Tentative syllabus

Mid-term

Exam
• The need for Intermediate Representations
 – Three-Address Code
• Lowering AST in While to IL
• Operational semantics
• Equivalence
• Correctness of lowering
Introduction to optimizations

Formalisms for program analysis
- Basic blocks
- Control flow graphs

Dataflow analyses and optimizations
- Live variables \rightarrow dead code elimination
- In recitation:
 - Available expressions \rightarrow common sub-expression elimination $+$ copy propagation
INTRODUCTION TO OPTIMIZATIONS
Optimization points

- User
 profile program
 change algorithm

- Compiler
 apply IR optimizations

- Compiler
 register allocation
 instruction selection
 peephole transformations

- source code
- Front end
- IR
- Code generator
- target code

today and next week
Overview of IR optimization

• Formalisms and Terminology
 – Control-flow graphs
 – Basic blocks

• Local optimizations *(won’t cover this year)*
 – Optimizing small pieces of a function

• Global optimizations
 – Optimizing functions as a whole

• The dataflow framework
 – Defining and implementing a wide class of optimizations
Semantics-preserving optimizations

• An optimization is **semantics-preserving** if it does not alter the semantics of the original program

• Examples:
 – Eliminating unnecessary statements
 – Computing values that are known statically at compile-time instead of runtime
 – Evaluating constant expressions outside of a loop instead of inside

• Non-examples:
 – Reordering side-effecting computations
 – Replacing bubble sort with quicksort (why?)

• The optimizations we will consider in this class are all semantics-preserving

• How can we find opportunities for optimizations?
Program analysis

• In order to optimize a program, the compiler has to be able to reason about the properties of that program
• An analysis is called sound if it never asserts an incorrect fact about a program
• All the analyses we will discuss in this class are sound
 – (Why?)
if (y < 5)
 x := 137;
else
 x := 42;

Print(x);

“At this point in the program, x holds some integer value”
if (y < 5)
 x := 137;
else
 x := 42;
Print(x);

“At this point in the program, x is either 137 or 42”
if (y < 5)
 x := 137;
else
 x := 42;
Print(x);

“At this point in the program, x is 137”
if (y < 5)
 x := 137;
else
 x := 42;

Print(x);
CONTROL FLOW GRAPHS
main: t0 := Call ReadInteger()
a := t0
t1 := Call ReadInteger()
b := t1
L0: t2 := 0
t3 := b == t2
t4 := 0
t5 := t3 = t4
IfZ t5 Goto L1
c := a
a := b
t6 := c % a
b := t6
Goto L0
L1: Call PrintInt()
main: t0 := Call ReadInteger()
a := t0
t1 := Call ReadInteger()
b := t1
L0: t2 := 0
 t3 := b == t2
 t4 := 0
 t5 := t3 = t4
 IfZ t5 Goto L1
 c := a
 a := b
 t6 := c % a
 b := t6
 Goto L0
L1: Call PrintInt()
main:
 t0 := Call ReadInteger()
 a := t0
 t1 := Call ReadInteger()
 b := t1

L0:
 t2 := 0
 t3 := b == t2
 t4 := 0
 t5 := t3 = t4
 IfZ t5 Goto L1
 c := a
 a := b
 t6 := c % a
 b := t6
 Goto L0

L1: Call PrintInt()
Basic blocks

• A basic block is a maximal sequence of IR instructions where
 – There is exactly one label where control enters the sequence, which must be at the start of the sequence
 – There is exactly one label where control leaves the sequence, which must be at the end of the sequence

• Informally: a sequence of instructions that always execute as a group
Control-flow graphs

• A control-flow graph (CFG) is a graph of the basic blocks in a function
 – From here on CFG stands for “control-flow graph” and not “context free grammar”

• Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block

• Dedicated nodes for the start and end of a function

• **Program executions correspond to paths the executions of the program**
Scope of optimizations

• An optimization is **local** if it works on just a single basic block

• An optimization is **global** if it works on an entire control-flow graph

• An optimization is **interprocedural** if it works across the control-flow graphs of multiple functions

 – We won't talk about this in this course
Optimizations and analyses

• Most optimizations are only possible given some analysis of the program's behavior
• In order to implement an optimization, we will talk about the corresponding program analyses

• **Program analysis** = algorithm that processes program and infers facts
 – **Sound facts** = facts that hold for all program executions
 – **Sound analysis** = program analysis that infers only sound facts
DEAD CODE ELIMINATION (DCE)
Definition

• An assignment to a variable v is called **dead** if the value of that assignment is never read anywhere.

