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The Middle Ground – Ancestral Logic

Liron Cohen and Arnon Avron

Abstract Many efforts have been made in recent years to construct formal
systems for mechanizing general mathematical reasoning. Most of these sys-
tems are based on logics which are stronger than first-order logic (FOL). How-
ever, there are good reasons to avoid using full second-order logic (SOL) for
this task. In this work we investigate a logic which is intermediate between
FOL and SOL, and seems to be a particularly attractive alternative to both:
ancestral logic. This is the logic which is obtained from FOL by augmenting
it with the transitive closure operator.

While the study of this logic has so far been mostly model-theoretical, this
work is devoted to its proof theory (which is much more relevant for the task
of mechanizing mathematics). Two natural Gentzen-style proof systems for
ancestral logic are presented: one for the reflexive transitive closure, and one
for the non-reflexive one. We show that these systems are sound for ancestral
logic and provide evidence that they indeed encompass all forms of reasoning
for this logic that are used in practice. The two systems are shown to be
equivalent by providing translation algorithms between them. We end with
an investigation of two main proof-theoretical properties: cut elimination and
constructive consistency proof.

1 Introduction

Due to recent advances in the field of automated reasoning, formal systems
for mechanizing mathematical reasoning are attracting a lot of interest (see,
e.g., [16,5,7,22]). Most of these systems go beyond first-order logic (FOL),
because the latter is too weak for this task: one cannot even provide in it a
categorical characterization of the most basic concept of mathematics — the
natural numbers. While FOL is too weak, using second-order logic (SOL) for
this task has many disadvantages too. First of all, SOL has doubtful semantics,
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as it is based on debatable ontological commitments. Moreover, it does not
seem satisfactory that dealing with basic notions (such as the natural numbers)
requires the use of the strong notions involved in SOL, such as quantification
over all subsets of infinite sets. In addition, SOL is difficult to deal with from
a proof-theoretical point of view.

The above considerations indicate that the most suitable framework for
mechanizing mathematical reasoning should be provided by some logic which
is intermediate between FOL and SOL. There are several natural candidates
for this task that have been suggested in the literature, such as weak second-
order logic, ω-logic, cardinality logic, etc. In [23] it was shown how the natural
numbers can be categorically characterized in all these logics. We believe that
the most suitable choice among them for the task of formalizing mathematics is
ancestral logic (AL) — the logic obtained by augmenting FOL with the concept
of transitive closure of a given relation. Indeed, ancestral logic provides the
most suitable framework for the formalization of the recursive definitions of
fundamental concepts which are characteristic for basic mathematics (see, e.g.,
[2,23,24]).

The expressive power of ancestral logic is equivalent to that of the other
candidates, in the sense that any class of infinite structures definable by one
of them can be defined by ancestral logic. However, there are several reasons
to prefer it over the others. One of them is that it seems to be the easiest
choice from a proof-theoretic point of view. Another important reason is simply
the simplicity of the notion of transitive closure. Any person, even with no
mathematical background whatsoever, can easily grasp the concept of the
ancestor of a given person (or, in other words, the idea of transitive closure of
a certain binary relation).

Here are some examples of the use of transitive closure in every day life:

– The transitive closure of the relation "x is a child of y" is: "x is a descendant
of y". We often use this transitive relation to make inferences, such as: if
a disease is hereditary, i.e. transferred from parent to child, and one of my
ancestors had this disease, then I’ll have this disease too.

– A mathematical example: Understanding the concept of the natural num-
bers is basically understanding that every number is a descendant of zero
through the successor relation. Also, understanding the concept of a well-
formed formula in formal logic involves applying certain operations again
and again starting from a class of atoms. Thus, the understanding of basic
arithmetic and basic logic relies on the understanding of the idea of the
transitive closure.

The examples above (especially the last one) show that any system designed for
capturing the ability to do mathematics must provide the means to create the
transitive closure of a relation and to make appropriate inferences regarding
it. The examples also show that our basic understanding of the transitive
closure operator involves two components: the ability to construct a new binary
relation from a given one (the transitive closure of the given relation), and the
ability to infer that if a certain property is hereditary between objects in a
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given relation, then it will also be hereditary between objects which are related
by the new relation.

Most of the works on ancestral logic have so far been carried out in the
context of finite model theory (see, e.g., [10]). Clearly, the focus on finite struc-
tures renders these works irrelevant for the task of formalizing mathematics.
Moreover, most of this research has been dedicated to model theory, while for
mechanizing mathematics we need useful proof systems.

In this paper we suggest a complementary view of ancestral logic by in-
vestigating it from a proof-theoretical point of view. We first review the basic
definitions and present some of the most important model-theoretic properties
of ancestral logic. Then, we go on to develop useful proof systems for ancestral
logic. A first step in this direction was done in [2] where a Gentzen-style system
for the non-reflexive transitive closure operator was presented. Therein it was
stated that: “a major research task here is to find out what other rules (if any)
should be added in order to make the system ‘complete’ in some reasonable
sense”. The main goal of this work is to provide an answer to this question.
We show that the system proposed in [2] is too weak, as it fails to prove cer-
tain fundamental properties of the transitive closure operator. We then take
further steps towards a useful proof system for ancestral logic by proposing
a stronger system, TCG, which is sound for this logic and apparently encom-
passes all forms of reasoning for this logic that are used in practice. TCG is
proven to be equivalent to Hilbert-style systems previously suggested in the
literature for the reflexive transitive closure, in the sense that there are trans-
lation algorithms between them that preserve provability. In the context of our
system we also investigate two crucial proof-theoretical properties: cut elim-
ination and the existence of a constructive consistency proof. Unfortunately,
it turns out that the generalization of PA’s induction rule employed in our
system for ancestral logic renders Gentzen’s standard methods for analyzing
PA inapplicable. Nevertheless, we do show that in the case of arithmetic the
ordinal number of the systems is ε0, like the ordinal of PA.

2 First-order Languages Augmented by a Transitive Closure
Operator

A standard mathematical definition of the transitive closure of a binary rela-
tion is as follows.

Definition 1 Let X be a set and R ⊆ X × X be a binary relation on X.
The transitive closure operator TCR of the relation R is the smallest relation
TCR ⊆ X ×X such that the following holds:

1. R ⊆ TCR.
2. TCR is transitive.

The relation TCR exists for any binary relation R. To see this, note that there
exists at least one transitive relation containing R, the trivial one: X × X.
Furthermore, the intersection of any family of transitive relations is again
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transitive. Hence, the transitive closure of R is the intersection of all transitive
relations containing R.

Definition 1 is an impredicative definition. A more constructive, predicative
characterization can be obtained as follows:

Definition 2 Let X be a set and R ⊆ X ×X be a binary relation on X. The
transitive closure operator TCR of the relation R is defined by

TCR =
⋃
n∈N+

Rn,

where Rn is defined by

Rn =

{
R, if n = 1,

Rn−1 ◦R, otherwise.

Ancestral logic is an extension of first-order logic obtained by augmenting
FOL with a transitive closure operator. The essential idea in embedding the
concept of the transitive closure operator into a logical framework is that one
may treat a first-order formula with two (assigned) free variables as a definition
of a binary relation. Below are the corresponding formal definitions of a first-
order logic augmented by the transitive closure operator, and its semantics.

