mathcal{R}^{|S|} \).
- The transition probability matrix is

\[P = \{ P_{x,y} \} \in \mathbb{R}^{\mathcal{R}^{|S|} \times \mathcal{R}^{|S|}} \quad \text{(this might be huge)} \]

- \(P \) is a stochastic matrix.
- Consider pmf’s over \(\mathcal{R}^{|S|} \) as row vectors of length \(|\mathcal{R}^{|S|}| \). Such a vector has nonnegative entries summing to 1.
- Let \(\pi(t) \) be the pmf of \(X(t) \) \(\Rightarrow \) \(\pi(t+1) = \pi(t)P \) is the pmf of \(X(t+1) \):

\[
\pi_i(t+1) = \sum_{j=1}^{|\mathcal{R}^{|S|}|} \pi_j(t)P_{x,y}(j, i) = \sum_{j=1}^{|\mathcal{R}^{|S|}|} \Pr(X(t+1) = i, X(t) = j)
\]
Markov Chain Monte Carlo (MCMC)

Regardless of MRFs

- \(\pi(t + 2) = \pi(t + 1)P = \pi(t)PP = \pi(t)P^2 \)
- more generally \(\pi(t + n) = \pi(t)P^n \)
- If \(\pi P = \pi \), i.e., \(\pi \) is a left eigenvector of \(P \) with eigenvalue 1, then \(\pi \) is called an equilibrium distribution of the MC
- If \(\pi(t) \xrightarrow{t \to \infty} \pi \) then \(\pi \) is an equilibrium distribution, called the stationary distribution of the MC.

If, in addition, \(\exists \lim_{t \to \infty} P^t \), then \(P^t \xrightarrow{t \to \infty} \begin{bmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{bmatrix} \) (i.e., identical rows)

This is consistent with the fact that regardless what \(\pi(0) \) is, \(\pi(t) = \pi(0)P^t \xrightarrow{t \to \infty} \pi \).

- Not every MC has an equilibrium distribution.
- MCMC methods are based on finding an MC whose equilibrium distribution is the target distribution.
Definition

Let $P = \{P_{x,y}\}$ be a transition probability matrix. Then $\mathcal{R}^{|S|}$ is called connected under $\{P_{x,y}\}$, if $\forall x, y \in \mathcal{R}^{|S|},$

$$\exists (x(0), x(1), \ldots, x(t))$$

such that

1. $x(0) = x$, $x(t) = y$;

2. $P_{x(n+1), x(n)} > 0$

with $n = 0, 1, \ldots, t - 1$

In MC terminology, this means there is exactly one communication class.
Theorem

If \((X(t))_{t \geq 0}\) is an MC on \(\mathcal{R}^{|S|}\) and if

1. \(\mathcal{R}^{|S|}\) is connected under \(\{P_{x,y}\}\)
2. \(P_{x,x} > 0\) for some \(x \in \mathcal{R}^{|S|}\) (or more generally, in terms of MC terminology, \(P_{x,y}\) is aperiodic)

Then:

- \(\exists\) a unique \(\tilde{p}\) on \(\mathcal{R}^{|S|}\) such that \(\sum_x \tilde{p}P_{x,y} = \tilde{p}(y)\) \(\forall y \in \mathcal{R}^{|S|}\)
 \((\tilde{p} = \text{“equilibrium distribution”})\)

- \(\Pr(X(t) = x | X(0) = x_0) \xrightarrow{t \to \infty} \tilde{p}(x), \text{ indep. of } x_0 \text{ (the initial state)}\)

- \(\frac{1}{T} \sum_{i=1}^{T} H(X(t)) \xrightarrow{T \to \infty} \sum_x \tilde{p}(x)H(x) = E_{\tilde{p}}H(X)\) with \(H : \mathcal{R}^{|S|} \to \mathbb{R}\)

But what we want is to sample from \(p\), not \(\tilde{p}\).

The trick: find \(P_{x,y}\) such that \(p = \tilde{p}\).
Fact (Detailed Balance)

If for some π, probability on $\mathcal{R}^{|S|}$,

$$\pi(x)P_{x,y} = \pi(y)P_{y,x} \quad \forall x, y \in \mathcal{R}^{|S|}$$

then $\sum_x \pi(x)P_{x,y} = \pi(y)$, i.e., π is the equilibrium distribution.

Proof.

$$\sum_x \pi(x)P_{x,y} = \sum_x \pi(y)P_{y,x} = \pi(y)\sum_x \Pr(X(t+1) = x | X(t) = y) = \pi(y)$$

Remark

Note that $\pi(x)P_{x,y} = \pi(y)P_{y,x}$ is just a short way for writing that

$$\Pr(X(t) = x, X(t+1) = y) = \Pr(X(t) = y, X(t+1) = x)$$
Putting the theorem and the fact together: If $P_{x,y}$ satisfies the condition of the theorem and $\pi = p$ satisfies detailed balance, then p is the unique equilibrium probability of the chain and (2) and (3) from the theorem hold with $\tilde{p} = p$.
Detailed balance is also called reversibility since it implies

\[
\Pr(X(t) = y|X(t+1) = x) = \frac{\Pr(X(t) = y, X(t+1) = x)}{\Pr(X(t+1) = x)} \pi(x);
\]

\[
P_{x,y} \quad \text{(by definition)}
\]

i.e., the backward dynamics is the same as the forward dynamics.