• **Dead code elimination** removes dead assignments from IR.

• Determining whether an assignment is dead depends on assignments succeeding it.
Dead code elimination example

```
\text{a := b}
\text{c := a}
\text{d := a + b}
\text{e := d}
\text{d := a}
\text{f := e}
\text{Print(d)}
```

Can we remove this statement?
Live variables

• The analysis corresponding to dead code elimination is called liveness analysis

• A variable is live at a point in a program if later in the program its value will be read before it is written to again
Optimizing via liveness analysis

• Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

• Dead code elimination
 – If $x := R \{v_1, \ldots, v_k\}$
 – And $x \notin \{v_1, \ldots, v_k\}$ and R has no side-effects (not a function call)
 – We can eliminate $x := R$
 (if R has side-effects, we can transform the assignment to just R)
LIVE VARIABLE ANALYSIS
Plan

• Define liveness analysis on single statements
• Define liveness analysis on basic blocks
• Define liveness analysis on acyclic CFGs
• Define liveness on arbitrary CFGs
The goal

• Given an IL command C and set of live variables $\mathcal{LV}_{\text{out}}$ after C executes, compute the set of live variables \mathcal{LV}_{in} before C executes

\[
\mathcal{LV}_{\text{in}} \quad \{ \ldots \} \\
\text{lab: } C \\
\mathcal{LV}_{\text{out}} \quad \{ \ldots \}
\]

• We will call this function the transformer of C and write it as

\[
\mathcal{LV}_{\text{in}} = F[C](\mathcal{LV}_{\text{out}})
\]
DEF/USE

• For an IL statement C, we define
 – **DEF** – the variables possibly modified by C,
 – **USE** – the variables read by C

<table>
<thead>
<tr>
<th>Command Type</th>
<th>DEF</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>$x := R$</td>
<td>${x}$</td>
<td>$\text{Vars}(R)$</td>
</tr>
<tr>
<td>Goto l'</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>IfZ x Goto l'</td>
<td>{}</td>
<td>${x}$</td>
</tr>
<tr>
<td>IfNZ x Goto l'</td>
<td>{}</td>
<td>${x}$</td>
</tr>
<tr>
<td>Call $f(x_1,\ldots,x_n)$</td>
<td>{}</td>
<td>${x_1,\ldots,x_n}$</td>
</tr>
<tr>
<td>Ret x</td>
<td>{}</td>
<td>${x}$</td>
</tr>
</tbody>
</table>
Liveness transformer

• Given an IL command C and set of live variables LV_{out} after C executes, compute the set of live variables LV_{in} before C executes

\[
LV_{in} = (LV_{out} \setminus DEF(C)) \cup USE(C)
\]

lab: C

\[
\{ \ldots \}
\]

$x := x + 1$

• We define the transformer of C: LV_{in}
ANALYZING AND OPTIMIZING BASIC BLOCKS
Analyzing basic blocks

- Let $P = C_1, \ldots, C_n$ be a basic block and LV_{n+1} be the initial set of live variables after C_n
- To compute LV_1, \ldots, LV_n simply apply $F[C_i]$ for $i=n$ to 1
Liveness example

{ b }

a := b;
{ a, b }
c := a;
{ a, b }
d := a + b;
{ a, b, d }
e := d;
{ a, b, e }
d := a;
{ b, d, e }
f := e;
{ b, d }

Foo(b, d)
{ }
Dead code elimination

```plaintext
{ b }
{ a, b }
c := a;
{ a, b }
d := a + b;
{ a, b, d }
e := d;
{ a, b, e }
d := a;
{ b, d, e }
f := e;
{ b, d }
Foo(b, d)
{ } 
```
GLOBAL LIVENESS ANALYSIS
Global analysis technical challenges

• Need to be able to handle multiple predecessors/successors for a basic block

• Need to be able to handle multiple paths through the control-flow graph
 – may need to iterate multiple times to compute final value
 – but the analysis still needs to terminate!