In this paper σ denotes a first-order signature with equality and L1 (σ) is
the first-order language based on σ. A structure for a first-order language based
on σ is an ordered pair M = 〈D, I〉, where D is a non-empty set of elements
(the domain) and I is an interpretation function on σ. To avoid confusion
regarding parentheses, we use ( , ) for parentheses in a formal language, and [
, ] for parentheses in the metalanguage.

Definition 3 Let σ be a signature for a first-order language with equality,
and let M = 〈D, I〉 be a structure for σ and v an assignment in M .

– The language LTC (σ) is defined as the first-order language based on σ,
with the addition of the TC operator defined by: for any formula ϕ in
LTC (σ), x, y distinct variables, and s, t terms, (TCx,yϕ) (s, t) is a formula
in LTC (σ). The free occurrences of x and y in ϕ become bound in this
formula.

– The pair 〈M,v〉 is said to satisfy (TCx,yϕ) (s, t) if there exist a0, ..., an ∈ D
(n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by M and
v[x := ai, y := ai+1]

1 for 0 ≤ i ≤ n− 1.

The logic obtained is called Ancestral Logic and it is denoted by LTC .

The first (as far as we know) to suggest expanding first-order logic by the TC
operator was Martin in [17,18]. Actually, Martin used a generalized form of the
transitive closure operator. He expanded first-order logic by adding for each
n ∈ N a TCn operator which, when applied to an 2n-ary predicate, produce a
new 2n-ary predicate. In [19], Myhill presented a first-order logic augmented

1 v [x := a] denotes the x-variant of v which assigns to x the element a from D.
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only by the operator TC1, but together with the introduction of ordered pairs
into the language. The expressive power of the logic presented by Martin turns
out to be the same as that of the logic presented by Myhill.

In the semantics presented in this paper, (TCx,yϕ) (s, t) requires that there
should be at least one ϕ-step between s and t. However, another well-studied
form of the transitive closure operator is its reflexive form, RTC.

Definition 4 Let σ be a first-order signature, and let M = 〈D, I〉 be a struc-
ture for σ and v an assignment in M .

– The language LRTC (σ) is defined as LTC (σ) with TC replaced by RTC.
– The pair 〈M, v〉 is said to satisfy (RTCx,yϕ) (s, t) if s = t or there exist
a0, ..., an ∈ D (n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by
M and v[x := ai, y := ai+1] for 0 ≤ i ≤ n− 1.

Similarly, the logic obtained is denoted by LRTC .

In the presence of equality, the two forms of the transitive closure operator
are definable in terms of each other. The reflexive transitive closure operator
is definable using the non-reflexive form by

(RTCx,yϕ) (s, t) := (TCx,yϕ) (s, t) ∨ s = t,

while the non-reflexive TC operator is definable by either one of the following
forms (which can be easily shown to be equivalent):

(TCx,yϕ) (s, t) : = ∃z
(
ϕ

{
s

x
,
z

y

}
∧ (RTCx,yϕ) (z, t)

)
= ∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
t

y

})
= ∃z∃u

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
u

y

}
∧ (RTCx,yϕ) (u, t)

)
,

where u, z are fresh variables.2

One difference between the two forms is the ability to define quantifiers. As
shown in [2], the existential quantifier can be defined using the TC operator
by:

∃xϕ :=
(
TCu,v

(
ϕ
{u
x

}
∨ ϕ

{ v
x

}))
(s, t)

However, it cannot be defined using the RTC operator, as proven below.

Proposition 1 The existential quantifier is not definable in the quantifier-free
fragment of LRTC .

2 ϕ
{
t1
x1
, ..., tn

xn

}
denotes the formula obtained from ϕ by simultaneously substituting ti

for each free occurrence of xi in ϕ, assuming that t1, ..., tn are free for x1, ...xn in ϕ.
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Proof Take σ to consist of a constant symbol 0 and a unary predicate symbol
P . It can be easily shown by induction that each quantifier-free sentence ψ in
LσRTC3 is logically equivalent to one of the following sentences: P (0), ¬P (0),
0 = 0, or 0 6= 0. Since ∃xP (x) is clearly not logically equivalent to any of these
four sentences, we conclude that the existential quantifier cannot be defined
in the quantifier-free fragment of LRTC . ut

A simple compactness argument shows that in general the transitive closure
operator, TC, is not first-order definable (see, e.g., [11,1]). However, there are
cases in which there is a first-order sentence equivalent to (TCx,yϕ) (s, t). The
obvious case is when ϕ is a valid formula, since then (TCx,yϕ) (s, t) is also a
valid formula. This case is a special case of the following type of formulas.

Definition 5 Let ϕ be a formula in L1 (σ). ϕ is called transitive (w.r.t x
and y) if for every structure M for σ, every assignment v for M , and every
a, b, c ∈ D: if M,v [x := a, y := b] |= ϕ and M,v [x := b, y := c] |= ϕ, then
M,v [x := a, y := c] |= ϕ.

Example 1 The formula P (x) ∧ P (y) is transitive, while P (x) ∨ P (y) is not.

Proposition 2 If ϕ is a transitive formula in L1 (σ), then (TCx,yϕ) (s, t) is
definable in L1 (σ).

Proof The result follows immediately from the fact that for every transitive
formula ϕ and s, t terms in L1 (σ),M,v |= (TCx,yϕ) (s, t) iffM,v |= ϕ

{
s
x ,

t
y

}
,

for every structure M for σ and assignment v for M . ut

As mentioned, ∃xP (x) is definable by the formula (TCu,v (P (u) ∨ P (v))) (s, t).
Thus, P (u)∨P (v) is an example of a non-transitive formula whose transitive
closure is first-order definable. Thus far, there is no complete characterization
of the set of first-order logic formulas whose transitive closure is definable in
first-order logic.

Though the TC operator cannot be defined in first-order logic, it is defin-
able in second-order logic. Thus, the formula (RTCx,yϕ) (s, t) can be defined
by the second-order formula ∀X ((Xs ∧ ∀x∀y (ϕ (x, y) ∧Xx→ Xy))→ Xt),
from which follows that the TC operator is also second-order definable.

The concept of the transitive closure operator is embedded in our under-
standing of the natural numbers. Therefore, it is only natural to explore the
expressive power of various first-order languages for arithmetic augmented by
the TC operator. Let 0 be a constant symbol and s a unary function symbol.
It is known that in L{0,s}TC , together with the standard axioms for the suc-
cessor function, the following sentence categorically characterizes the natural
numbers:

∀x (x = 0 ∨ (TCw,u (s(w) = u)) (0, x)) (1)

3 For a logic L we write Lσ to denote the logic where the language is based on the signature
σ.
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In [2] it was shown that all recursive functions and relations are definable in
L{0,s,+}TC , where + is a binary function symbol, though in the absence of or-
dered pairs, one cannot define addition in L{0,s}TC . This implies that the upward
Löwenheim-Skolem theorem fails for ancestral logic, and AL is finitary, i.e. the
compactness theorem fails for it. Moreover, AL is not even arithmetic, thus
any formal deductive system which is sound for AL is incomplete.