Proof.

\[
\Pr(X(t) = y|X(t+1) = x) = \frac{\Pr(X(t) = y, X(t+1) = x)}{\Pr(X(t+1) = x)} \pi(x)
\]

\[
= \frac{\Pr(X(t+1) = x|X(t) = y)\Pr(X(t) = y)}{\pi(x)} \pi(y)
\]

\[
= \frac{P_{y,x} \pi(y)}{\pi(x)} \equiv P_{x,y}
\]
Gibbs-Sampling Example

Suppose the visiting schedule is done by, q_v, a probability on S. Given $X(t) = x \in \mathcal{R}^{|S|}$:

- Choose a site v using $v \sim q_v$.
- Change x_v to a sample from $p(x_v|x_{\eta_v})$

Checking the conditions of the theorem:

- We can get from any state x to any state y by changing one site at the time. So the state space is connected.
- $P_{x,x} > 0$ for some $x \in \mathcal{R}^{|S|}$? Yes. In fact, it holds for every x.
- Gibbs Sampling also satisfies Detailed Balance (see next slide).
Gibbs Sampling satisfies Detailed Balance.

\[P_{x,y} = \Pr(X(t+1) = y|X(t) = x) = \sum_{v \in S} \Pr(X(t+1) = y|X(t) = x, V = v)q_v \] where \(\Pr(X(t+1) = y|X(t) = x, V = v) \) is \(p(y_v|v_x) \) if \(vy = vx \) and 0 otherwise. Thus:

\[
P_{x,y} = \sum_{v \in S} \mathbb{1}_{vy=.vx}q_v p(y_v|vx) \]

\[
\Rightarrow p(x)P_{x,y} = \sum_{v \in S} \mathbb{1}_{vy=vx}q_v p(y_v|vx) p(x_v|vx) p(vx) / p(x)
\]

Similarly:

\[
p(y)P_{y,x} = \sum_{v \in S} \mathbb{1}_{vx=vy}q_v p(x_v|vy) p(y_v|vy) p(vy) / p(y)
\]

\[
= \sum_{v \in S} \mathbb{1}_{vx=vy}q_v p(x_v|vx) p(y_v|vx) p(vx)
\]

\[
= \sum_{v \in S} \mathbb{1}_{vx=vy}q_v p(y_v|vx) p(x_v|vx) p(vx) \] for scalars: \(ab = ba \)

\[
\Rightarrow p(y)P_{y,x} = p(x)P_{x,y}, \text{ i.e., detailed balance is achieved.}
\]
Remarks on Gibbs Sampling

- If the visitation schedule is deterministic we still have
 \[\Pr(X(t) = x | X(0) = x(0)) \xrightarrow{t \to \infty} p(x) \]
 provided that every site is visited infinitely often.
- Important to observe that we don’t need \(Z \).
- Recall: in MRFs, \(p(x) = \frac{1}{Z} \exp \left(- \sum_{c \in C} E_c(x_c) \right) \)
 (similarly if working with \(p(x|y) \)). Write

 \[p(x) = p_T(x) \big|_{T=1} \triangleq \frac{1}{Z_T} \exp \left(- \frac{1}{T} \sum_{c \in C} E_c(x_c) \right) \bigg|_{T=1} \]

Fact (Simulated Annealing)

\(p_T(x) \xrightarrow{T \downarrow 0} \) probability concentrated on \(\{ x : x = \arg \max_{x'} p(x') \} \)

… as long as \(T \) doesn’t decay “too fast”.

- Similar results if working with \(p(x|y) \) instead of \(p(x) \)
Modeling: Beyond the Ising Model

- $x_s \in \{0, 1, \ldots, m\}$. The Potts model is

$$p(x) \propto \exp \left(-\gamma \sum_{s \sim t} 1_{x_s \neq x_t} \right) \quad \gamma > 0$$

- A modification in case the ordering of the labels matters:

$$p(x) \propto \exp \left(-\gamma \sum_{s \sim t} (x_s - x_t)^2 \right) \quad \gamma > 0$$

(can also replace the ℓ_2 loss with a robust error function)

- Gaussian MRF: $x \sim \mathcal{N}(\mu, Q^{-1})$ where Q is SPD and sparse.

- More complicated models and/or higher-order cliques (see examples in the presentation “MRFs, part 4”)

www.cs.bgu.ac.il/~cv192/
There are many other approaches for searching for the argmax. For example:

- Graph-cut methods
- Belief propagation and loopy belief propagation
- Mean-field approximations
- ...
Applications: Beyond Image Restoration

- Inpainting (y has missing pixels)
- Image segmentation
- Spatial coherence in various problems such as optical-flow estimation, depth-estimation, stereo, etc.
- Pose estimation
- Texture synthesis
- Interactions between superpixels (irregular grid)
- HMM-like models are useful in CV applications such as tracking
- Many other applications
Learning MRFs

- MRFs often have parameters (e.g., β in the Ising model, or Q in a GMRF) that can/should be learned; we won’t get into this too much, but we will touch upon some examples in the next presentation.

- We can also learn the structure of the graph (i.e., the existence, or lack thereof, edges in the graph); this is called structural inference.
Books (see course website for details)

- Prince
- Szeliski
- Markov random fields for vision and image processing; editors: Blake and Rother (nice mix of tutorials and applications)
- Winkler’s Image Analysis, Random Fields and Markov Chain Monte Carlo (mathematically advanced, focused on MCMC)
Version Log

- 25/3/2019, ver 1.02. S28: Fixed \mathcal{R}^S to $\mathcal{R}^{|S|}$. Split S28 into two slides.
- S35: Clarified when we move back from the general case to MRFs; moved the caveat into the Fact. to MRFs
- 18/3/2019, ver 1.01. S35 (now S36): $\gamma \rightarrow -\gamma$, stated $\gamma > 0$
- 11/03/2019, ver 1.00.