• Need to be able to assign each basic block a reasonable default value for before we've analyzed it
Global analysis technical challenges

• Need to be able to handle multiple predecessors/successors for a basic block
 – Join operator

• Need to be able to handle multiple paths through the control-flow graph
 – may need to iterate multiple times to compute final value
 – but the analysis still needs to terminate!
 – Chaotic iteration (fixed point iteration)

• Need to be able to assign each basic block a reasonable default value for before we've analyzed it
 – Bottom value
Global dead code elimination

• Local dead code elimination needed to know what variables were live on exit from a basic block
• This information can only be computed as part of a global analysis
• How do we extend our liveness analysis to handle a CFG?
GLOBAL LIVENESS ANALYSIS: CFGS WITHOUT LOOPS
CFGs without loops

Start

\[b := c + d; \]
\[e := c + d; \]

\[x := c + d; \]
\[a := b + c; \]

\[y := a + b; \]

\[x := a + b; \]
\[y := c + d; \]

\[\text{Foo}(x, y) \]

End
Which variables may be live on some execution path?
Which assignments are redundant?

Start

{x, y}
End

{x, y} Foo(x,y)

{a, b, c, d}
{b, c, d}
x := c + d;
a := b + c;
{a, b, c, d}

{a, c, d}
b := c + d;
e := c + d;
{a, b, c, d}

{a, b, c, d}
y := a + b;
{a, b, c, d}

{a, b, c, d}
x := a + b;
y := c + d;
{x, y}
CFGs without loops

Start

{b, c, d}
{x := c + d;
a := b + c;
{a, b, c, d}

{a, c, d}
b := c + d;
e := c + d;
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

{b, c, d}
x := c + d;
a := b + c;
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

{x, y}

{x, y}

Foo(x,y)

End
CFGs without loops

\[
\begin{align*}
\text{Start} & \quad \rightarrow \quad b := c + d; \\
& \quad \rightarrow \quad a := b + c; \\
& \quad \rightarrow \quad x := a + b; \\
& \quad \rightarrow \quad y := c + d; \\
& \quad \rightarrow \quad \{x, y\} \\
& \quad \rightarrow \quad \text{Foo}(x,y) \\
& \quad \rightarrow \quad \text{End}
\end{align*}
\]

Dead code elimination can lead to more optimizations
CFGs without loops

\[\begin{align*}
\text{Start} & \quad \rightarrow \quad b := c + d; \\
a := b + c; & \quad \rightarrow \quad x := a + b; \\
y := c + d; & \quad \rightarrow \quad \{x, y\} \\
\text{Foo}(x, y) & \quad \rightarrow \quad \text{End}
\end{align*} \]
Major changes – part 1

• In a local analysis (analysis of one basic block), each statement has exactly one predecessor
• In a global analysis, each statement may have multiple predecessors
• A global analysis must have some means of combining information from all predecessors of a basic block
Combining values

Start

\{b, c, d\}
\(x := c + d;\)
\(a := b + c;\)
\{a, b, c, d\}

Need to combine currently-computed value with new value

\{c, d\}
\(b := c + d;\)
\(e := c + d;\)
\{b, c, d\}

\{a, b, c, d\}
\(y := a + b;\)
\{a, b, c, d\}

\{a, b, c, d\}
\(x := a + b;\)
\(y := c + d;\)
\{x, y\}

\{x, y\}
\(\text{Foo}(x, y)\)

End
Combining values

{c, d}
b := c + d;
e := c + d;
{a, b, c, d}

{b, c, d}
x := c + d;
a := b + c;
{a, b, c, d}

{a, b, c, d}
y := a + b;
{a, b, c, d}

{a, b, c, d}
x := a + b;
y := c + d;
{x, y}

{x, y}
Foo(x,y)

End
Combining values

Start

\{b, c, d\}
x := c + d;
a := b + c;
\{a, b, c, d\}

\{a, c, d\}
b := c + d;
e := c + d;
\{a, b, c, d\}

\{a, b, c, d\}
x := a + b;
y := c + d;
\{x, y\}

\{x, y\}
Foo(x, y)

End
GLOBAL LIVENESS ANALYSIS: HANDLING LOOPS
Major changes – part 2

• In a local analysis, there is only one possible path through a basic block
• In a global analysis, there may be many paths through a CFG
• May need to recompute values multiple times as more information becomes available
• Need to be careful when doing this not to loop infinitely!
 – (More on that later)
CFGs with loops

Start

a := b + c;
d := a + c;
b := c + d;
c := c + d;
IfZ ...