Though more expressive than FOL, ancestral logic does not offer all the
wealth of SOL. Thus, it follows from the downward Löwenheim-Skolem the-
orem that the real numbers cannot be characterized up to isomorphism in it
(while they can be characterized in SOL). The same is true for the notion of
well-ordering.

An important indication that the expressive power of ancestral logic cap-
tures a very significant and natural fragment of SOL is provided by the fact
that it is equivalent ([23]) to several other intermediate logics between first-
order logic and second-order logic that have been suggested and investigated
in the literature. This includes weak second-order logic, logics with a “car-
dinality quantifier”, and logics with Henkin quantifiers (see [23,15,27]). The
advantages of ancestral logic over these logics are that it is particularly natural
(as explained above), and, no less important, it seems much easier to develop
an adequate proof system for it than for the other logics mentioned above.
This will be demonstrated in the next section.

3 Formal Proof Systems for Ancestral Logic

3.1 Gentzen-style Systems for Ancestral Logic

Among the various intermediate logics between FOL and SOL mentioned in
the introduction, ancestral logic seems to be the easiest choice from a proof-
theoretical point of view. We now turn to substantiate this claim. Ideally, we
would like to have a consistent, sound, and complete axiomatic system for
ancestral logic. However, since there can be no sound and complete system for
it, one should instead look for useful and effective partial formal systems that
are still adequate for formalizing mathematical reasoning. The systems defined
in this section are extensions of Gentzen-style system for classical first-order
logic with equality, LK= [13].

In what follows the letters Γ,∆ represent finite (possibly empty) multisets
of formulas, ϕ,ψ, φ arbitrary formulas, x, y, z, u, v variables, and r, s, t terms.
For convenience, we shall denote a sequent of the form Γ ⇒ {ϕ} by Γ ⇒ ϕ,
and employ other standard abbreviations, such as Γ,∆ instead of Γ ∪∆. To
improve readability, in some derivations we omit the context from the sequents.
Also, for readability, frequently we shall not distinguish between the sequents
ϕ ∧ ψ, Γ ⇒ ∆ and ϕ,ψ, Γ ⇒ ∆, or Γ ⇒ ∆,ϕ ∨ ψ and Γ ⇒ ∆,ϕ, ψ, as they
are provable from one another using cuts. We employ the following standard
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abbreviation for a sub-proof P ending with the sequent S:
.... P
S

In [17,18,19] Martin and Myhill suggested two equivalent Hilbert-style
systems for ancestral logic in which the reflexive transitive closure operator
was taken as primitive. Below is a Gentzen-style proof system for the RTC
operator which is equivalent to the Hilbert-style systems presented in these
original papers.

Definition 6 (The system RTCG)
The system RTCG is defined by adding to LK= the axiom

Γ ⇒ ∆, (RTCx,yϕ) (s, s) (2)

and the following inference rules:

Γ ⇒ ∆,ϕ
{
s
x ,

t
y

}
Γ ⇒ ∆, (RTCx,yϕ) (s, t) (3)

Γ ⇒ ∆, (RTCx,yϕ) (s, r) Γ ⇒ ∆, (RTCx,yϕ) (r, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t) (4)

Γ, ψ (x) , ϕ (x, y)⇒ ∆,ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yϕ) (s, t)⇒ ∆,ψ

{
t
x

}
(5)

In all three rules we assume that the terms which are substituted are free for
substitution and that no forbidden capturing occurs. In Rule (5) x should not
occur free in Γ and ∆, and y should not occur free in Γ,∆ and ψ.

Rule (5) is a generalized induction principle which states that if t is a ϕ-
descendant of s or equal to it, then if s has some hereditary property which is
passed down from one object to another if they are ϕ-related, then t also has
that property.

We next show that RTCG is adequate for RTC, in the sense that it does
give the RTC operator the intended meaning of the reflexive transitive closure,
and can derive all fundamental rules concerning the RTC operator that have
been suggested in the literature (as far as we know).

Proposition 3 The following rules are derivable in RTCG4:

Γ ⇒ ∆,ϕ
{
s
x ,

r
y

}
Γ ⇒ ∆, (RTCx,yϕ) (r, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, r) Γ ⇒ ∆,ϕ
{
r
x ,

t
y

}
Γ ⇒ ∆, (RTCx,yϕ) (s, t)

(6)

4 These rules were suggested in [2], and they are counterparts of the Hilbert-style rules
suggested in [17,18,19].
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Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, s = t, ∃z
(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x ,

t
y

})
Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, s = t, ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

) (7)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆

(RTCy,xϕ) (t, s) , Γ ⇒ ∆
(8)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆,
(
RTCu,vϕ

{
u
x
, v
y

})
(s, t)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆(
RTCu,vϕ

{
u
x
, v
y

})
(s, t) , Γ ⇒ ∆

(9)

Γ, ϕ⇒ ∆,ψ

Γ, (RTCx,yϕ) (s, t)⇒ ∆, (RTCx,yψ) (s, t)
(10)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ ∆
(11)

ϕ
{
s
x

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆

ϕ
{
t
y

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆
(12)

Conditions:

– In all the rules we assume that the terms which are substituted are free for
substitution and that no forbidden capturing occurs.

– In (7) z should not occur free in Γ,∆ and ϕ
{
s
x ,

t
y

}
.

– In (9) the conditions are the usual ones concerning the α-rule.
– In (10) x, y should not occur free in Γ,∆.
– In (11) u, v should not occur free in ϕ.
– In (12) y should not occur free in Γ,∆ or s in the left rule, and x should

not occur free in Γ,∆ or t in the right rule.

Proof In the following proof we omit the contexts Γ,∆ from the sequents in
the derivations.
– The first rules in (6):

⇒ ϕ
{
s
x
, r
y

}
⇒ (RTCx,yϕ) (s, r)

(3)
⇒ (RTCx,yϕ) (r, t)

⇒ (RTCx,yϕ) (s, t)
(4)

The proof of the second rule in (6) is analogous.
– The first rule in (7): Consider the following proof P1:

⇒ (RTCx,yϕ) (y, y)

s = y ⇒ (RTCx,yϕ) (s, y) ϕ
{
y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
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The sequent (RTCx,yϕ) (s, w) , ϕ
{
w
x ,

y
y

}
⇒ (RTCx,yϕ) (s, y) is provable

in RTCG using (6). Thus, we can construct the following P2:
....

(RTCx,yϕ) (s, w) ∧ ϕ
{
w
x
, y
y

}
⇒ (RTCx,yϕ) (s, y)

∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, y
y

})
⇒ (RTCx,yϕ) (s, y) ϕ

{
y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}
∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, y
y

})
, ϕ
{
y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}
∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, y
y

})
, ϕ
{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
Denote by A (y) the formula ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x ,

y
y

})
∨ s = y.

From P1 and P2 we obtain a proof of the sequent A (y) , ϕ
{
y
x ,

z
y

}
⇒ A

{
z
y

}
,

from which, using Rule (5), we get (∗)A
{
s
y

}
, (RTCx,yϕ) (s, t)⇒ A

{
t
y

}
.

Since ⇒ A
{
s
y

}
is derivable from the equality axiom ⇒ s = s, applying a

cut on it and on (∗), followed by another cut on the results and the premiss
of Rule (7), we get the desired sequent.
The proof of the second rule in (7) is symmetric.

