
Towards the Next Generation of Proof Assistants:

Enhancing the Proofs–as–Programs Paradigm

Liron Cohen

As software has grown increasingly critical to our society’s infrastructure,
mechanically-verified software has grown increasingly important, feasible, and
prevalent. Proof assistants have seen tremendous growth in recent years be-
cause of their success in the mechanical verification of high-value applications
in many areas, including cyber security, cyber-physical systems, operating sys-
tems, compilers, and microkernels. These proof assistants are built on top of
constructive type theory whose computational interpretation is given by the
proofs-as-programs paradigm, which establishes a correspondence between for-
mal proofs and computer programs. However, while both proof theory and
programming languages have evolved significantly over the past years, the cross-
fertilization of the independent new developments in each of these fields has yet
to be explored in the context of this paradigm. This naturally gives rise to
the following questions: how can modern notions of computation influence and
contribute to formal foundations, and how can modern reasoning techniques
improve the way we design and reason about programs?

In this talk I first demonstrate how using programming principles that go
beyond the standard lambda-calculus, namely state and non-determinism, pro-
motes the specification and verification of modern systems, e.g. distributed
systems. I then illustrate the surprising fragility of proof assistants in the pres-
ence of such new computational capabilities, and outline my ongoing efforts
to develop a more robust foundation. For the converse direction, I show how
incorporating modern proof-theoretic techniques offers a more congenial frame-
work for reasoning about hard programming problems and hence facilitates the
verification effort.

1