Ret a

End

c := a + b;
a := a + b;
d := b + c;
a := b + c;
d := a + c;
b := c + d;
c := a + b;
Start
How do we use join here?

\[
\begin{align*}
 a & := b + c; \\
 d & := a + c;
\end{align*}
\]

\[
\begin{align*}
 b & := c + d; \\
 c & := c + d; \\
 \text{IfZ} & \ldots
\end{align*}
\]

\[
\begin{align*}
 c & := a + b;
\end{align*}
\]

\[
\begin{align*}
 a & := a + b; \\
 d & := b + c;
\end{align*}
\]

\[
\{a\} \\
\text{Ret } a
\]

End
Major changes – part 3

- In a local analysis, there is always a well-defined “first” statement to begin processing.
- In a global analysis with loops, every basic block might depend on every other basic block.
- To fix this, we need to assign initial values to all of the blocks in the CFG.
CFGs with loops - initialization

Start

\[
\begin{align*}
{} & b := c + d; \\
{} & c := c + d; \\
\end{align*}
\]

{}
\[
\begin{align*}
a & := b + c; \\
d & := a + c; \\
\end{align*}
\]

{}
\[
\begin{align*}
c & := a + b; \\
\end{align*}
\]

{}
\[
\begin{align*}
a & := a + b; \\
d & := b + c; \\
\end{align*}
\]

{a}
Ret a

End
CFGs with loops - iteration

Start

{} b := c + d;
{} c := c + d;

{} a := b + c;
d := a + c;

{} c := a + b;

{} a := a + b;
d := b + c;
{a}

{a}
Ret a

End
CFGs with loops - iteration

Start

\{\}
\begin{align*}
a & := b + c; \\
d & := a + c;
\end{align*}

\{\}
\begin{align*}
b & := c + d; \\
c & := c + d;
\end{align*}

\{\}
\begin{align*}
c & := a + b;
\end{align*}

\{a, b, c\}
\begin{align*}
a & := a + b; \\
d & := b + c; \\
\{a\}
\end{align*}

\{a\}
Ret a

End
CFGs with loops - iteration

Start

{} b := c + d; c := c + d;

{} a := b + c;
d := a + c;
{a, b, c}

{} c := a + b;

{a, b, c} a := a + b;
d := b + c;
{a}

{a} Ret a

End
CFGs with loops - iteration

Start

{b, c}
\[a \leftarrow b + c; \]
\[d \leftarrow a + c; \]
\{a, b, c\}

\{b, c\}
\[b \leftarrow c + d; \]
\[c \leftarrow c + d; \]

\{a, b, c\}
\[a \leftarrow a + b; \]
\[d \leftarrow b + c; \]
\{a\}

\{a\}
Ret a

End

\{\}
\[c \leftarrow a + b; \]
CFGs with loops - iteration

\begin{verbatim}
Start

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{} b := c + d;
c := c + d;
{b, c}

{} c := a + b;

{} a := b + c;
d := a + c;
{a, b, c}

{} a := a + b;
d := b + c;
{a}

{} Ret a
End
\end{verbatim}
CFGs with loops - iteration

Start

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{c, d}
b := c + d;
c := c + d;
{b, c}

{}c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a}

{a}Ret a

End
CFGs with loops - iteration

\textbf{Start}

- $\{a, b\}$
- $\{b, c\}$

- $\{c, d\}$
 - $b := c + d$
 - $c := c + d$
 - $\{b, c\}$

- $\{b, c\}$
 - $a := b + c$
 - $d := a + c$
 - $\{a, b, c\}$

- $\{a, b\}$
 - $c := a + b$
 - $\{a, b, c\}$

- $\{a, b, c\}$
 - $a := a + b$
 - $d := b + c$
 - $\{a\}$

- $\{a\}$
 - Ret a

\textbf{End}
CFGs with loops - iteration

Start

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{c, d}
b := c + d;
c := c + d;
{b, c}