– The left rule in (8): Clearly, s = t⇒ (RTCy,xϕ) (t, s) is provable in RTCG
using Axiom (2). The sequent ϕ (x, y) , (RTCy,xϕ) (x, s)⇒ (RTCy,xϕ) (y, s)
is also provable in RTCG using (6). Thus, we can construct the following
proof:

ϕ
{

z
y ,

s
x

}
⇒ ϕ

{
z
y ,

s
x

}
ϕ
{

z
y ,

s
x

}
⇒ (RTCy,xϕ) (z, s)

(3) ϕ (x, y) , (RTCy,xϕ) (x, s)⇒ (RTCy,xϕ) (y, s)

(RTCx,yϕ) (z, t) , (RTCy,xϕ) (z, s)⇒ (RTCy,xϕ) (t, s)
(5)

ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)⇒ (RTCy,xϕ) (t, s)

∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒ (RTCy,xϕ) (t, s)

The sequent (RTCx,yϕ) (s, t)⇒ s = t, ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
is

provable in RTCG using Rule (7). From this, by two cuts, we obtain:

`RTCG
(RTCx,yϕ) (s, t)⇒ (RTCy,xϕ) (t, s)

An additional cut on the premiss of Rule (8) results in the desired sequent.
The proof of the right rule is symmetric.

– The left rule in (9): In RTCG the sequent s = t⇒
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t)

is provable. By a method similar to the one used in the proof of (8) we get:

`RTCG
∃z
(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
t

y

})
⇒
(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

Applying cuts and Rule (7) results in:

`RTCG
(RTCx,yϕ) (s, t)⇒

(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)
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An additional cut on the premiss of Rule (9) results in the desired sequent.
The proof of the right rule is symmetric.

– Rule (10): Consider the following two proofs:
P1 :

ϕ⇒ ψ

ϕ
{
s
x
, z
y

}
⇒ ψ

{
s
x
, z
y

}
⇒ (RTCx,yψ) (z, z)

ϕ
{
s
x
, z
y

}
⇒ (RTCx,yψ) (s, z)

(6)

P2 :

(RTCx,yψ) (s, z)⇒ (RTCx,yψ) (s, z)

ϕ⇒ ψ

ϕ
{
z
x
, u
y

}
⇒ ψ

{
z
x
, u
y

}
(RTCx,yψ) (s, z) , ϕ

{
z
x
, u
y

}
⇒ (RTCx,yψ) (s, u)

(6)

(RTCx,yψ) (s, z) , (RTCx,yϕ) (z, t)⇒ (RTCx,yψ) (s, t)
(5)

Thus from P1 and P2 we can obtain a proof of the sequent ϕ
{
s
x ,

z
y

}
∧

(RTCx,yϕ) (z, t)⇒ (RTCx,yψ) (s, t), from which we can obtain a proof of
∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒ (RTCx,yψ) (s, t). Clearly, the sequent

s = t⇒ (RTCy,xψ) (s, t) is provable in RTCG using Axiom (2). Using Rule
(7) we get (RTCx,yϕ) (s, t)⇒ s = t,∃z

(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
, and

two cuts result in a proof of (RTCx,yϕ) (s, t)⇒ (RTCx,yψ) (s, t).
– Rule (11): Rule (4) entails the existence of a proof in RTCG of the sequent

(RTCx,yϕ) (s, u) , (RTCx,yϕ) (u, v)⇒ (RTCx,yϕ) (s, v). Applying Rule (5)
results in a proof of (RTCx,yϕ) (s, s) , (RTCu,v (RTCx,yϕ) (u, v)) (s, t) ⇒
(RTCx,yϕ) (s, t). Since ⇒ (RTCx,yϕ) (s, s) is an axiom of RTCG, a cut
results in a proof of (RTCu,v (RTCx,yϕ) (u, v)) (s, t)⇒ (RTCx,yϕ) (s, t).

– The left rule in (12): From the sequent ϕ
{
s
x

}
⇒, by standard rules of LK=,

we can derive the sequent: ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒, where z

is a fresh variable. By Rule (7) we can obtain `RTCG
(RTCx,yϕ) (s, t) ⇒

s = t, ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
. Thus, a cut results in a proof of

(RTCx,yϕ) (s, t)⇒ s = t. The proof of the right rule in (12) is analogous.

In [2] a Gentzen-style system for the non-reflexive transitive closure operator
was presented. Below is a proof system for the non-reflexive transitive closure
operator which is an extansion of the one suggested in [2].5

Definition 7 (The system TCG)
The system TCG is defined by adding to LK= the axiom

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
∨ ∃z

(
ϕ

{
s

x
,
z

y

}
∧ (TCx,yϕ) (z, t)

)
(13)

5 A different extension of the proof system suggested in [2], which is equivalent to the
system presented in this paper, is described in [6].
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and the following inference rules

Γ ⇒ ∆,ϕ
{
s
x ,

t
y

}
Γ ⇒ ∆, (TCx,yϕ) (s, t) (14)

Γ ⇒ ∆, (TCx,yϕ) (s, r) Γ ⇒ ∆, (TCx,yϕ) (r, t)

Γ ⇒ ∆, (TCx,yϕ) (s, t) (15)

Γ, ψ (x) , ϕ (x, y)⇒ ∆,ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (TCx,yϕ) (s, t)⇒ ∆,ψ

{
t
x

}
(16)

The same restrictions on the rules in RTCG apply here, and in Axiom (13) z
is a fresh variable.

Proposition 4 In TCG all the TC-counterparts of the rules in Proposition 3
are derivable.

We denote the system presented in [2], which is obtained from TCG by discard-
ing Axiom (13), by TC ′G. We start by showing that the system TCG suggested
here is indeed a proper extension of TC ′G.

Proposition 5 Axiom (13) is independent of the other rules in TCG, i.e. it
is unprovable in TC ′G.

Proof Suppose the sequent (13) is derivable in TC ′G. It is easy to see that
all the rules in TC ′G remain valid and derivable in RTCG if we replace the
operator TC with RTC. Hence, the corresponding sequent for RTC is provable
in RTCG. However, it is obviously not valid, since (RTCx,yϕ) (s, s) holds for
all s and ϕ. In general, any sequent that is valid only for the TC operator and
not for the RTC operator will not be derivable in TC ′G. ut

Since each of the two forms of the transitive closure operator can be expressed
in terms of the other, it is interesting to explore the connection between the
two systems.

Definition 8 Define recursively two interpretations, ′ from LRTC to LTC and
∗ from LTC to LRTC , as follows:

– ϕ′ = ϕ∗ = ϕ, for ϕ atomic formula.
– (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.
– (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ′, where ◦ ∈ {∧,∨,→}.
– (Qxϕ)

∗
= Qxϕ∗ and (Qxϕ)

′
= Qxϕ′, where Q ∈ {∀,∃}.

– ((TCx,yA) (s, t))
∗
= ∃z

(
A∗
{
s
x ,

z
y

}
∧ (RTCx,yA

∗) (z, t)
)

– ((RTCx,yA) (s, t))
′
= (TCx,yA

′) (s, t) ∨ s = t
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We use the standard abbreviations: Γ ∗ for {ϕ∗|ϕ ∈ Γ} and Γ ′ for {ϕ′|ϕ ∈ Γ}.
First we show that the above interpretations preserve provability (i.e., any

theorem of TCG can be translated into a theorem of RTCG, and vice versa),
and as such, they are considered as translations between the two systems (see,
e.g. [21]).6

Proposition 6 The following holds:

1. `TCG
Γ ⇒ ∆ implies `RTCG

Γ ∗ ⇒ ∆∗.
2. `RTCG

Γ ⇒ ∆ implies `TCG
Γ

′ ⇒ ∆
′
.

Proof The proof of (1) is carried out by induction on the proof in TCG. We
state here only the cases concerning the TC operator.

– Axiom (13): We need to show that ∃z
(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
⇒

ϕ∗
{
s
x ,

t
y

}
∨∃z

(
ϕ∗
{
s
x ,

z
y

}
∧ ∃w

(
ϕ∗
{
z
x ,

w
y

}
∧ (RTCx,yϕ

∗) (w, t)
))

is prov-
able in RTCG. This can easily be obtained from Rule (7) using the standard
rules of LK=.

– Rule (14): An application of Rule (14) can be transformed into the following
derivation:

⇒ ϕ∗
{
s
x
, t
y

}
⇒ (RTCx,yϕ∗) (t, t)

⇒ ϕ∗
{
s
x
, t
y

}
∧ (RTCx,yϕ∗) (t, t)

⇒ ∃z
(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)

)
– Rule (15): Rule (6) entails the existence of a proof in RTCG of the se-

quent ∃z
(
ϕ∗
{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
⇒ (RTCx,yϕ

∗) (r, t). A cut on

the hypothesis ⇒ ∃z
(
ϕ∗
{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
results in a proof of

⇒ (RTCx,yϕ
∗) (r, t). Then, we can construct the following derivation:

ϕ∗
{
s
x
, z
y

}
⇒ ϕ∗

{
s
x
, z
y

} (RTCx,yϕ∗) (z, r)⇒ (RTCx,yϕ∗) (z, r) ⇒ (RTCx,yϕ∗) (r, t)

(RTCx,yϕ∗) (z, r)⇒ (RTCx,yϕ∗) (z, t)
(4)

ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, r)⇒ ϕ∗

{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)

ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, r)⇒ ∃z

(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)

)
∃z
(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, r)

)
⇒ ∃z

(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)

)
The desired sequent is now obtained by one more cut on the second hy-
pothesis ⇒ ∃z

(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, r)
)
.

6 It should be noted that in some texts (see, e.g., [8,9]) a more general notion of a transla-
tion, which includes the demand that the interpretation preserves derivability and not only
provability, is used.
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– Rule (16): An application of Rule (16) can be transformed into the following
derivation:

ψ∗ (x) , ϕ∗ (x, y)⇒ ψ∗
{ y
x

}
ψ∗
{
s
x

}
, ϕ∗

{
s
x
, z
y

}
⇒ ψ∗

{
z
x

} ψ∗ (x) , ϕ∗ (x, y)⇒ ψ∗
{ y
x

}
ψ∗
{
z
x

}
, (RTCx,yϕ∗) (z, t)⇒ ψ∗

{
t
x

} (5)

ψ∗
{
s
x

}
, ϕ∗

{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)⇒ ψ∗

{
t
x

}
ψ∗
{
s
x

}
, ∃z

(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ∗) (z, t)

)
⇒ ψ∗

{
t
x

}
The proof of (2) is also carried out by induction, and again, we only present

here the cases concerning the RTC operator.

– Axiom (2): The interpretation of the axiom is ⇒ (TCx,yϕ
′) (s, s) ∨ s = s,

which is easily derivable from the equality axioms.
– Rule (3): An application of Rule (3) can be transformed into the following

derivation:
⇒ ϕ′

{
s
x
, t
y

}
⇒ (TCx,yϕ′) (s, t)

(14)

⇒ (TCx,yϕ′) (s, t) ∨ s = t

– Rule (4): By classical reasoning, to show that ⇒ (TCx,yϕ
′) (s, t) , s = t is

provable from ⇒ (TCx,yϕ
′) (s, r) , s = r and ⇒ (TCx,yϕ

′) (r, t) , r = t, it
suffices to show that the following four sequents are provable:
– (TCx,yϕ

′) (s, r), r = t⇒ (TCx,yϕ
′) (s, t) , s = t, which is derivable using

equality rules and Weakening.
– (TCx,yϕ

′) (r, t), s = r ⇒ (TCx,yϕ
′) (s, t) , s = t, which is derivable using

equality rules and Weakening.
– (TCx,yϕ

′) (s, r), (TCx,yϕ
′) (r, t)⇒ (TCx,yϕ

′) (s, t) , s = t, which is deriv-
able using rule (15) and Weakening.

– r = t, s = r ⇒ (TCx,yϕ
′) (s, t) , s = t, which is derivable using equality

rules and Weakening.
Using cuts we obtain a proof of ⇒ (TCx,yϕ

′) (s, t) , s = t.
– Rule (5): An application of rule (5) can be transformed into the following

derivation:

ψ′ (x) , ϕ′ (x, y)⇒ ψ′
{ y
x

}
ψ′
{
s
x

}
, (TCx,yϕ′) (s, t)⇒ ψ′

{
t
x

} (16)
ψ′
{
s
x

}
, s = t⇒ ψ′

{
t
x

}
ψ′
{
s
x

}
, (TCx,yϕ′) (s, t) ∨ s = t⇒ ψ′

{
t
x

}
ut

Proposition 7 The following holds:

1. `TCG
(ϕ∗)

′ ⇒ ϕ and `TCG
ϕ⇒ (ϕ∗)

′.
2. `RTCG

(ϕ′)
∗ ⇒ ϕ and `RTCG

ϕ⇒ (ϕ′)
∗.

Proof The proofs of both (1) and (2) are carried out by induction on ϕ. If ϕ
does not contain the TC or RTC operator, then (ϕ′)

∗ and (ϕ∗)
′
are equal to

ϕ, hence provably equivalent to it.
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For (1) assume that ϕ := (RTCx,yA) (s, t). Thus, (ϕ′)
∗ is the formula

∃z
(
(A′)

∗
{
s
x ,

z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t. By the induction hypothesis

we have `RTCG
(A′)

∗ ⇒ A, thus by (10) the sequent
(
RTCx,y (A

′)
∗)

(s, t) ⇒
(RTCx,yA) (s, t) is also provable in RTCG. It is easy to check that the sequent
∃z
(
(A′)

∗
{
s
x ,

z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t ⇒

(
RTCx,y (A

′)
∗)

(s, t) is
provable in RTCG (using (6) and (2)). A cut on the last two sequents results in
a proof of ∃z

(
(A′)

∗
{
s
x ,

z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t⇒ (RTCx,yA) (s, t).