{a, b}
c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a}

{a}
Ret a

End
CFGs with loops - iteration

```
a := a + b;
d := b + c;
c := a + b;
d := a + c;
b := c + d;
c := c + d;
```

Start

```
{a, b}
{b, c}
```

```
b := c + d;
c := c + d;
```

```
{c, d}
{b, c}
```

```
{a, b}
c := a + b;
{a, b, c}
```

```
a := b + c;
d := a + c;
{a, b, c}
```

```
{a, b, c}
{a, b, c}
```

```
{a, b, c}
a := a + b;
d := b + c;
{a, c, d}
```

```
{a, b, c}
{a, c, d}
```

```
{a}
Ret a
```

End
CFGs with loops - iteration

Start

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{c, d}
b := c + d;
c := c + d;
{b, c}

{a, b}
c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a, c, d}

{a}
Ret a

End
CFGs with loops - iteration

Start

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{c, d}
b := c + d;
c := c + d;
{b, c}

{a, b}
c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a, c, d}

{a}
Ret a

End
CFGs with loops - iteration

\[
\begin{align*}
{\{c, d\}} \\
b &:= c + d; \\
c &:= c + d; \\
{\{b, c\}}
\end{align*}
\]

\[
\begin{align*}
{\{b, c\}} \\
a &:= b + c; \\
d &:= a + c; \\
{\{a, b, c\}}
\end{align*}
\]

\[
\begin{align*}
{\{a, b\}} \\
c &:= a + b; \\
{\{a, b, c\}}
\end{align*}
\]

\[
\begin{align*}
{\{a, b, c\}} \\
a &:= a + b; \\
d &:= b + c; \\
{\{a, c, d\}}
\end{align*}
\]

\[
\begin{align*}
{\{a\}} \\
\text{Ret } a
\end{align*}
\]

End
CFGs with loops - iteration

```
{c, d}
b := c + d;
c := c + d;
{a, b, c}

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{a, b}
c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a, c, d}

{a}
Ret a
```

Start

End
CFGs with loops - iteration

Start

{a, c, d}
b := c + d;
c := c + d;
{a, b, c}

{b, c}
a := b + c;
d := a + c;
{a, b, c}

{a, b}
c := a + b;
{a, b, c}

{a, b, c}
a := a + b;
d := b + c;
{a, c, d}

{a, c, d}

{a, b, c}

{a}
Ret a

End
CFGs with loops – fixed point

Start

\{a, c, d\}
\[b := c + d;\]
\[c := c + d;\]
\{a, b, c\}

\{b, c\}
\[a := b + c;\]
\[d := a + c;\]
\{a, b, c\}

\{a, b\}
\[c := a + b;\]
\{a, b, c\}

\{a, b, c\}
\[a := a + b;\]
\[d := b + c;\]
\{a, c, d\}

\{a\}
Ret a

End
FORMALIZING
GLOBAL LIVENESS ANALYSIS
Global liveness analysis

• Initially, set $IN[C] = \{ \}$ for each command C
• Set $IN[end]$ to the set of variables known to be live on exit ($\{\}$ unless special assumptions)
 – Language-specific knowledge
• Repeat until no changes occur:
 – For each command C in any order you'd like:
 • Set $OUT[C]$ to be the union of $IN[C_{\text{next}}]$ for each successor C_{next} of C
 • Set $IN[C]$ to $(OUT[C] \setminus DEF(C)) \cup USE(C)$
• Yet another fixed-point iteration!
Global liveness analysis

\[a := b + c \]

\[\text{IN}[s] = (\text{OUT}[s] - \{a\}) \cup \{b, c\} \]

\[\text{OUT}[s] = \text{IN}[s2] \cup \text{IN}[s3] \]

\[\text{IN}[s2] \]

\[\text{IN}[s3] \]

\[s2 \]

\[s3 \]
Why does this work?