For the converse, denote ∃z
(
(A′)

∗
{
u
x ,

z
y

}
∧RTCx,y (A′)∗ (z, w)

)
∨ s = t by

ψ (notice that (ϕ′)
∗ is ψ

{
s
u ,

t
w

}
). It is easy to see that ψ

{
s
u ,

x
w

}
, (A′)

∗ ⇒
ψ
{
s
u ,

y
w

}
is provable in RTCG. Applying Rule (5) results in a proof of the se-

quent ψ
{
s
u ,

s
w

}
,
(
RTCx,y (A

′)
∗)

(s, t) ⇒ ψ
{
s
u ,

t
w

}
. The sequent ⇒ ψ

{
s
u ,

s
w

}
is clearly provable using the equality axiom, thus, a cut entails a proof of the
sequent

(
RTCx,y (A

′)
∗)

(s, t)⇒ (ϕ′)
∗. As before, by the induction hypothesis

we have that `RTCG
A ⇒ (A′)

∗, so by (10) the sequent (RTCx,yA) (s, t) ⇒(
RTCx,y (A

′)
∗)

(s, t) is also provable in RTCG, and by one cut we obtain a
proof of (RTCx,yA) (s, t)⇒ (ϕ′)

∗.
For (2) assume that ϕ := (TCx,yA) (s, t). Hence, (ϕ∗)

′ is the formula
∃z
(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
. It is easy to check that the se-

quent ∃z
(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒
(
TCx,y (A

∗)
′)
(s, t)

is provable in TCG. By the induction hypothesis we have `TCG
(A∗)

′ ⇒ A, so
by the TC-counterpart of (10) the sequent

(
TCx,y (A

∗)
′)
(s, t)⇒ (TCx,yA) (s, t)

is also provable in TCG. Applying a cut results in a proof of the sequent
∃z
(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒ (TCx,yA) (s, t). For the con-

verse, notice that Axiom (13) entails the provability of
(
TCx,y (A

∗)
′)
(s, t)⇒

(A∗)
′
{
s
x ,

t
y

}
∨ ∃z

(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′)
(z, t)

)
. Clearly, the sequent

(A∗)
′
{
s
x ,

t
y

}
⇒ ∃z

(
(A∗)

′
{
s
x ,

z
y

}
∧ z = t

)
is provable in TCG, and again, us-

ing the induction hypothesis on A together with the TC-counterpart of (10) we
get that (TCx,yA) (s, t)⇒

(
TCx,y (A

∗)
′)
(s, t) is provable in TCG. By cuts we

get `TCG
(TCx,yA) (s, t) ⇒ ∃z

(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
.

ut

Theorem 1 TCG and RTCG are equivalent in the following sense:

1. `RTCG
Γ ⇒ ∆ iff `TCG

Γ
′ ⇒ ∆

′
.

2. `TCG
Γ ⇒ ∆ iff `RTCG

Γ ∗ ⇒ ∆∗.

Proof The left-to-right implications are simply Prop. 6. For the right-to-left
implication, consider `TCG

Γ
′ ⇒ ∆

′
. By 6 we get that `RTCG

(Γ ′)
∗ ⇒ (∆′)

∗.
Since by Prop. 7 we have that `RTCG

(ϕ′)
∗ ⇒ ϕ and `RTCG

ϕ⇒ (ϕ′)
∗ for any

formula ϕ, using cuts we get that `RTCG
Γ ⇒ ∆. The proof of (2) is similar.

ut
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3.2 On Cut Elimination and Constructive Consistency Proofs

Next we examine some fundamental proof-theoretical properties of TCG , the
most important of which is cut elimination.7 The cut rule is the following:

Γ ⇒ ∆,ϕ ϕ, Γ ⇒ ∆

Γ ⇒ ∆
(cut)

The formula ϕ is called the cut formula. Intuitively, we may view this rule as
allowing the use of lemmas, such as ϕ, in proofs.

The cut-elimination theorem (also known as Gentzen’s Hauptsatz ) is a
central proof theoretical property of a sequent calculus, originally proved by
Gerhard Gentzen [13] for the system LK and for the system LJ for intuitionis-
tic logic. The cut elimination theorem states that any proof can be effectively
transformed into a proof with the same end-sequent without using the cut
rule. Thus, a cut-free proof is “direct” in the sense that it avoids intermediate
results (which may be more general than the final theorem). The cut elimina-
tion theorem has some immediate consequences. Any system which admits cut
elimination enjoys the sub-formula property, which states that given a cut-free
proof of a sequent, every formula that appears in the proof is a sub-formula of
a formula in the end-sequent. Another consequence is the separation property:
any provable sequent has a proof using only the logical rules or axioms for the
logical operators occurring in the end-sequent. These properties are essential
for a system which aims to have an effective proof search procedure. For LK=,
an alternative version of the cut elimination theorem must be used due to the
presence of the equality axioms. A cut is said to be inessential if the cut for-
mula is of the form s = t, otherwise it is called an essential cut. A system with
equality is said to admit cut elimination if all essential cuts are admissible.

In semantical proofs of cut elimination one usually establishes not only
closure under cut, but also completeness. However, this type of proof does
not provide a constructive method for eliminating cuts from a given proof. In
contrast, syntactic proofs of cut elimination do not just show that the cut rule
remains admissible if it is deleted from the list of the rules of the system, they
provide algorithms for transforming any proof containing essential cuts into
an essential-cut-free proof. The standard syntactic cut elimination proofs [13,
25,20,26] use a method of going over a given proof and “reducing” it to a proof
which is less complicated in some sense, until all essential cuts are eliminated.
What is reduced can be the complexity of the cut formula, the “depth” of the
proof, the ordinal of the proof, or some other measure for the complexity of
the proof.

For example, Gentzen’s classic proof of the cut-elimination theorem for
first-order logic [13] uses a double induction: the main induction is on the
number of logical connectives and quantifiers in the cut formula, and the sub-
induction is on the “rank” of the cut, which is some measure depending on the
place of the cut in the proof. A reduction step is defined for every derivation

7 In this section we refer to TCG, though similar considerations apply to RTCG as well.
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ending with an application of the cut rule. For instance, a cut on a compound
formula is replaced by cuts on its sub-formulas, which necessarily contain a
smaller number of connectives. For example, the derivation

.... P1

Γ ⇒ ∆,ϕ

.... P2

Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ ∧ ψ (∧R)

.... P3

ϕ, Γ ⇒ ∆

ϕ ∧ ψ, Γ ⇒ ∆
(∧L)

Γ ⇒ ∆

is reduced to .... P1

Γ ⇒ ∆,ϕ

.... P3

ϕ, Γ ⇒ ∆

Γ ⇒ ∆

By the induction hypothesis, this cut on ϕ can be eliminated, hence the original
cut on ϕ ∧ ψ can also be eliminated.

Following this standard method in the case of TCG, a reduction step should
be defined for every derivation ending with an application of the cut rule.
Consider, for example, the following derivation. (For convenience, we shall
omit the context from the sequents in all the derivations from this point on.)

.... P1

⇒ ϕ
{
s
x ,

t
y

}
⇒ (TCx,yϕ) (s, t)

(14)

.... P2

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, (TCx,yϕ) (s, t)⇒ ψ

{
t
x

} (16)

ψ
{
s
x

}
⇒ ψ

{
t
x

}
The natural reduction of this derivation is

.... P1

⇒ ϕ
{
s
x ,

t
y

}
.... P2

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, ϕ
{
s
x ,

t
y

}
⇒ ψ

{
t
x

}
ψ
{
s
x

}
⇒ ψ

{
t
x

}
The cut on the formula (TCx,yϕ) (s, t) is replaced by a cut on the formula
ϕ
{
s
x ,

t
y

}
, which is of smaller complexity. Hence, in this case we have a natural

reduction of the proof.
However, let us examine the following derivation:

.... P1

⇒ (TCx,yϕ) (s, r)

.... P2

⇒ (TCx,yϕ) (r, t)

⇒ (TCx,yϕ) (s, t)
(15)

.... P3

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, (TCx,yϕ) (s, t)⇒ ψ

{
t
x

} (16)

ψ
{
s
x

}
⇒ ψ

{
t
x

}
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The natural reduction is carried out by constructing the derivation
.... P3

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, (TCx,yϕ) (s, r)⇒ ψ

{
r
x

} (16)

.... P3

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
r
x

}
, (TCx,yϕ) (r, t)⇒ ψ

{
t
x

} (16)

(TCx,yϕ) (s, r) , (TCx,yϕ) (r, t) , ψ
{
s
x

}
⇒ ψ

{
t
x

}
and using the sub-proofs P1 and P2 to obtain a proof of ψ

{
s
x

}
⇒ ψ

{
t
x

}
by

applying two cuts. Hence the cut on the formula (TCx,yϕ) (s, t) is replaced here
by three cuts on the formulas (TCx,yϕ) (r, t), (TCx,yϕ) (s, r), and ψ

{
r
x

}
. It is

unclear what kind of measure can be used here in order to achieve a reduction
in the proof. The number of applications of Rule (15) has gone down by one, yet
the duplication of the derivation P3 and the application of the induction rule
might offset this. Moreover, while the two new cut formulas, (TCx,yϕ) (r, t)
and (TCx,yϕ) (s, r), are of complexity equal to that of the original cut formula
and there is reduction of the depth, the real difficulty is that the new cut
formula ψ

{
r
x

}
is not related at all to the original cut formula. Thus it can be

of larger complexity than (TCx,yϕ) (s, t), unless we force some constraints on
the applicability of the induction rule.

This difficulty is not unique to TCG. It occurs often in systems with an
induction rule, since the use of the induction rule often complicates the re-
duction of cuts. In order to avoid this problem Gentzen applied a different
method for PAG (Gentzen-style system for PA [12,25]). Instead of proving
full cut elimination for PAG, Genten proved a weaker version of the cut elimi-
nation theorem from which follows the consistency of PAG. A system is said to
be consistent if it does not admit a proof of the absurd, i.e. the empty sequent.
In PAG, as well as in TCG, formulas never disappear, except in cuts (the only
other simplification allowed is contraction, in which a repetition is reduced).
From this follows that there can be no cut-free proof of the empty sequent.
Thus, by proving a weaker version of the cut elimination theorem which pro-
vides an algorithm for eliminating cuts only from proofs ending with the empty
sequent, one establishes a constructive consistency proof of the system.8

A crucial step in Gentzen consistency proof for PAG is the elimination
of all occurrences of PAG’s induction rule from the end-piece of the proof.9
First, all free variables which are not used as eigenvariables in the end-piece
of the proof are replaced by constants. Then, any application of the induction
rule up to a specific natural number is replaced by a corresponding number

8 Gentzen’s proof is constructive in the sense that it provides an effective algorithm for
transforming any proof of the empty sequent into a cut-free one. There is a debate to what
extent the method used to justify that Gentzen’s procedure always terminates (transfinite
induction up to ε0) is acceptable from a pure constructive point of view. We shall not enter
this discussion here, but only note that in [25] there is a detailed argument that it is not
only constructive, but in fact justified even from a finitist standpoint.

9 The end-piece of a proof [12] consists of all the sequents of the proof encountered if we
ascend each path starting from the end-sequent and stop when we arrive to an operational
inference rule. Thus the lower sequent of this inference rule belongs to the end-piece, but its
upper sequents do not.
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of structural inference rules. The transformation is done in the following way.
Assume that the following application of PAG’s induction rule appears within
an end-piece .... P

′

ψ
{
a
x

}
⇒ ψ

{
s(a)
x

}
ψ
{

0
x

}
⇒ ψ

{
t
x

}
Since all free variables were eliminated, t is a closed term and hence there is a
term s(. . . (s(0)) such that⇒ s(. . . (s(0)) = t is provable in PAG without essen-
tial cuts or induction. Therefore, there is also a proof of ψ(s(. . . (s(0)))⇒ ψ(t)
without essential cuts or induction. Let P ′ (b) be the proof which is obtained
from P ′ by replacing a by b throughout the proof. Each occurrence of the
induction rule is replaced by

.... P
′(0)

ψ
{

0
x

}
⇒ ψ

{
s(0)
x

} .... P
′(s(0))

ψ
{
s(0)
x

}
⇒ ψ

{
s(s(0))
x

}
ψ
{

0
x

}
⇒ ψ

{
s(s(0))
x

} .... P
′(s(s(0)))

ψ
{
s(s(0))
x

}
⇒ ψ

{
s(s(s(0)))

x

}
ψ
{

0
x

}
⇒ ψ

{
s(s(s(0)))

x

}
These consecutive cuts are carried on up to the sequent ψ

{
0
x

}
⇒ ψ

{
s(. . . (s(0))

x

}
.

Then one more cut is used on the sequent ψ(s(. . . (s(0))) ⇒ ψ(t) to obtain a
proof of ψ

{
0
x

}
⇒ ψ

{
t
x

}
.

Can a similar method be applied to the TC-induction rule? The problem
is that Gentzen’s transformation uses special features of the natural numbers
that generally do not exist in TCG. To see this, notice that the induction rule
(Rule (16)) entails all instances of PAG’s induction rule by taking ϕ to be
s (x) = y. However, in the general case ϕ is an arbitrary formula. Thus, unlike
in PAG, we do not have a “built in” measure for the ϕ-distance between two
arbitrary closed terms s and t, . The path from s to t through ϕ-steps is not
known apriori. Moreover, it does not have to be unique.

Unfortunately, this generalization of the induction principle renders this
standard method for analyzing PAG inapplicable. Thus, one should look for
useful fragments of TCG in which cuts can be eliminated from proofs of the
empty sequent. One such fragment can be obtained via restricting TCG’s in-
duction rule by allowing only ϕ’s of the form y = t, where x is the only free
variable in t. In this way we force a deterministic path of ϕ-steps between
any two closed terms. Obviously, this system is still adequate for the task of
mechanizing mathematics, as its restricted induction rule still includes that of
PAG. Exploring this direction is left for future research.

Another key proof-theoretical method which arises from Gentzen’s con-
sistency proof for PAG is the assignment of ordinals to proof systems. In
Gentzen’s method, each system is assigned the least ordinal number needed
for its constructive consistency proof. This provides a measure for a complexity
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of a system which is useful for comparing different proof systems. The con-
structive consistency proof of PAG entails that the ordinal number of PAG is
at most ε0, and another theorem of Gentzen [14] shows that it is exactly ε0.