• To show correctness, we need to show that
 – The algorithm eventually terminates, and
 – When it terminates, it has a sound answer
Termination argument

- ...?
Termination argument

• Once a variable is discovered to be live during some point of the analysis, it always stays live
• Only finitely many variables and finitely many places where a variable can become live
Soundness argument (sketch)

• Each individual rule, applied to some set, correctly updates liveness in that set.
• When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement.
• So, locally, every step in the algorithm is correct.
• Does local correctness imply global correctness?
 – Yes under some conditions
 – Monotone dataflow
OPTIMIZATION CORRECTNESS
Revisiting semantic equivalence

• Recall our definition of semantic equivalence: for every pair of IL programs P and P' – they are equivalent if for every input state m,
 \[
 \llbracket P \rrbracket m = \llbracket P' \rrbracket m
 \]

• Does it work for P and $P' = DCE(P)$?

<table>
<thead>
<tr>
<th>P</th>
<th>P'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a := b$</td>
<td>$a := b$</td>
</tr>
<tr>
<td>$c := a$</td>
<td>$d := a$</td>
</tr>
<tr>
<td>$d := a + b$</td>
<td>$d := a$</td>
</tr>
<tr>
<td>$e := d$</td>
<td>$f := e$</td>
</tr>
<tr>
<td>$d := a$</td>
<td>Print(d)</td>
</tr>
<tr>
<td>Print(d)</td>
<td></td>
</tr>
</tbody>
</table>
Refining semantic equivalence

• **Definition:** For each IL program P, let $V=\text{ObservableVars}(P)$ be the variables appear in Ret and Call commands.

• **Definition:** For every pair of IL programs P and P' we say that they are **observably equivalent** if for every input state m,

$$(\llbracket P \rrbracket m)|_{\text{ObservableVars}(P)} = (\llbracket P' \rrbracket m)|_{\text{ObservableVars}(P')}$$

• TODO: fix by defining trace semantics
Semantic equivalence for DCE

• **Lemma**: Let $DCE(P)=P'$ be a dead code elimination optimization applied to program P then the following holds:
 $\text{ObservableVars}(P) = \text{ObservableVars}(P')$

• **Theorem**: P and $DCE(P)$ are observably equivalent
Example

\[P \]
\[
\begin{align*}
 a & := b \\
 c & := a \\
 d & := a + b \\
 e & := d \\
 d & := a \\
 f & := e \\
 \text{Print}(d)
\end{align*}
\]

\[P' \]
\[
\begin{align*}
 a & := b \\
 d & := a \\
 \text{Print}(d)
\end{align*}
\]

\[\text{ObservableVars}(P) = \{d\} \]

- For \(m = [\text{pc} \mapsto 1, \ a \mapsto 0, \ b \mapsto 1, \ c \mapsto 2, \ d \mapsto 3, \ e \mapsto 4, \ f \mapsto 5] \)
- At the function call
 for \(P \) we have \([\text{pc} \mapsto 6, \ a \mapsto 1, \ b \mapsto 1, \ c \mapsto 1, \ d \mapsto 1, \ e \mapsto 2, \ f \mapsto 2] | \{d\} = [d \mapsto 1] \)
 for \(P' \) we have \([\text{pc} \mapsto 3, \ a \mapsto 1, \ b \mapsto 1, \ c \mapsto 2, \ d \mapsto 1, \ e \mapsto 4, \ f \mapsto 5] | \{d\} = [d \mapsto 1] \)
- At the output:
 \[
 [P] \ m = [\text{pc} \mapsto 7, \ a \mapsto 1, \ b \mapsto 1, \ c \mapsto 1, \ d \mapsto 1, \ e \mapsto 2, \ f \mapsto 2] \\
 [P'] \ m = [\text{pc} \mapsto 4, \ a \mapsto 1, \ b \mapsto 1, \ c \mapsto 2, \ d \mapsto 1, \ e \mapsto 4, \ f \mapsto 5] \\
 ([P] \ m) | \{d\} = ([P'] \ m) | \{d\} = [d \mapsto 1] \]
Next lecture: Dataflow Analysis Framework