Definition 9 The system TCA is obtained by augmenting TCG with the stan-
dard axioms for successor, addition, and multiplication, together with the ax-
iom characterizing the natural numbers in ancestral logic (Axiom (1)).10

We next show that for the standard language of PA the system TCA is equiv-
alent to PAG, in the sense that there is a provability preserving translation
algorithm between them11. For the translation we use a beta function which
allows us to encode in PA finite sequences (this idea is taken from [24]). Re-
call that we can express facts about sequences of numbers in PA by using a
β-function such that for any finite sequence k0, k1, ..., kn there is some c such
that for all i ≤ n, β(c, i) = ki. Thus, our motivation is that (TCx,yϕ) (s, t)
holds iff for some n, there is a sequence k0, k1, ..., kn such that k0 = I [s],
kn = I [t], and each pair of consecutive terms are in the relation defined by
ϕ. Accordingly, let B be a wff of the language of PA with three free variables
which captures in PA a β-function. For each formula ϕ of the language of PA
define ϕβ := ϕ, and define ((TCx,yϕ) (s, t))

β to be the formula:

∃z∃c
(
B (c, 0, s) ∧B (c, s (z) , t) ∧ ∀u ≤ z∃v∃w

(
B (c, u, v) ∧B (c, s (u) , w) ∧ ϕβ

{
v

x
,
w

y

}))
Proposition 8 `TCA

ϕ⇒ ϕβ and `TCA
ϕβ ⇒ ϕ.

Proof The proof is carried out by induction. If ϕ does not contain the TC op-
erator, ϕβ is equal to ϕ. Let ϕ be (TCx,yψ) (s, t). Denote by φ (a, b) the formula
∃z∃c

(
B (c, 0, s) ∧B (c, s (z) , t) ∧ ∀u ≤ z∃v∃w

(
B (c, u, v) ∧B (c, s (u) , w) ∧ ϕβ

{
v
x
, w
y

}))
. It

is easy to check that ψβ
{
a
x ,

b
y

}
⇒ φ (a, b) is provable and from this fol-

lows that φ
{
s
a ,

x
b

}
, ψβ ⇒ φ

{
s
a ,

y
b

}
is also provable. Hence, by Rule (16) we

get φ
{
s
a ,

z
b

}
, ψβ

{
z
x ,

t
y

}
⇒ φ

{
s
a ,

t
b

}
. Now, using Axiom (13) we can get a

proof of
(
TCx,yψ

β
)
(s, t) ⇒ φ

{
s
a ,

t
b

}
(notice that φ

{
s
a ,

t
b

}
is exactly ϕβ). By

the induction hypothesis we have `TCA
ψ ⇒ ψβ and by (10) the sequent

(TCx,yψ) (s, t)⇒
(
TCx,yψ

β
)
(s, t) is also provable in TCA. Thus, a cut results

in a proof of (TCx,yψ) (s, t) ⇒ ϕβ . For the converse, notice that in TCA all
instances of PAG’s induction rule are derivable. Denote by G (z) the formula
∃c
(
B (c, 0, s) ∧B (c, s (z) , a) ∧ ∀u ≤ z∃v∃w

(
B (c, u, v) ∧B (c, s (u) , w) ∧ ϕβ

{
v
x
, w
y

}))
→(

TCx,yψβ
)
(s, t). It is straightforward to verify that G (0) is provable using Rule

(14) and G (z) ⇒ G (s (z)) is provable using the TC-counterpart of Rule
(6). By applying PA’s induction rule and one cut we get a proof of G (z).

10 Note that the addition of the axioms for multiplication to TCA is not really necessary,
as they are derivable using the TC-formula which defines multiplication given in [2].
11 If L is a language that expands the language of PA, and S and T are two systems
expanding TCA and PAG for the language L by the same set of additional axioms, then,
using practically the same method we can prove that S and T are equivalent.
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We can then substitute t for a and introduce ∀ to get a proof of ∀zG
{
t
a

}
,

from which by standard LK rules we can infer ϕβ ⇒
(
TCx,yψ

β
)
(s, t). By

the induction hypothesis we have `TCA
ψβ ⇒ ψ thus by (10) the sequent(

TCx,yψ
β
)
(s, t) ⇒ (TCx,yψ) (s, t) is also provable in TCA. Hence, a cut re-

sults in a proof of ϕβ ⇒ (TCx,yψ) (s, t).

We use the standard abbreviations: Γ β for
{
ϕβ |ϕ ∈ Γ

}
.

Theorem 2 `TCA
Γ ⇒ ∆ iff `PAG

Γ β ⇒ ∆β. In particular, for Γ,∆ in the
language of PA, `TCA

Γ ⇒ ∆ iff `PAG
Γ ⇒ ∆.

Proof It is easy to check that all the inference rules for the TC-operator apply
equally to their β-translated formulas in PAG, and the β-translated analogue
of Axiom (1) is also a theorem of PAG. Therefore corresponding to any proof
of Γ ⇒ ∆ in TCA there is a parallel proof in PAG of Γ β ⇒ ∆β . For the
right-to-left implication first notice that TCA is an extension of PAG, i.e.
any TC-less formula that is provable in PAG is also provable in TCA (since
Rule (16) together with Axiom (1) entail all instances of PAG’s induction
rule). From this together with Prop. 8 using cuts we can convert any proof of
Γ β ⇒ ∆β in PAG to a proof of Γ ⇒ ∆ in TCA. ut

Corollary 1 The ordinal number of the system TCA is ε0.

Proof Using the translation algorithm between TCA and PAG and the con-
structive proof of Prop. 8 (which obviously requires ordinal less than ωω), any
constructive proof of the consistency of PAG with transfinite induction up to
some ordinal greater that ωω can be transformed into a constructive proof of
the consistency of TCA which uses transfinite induction up to the same or-
dinal, and vice versa. Hence, TCA and PAG have the same ordinal, which is
known to be ε0. ut

4 Conclusions and Further Research

In this paper we reviewed the expressive power of logics augmented by a transi-
tive closure operator and explored their reasoning potential. This work focused
on working out this potential by presenting effective sound proof systems for
ancestral logic that are strong enough for various mathematical needs. Our
next goal is to improve the computational efficiency of these systems, in order
to make them suitable for mechanization.

In the last section the property of cut-elimination for TCG was discussed.
Further research is required in order to determine what kinds of useful frag-
ments of TCG do admit cut-elimination. One possible option (already men-
tioned) is to restrict the induction rule of TCG by allowing only ϕ’s of the form
y = t where x is the only free variable that occurs in t. Another option is to
find out what are the conditions on a formula ϕ and terms s, t so that there is
a proof in TCG for the sequent ⇒ (TCx,yϕ) (s, t) without the induction rule,
and then restrict the induction rule by those conditions.
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The consistency of TCA certainly implies the consistency of TCG, and the
ordinal of TCG is therefore at most ε0. It seems almost certain that it is exactly
ε0. However, presenting a full rigorous proof that the ordinal of TCG is not
less than ε0 is left for future work.

As declared, we believe that ancestral logic should suffice for most of ap-
plicable mathematics. Substantiating this claim by creating formal systems
based on AL and formalizing in them large portions of mathematics, is a fur-
ther future work. A promising candidate for serving as the basis for the system
is the predicative set theory PZF , presented in [3,4], which resembles ZF and
is suitable for mechanization. The key element of PZF is that it uses syntactic
safety relations between formulas and sets of variables. The underlying logic
of PZF is ancestral logic, which makes it possible to provide inductive defini-
tions of relations and functions which are sets. An important criterion for the
adequacy of AL for the task of formalizing mathematics is the extent to which
this will be done in a natural way, as close as possible to real mathematical
practice.
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