Induction, Transitive Closure and Cycles

Liron Cohen, Cornell University,
Reuben Rowe, University of Kent

ASL North American Annual Meeting, 2018

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001

What Logic?

What Logic?

What Logic?

What Logic?

natural, effective extensions of FOL that allow inductive definitions

What Logic?

natural, effective extensions of $F O L$ that allow inductive definitions

Transitive Closure Logic

Transitive Closure Logic $=F O L+$ a transitive closure operator.

Transitive Closure Logic

Transitive Closure Logic $=F O L+$ a transitive closure operator.

The transitive closure R^{*} of binary relation R is defined by:

$$
R^{*}=\bigcup R^{(n)}
$$

where $R^{(0)}=I d, R^{(n+1)}=R^{(n)} \circ R$.

Transitive Closure Logic

Transitive Closure Logic $=F O L+$ a transitive closure operator.

The transitive closure R^{*} of binary relation R is defined by:

$$
R^{*}=\bigcup R^{(n)}
$$

where $R^{(0)}=I d, R^{(n+1)}=R^{(n)} \circ R$.
Alternatively,

$$
R^{*}=I d \cup \bigcap\{S \mid R \cup S \circ R \subseteq S\}
$$

(Least fixed point of the composition operator)

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas
- A minimal extension.

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas
- A minimal extension.
- A special case of a least fixed point.

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas
- A minimal extension.
- A special case of a least fixed point.
- Equivalent to other extensions of FOL, but the most convenient from a proof theoretical perspective.

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas
- A minimal extension.
- A special case of a least fixed point.
- Equivalent to other extensions of FOL, but the most convenient from a proof theoretical perspective.
- Captures inductive principles in a uniform way.

Why Transitive Closure Logic?

- The concept of the transitive closure is truly basic.
- Being a 'descendent of'
- The natural numbers
- Well-formed formulas
- A minimal extension.
- A special case of a least fixed point.
- Equivalent to other extensions of FOL, but the most convenient from a proof theoretical perspective.
- Captures inductive principles in a uniform way.
- Not parametrized by a set of inductive principles.

The Language

The Language

The language $\mathcal{L}_{T C}$ is defined as $\mathcal{L}_{\text {FOL }}$, with the additional clause:

- $\left(R T C_{x, y} \varphi\right)(s, t)$ is a formula, for φ a formula, x, y distinct variables, and s, t terms. (x, y become bound in this formula.)

The Language

The Language

The language $\mathcal{L}_{T C}$ is defined as $\mathcal{L}_{\text {FOL }}$, with the additional clause:

- $\left(R T C_{x, y} \varphi\right)(s, t)$ is a formula, for φ a formula, x, y distinct variables, and s, t terms. (x, y become bound in this formula.)

Allows for:

- Rich testing
- Nested RTC

The Semantics

The Intended Meaning of $\left(R T C_{x, y} \varphi\right)(s, t)$

$$
s=t \vee \varphi(s, t) \vee \exists w_{1} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, t\right)
$$

$$
\vee \exists w_{1} \exists w_{2} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, w_{2}\right) \wedge \varphi\left(w_{2}, t\right) \vee \ldots
$$

The Semantics

The Intended Meaning of $\left(R T C_{x, y} \varphi\right)(s, t)$

$$
\begin{aligned}
s=t \vee \varphi(s, t) & \vee \exists w_{1} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, t\right) \\
& \vee \exists w_{1} \exists w_{2} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, w_{2}\right) \wedge \varphi\left(w_{2}, t\right) \vee \ldots
\end{aligned}
$$

Formal Definition
Let M be a structure for $\mathcal{L}_{T C}$ and v an assignment in M.
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$ iff there exist $a_{0}, \ldots a_{n} \in D$ s.t.
$v[s]=a_{0} ; v[t]=a_{n} ; M, v\left[x:=a_{i}, y:=a_{i+1}\right] \models \varphi$ for $0 \leq i<n$.

S

The Semantics

The Intended Meaning of $\left(R T C_{x, y} \varphi\right)(s, t)$

$$
\begin{aligned}
s=t \vee \varphi(s, t) & \vee \exists w_{1} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, t\right) \\
& \vee \exists w_{1} \exists w_{2} \cdot \varphi\left(s, w_{1}\right) \wedge \varphi\left(w_{1}, w_{2}\right) \wedge \varphi\left(w_{2}, t\right) \vee \ldots
\end{aligned}
$$

Formal Definition
Let M be a structure for $\mathcal{L}_{T C}$ and v an assignment in M.
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$ iff there exist $a_{0}, \ldots a_{n} \in D$ s.t.
$v[s]=a_{0} ; v[t]=a_{n} ; M, v\left[x:=a_{i}, y:=a_{i+1}\right] \models \varphi$ for $0 \leq i<n$.

$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$ provided for every $A \subseteq D$, if $v(s) \in A$ and $\forall a, b \in D:(a \in A \wedge M, v[x:=a, y:=b] \vDash \varphi) \rightarrow b \in A$, then $v(t) \in A$.

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs)

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs)

- + is definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs) by:

$$
x=y+z \Longleftrightarrow\left(R T C_{u, v} v .1=s(u .1) \wedge v .2=s(u .2)\right)((0, y),(z, x))
$$

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs)

- + is definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs) by:

$$
x=y+z \Longleftrightarrow\left(R T C_{u, v} v .1=s(u .1) \wedge v .2=s(u .2)\right)((0, y),(z, x))
$$

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs)

- + is definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs) by:

$$
x=y+z \Longleftrightarrow\left(R T C_{u, v} v .1=s(u .1) \wedge v .2=s(u .2)\right)((0, y),(z, x))
$$

Expressive Power

- The reflexive and the non-reflexive TC operators are equivalent (assuming equality).

Theorem [Avron, '03]
All recursive functions and relations are definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs)

- + is definable in $\mathcal{L}_{T C}^{\{0, s\}}$ (with pairs) by:

$$
x=y+z \Longleftrightarrow\left(R T C_{u, v} v .1=s(u .1) \wedge v .2=s(u .2)\right)((0, y),(z, x))
$$

Expressive Power

Categorical Characterization of the Natural Numbers

$$
\begin{aligned}
& \forall x(s(x) \neq 0) \\
& \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
& \forall x\left(R T C_{w, u}(s(w)=u)\right)(0, x)
\end{aligned}
$$

Expressive Power

Categorical Characterization of the Natural Numbers

$$
\begin{aligned}
& \forall x(s(x) \neq 0) \\
& \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
& \forall x\left(R T C_{w, u}(s(w)=u)\right)(0, x)
\end{aligned}
$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.

Expressive Power

Categorical Characterization of the Natural Numbers

$$
\begin{aligned}
& \forall x(s(x) \neq 0) \\
& \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
& \forall x\left(R T C_{w, u}(s(w)=u)\right)(0, x)
\end{aligned}
$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.

Expressive Power

Categorical Characterization of the Natural Numbers

$$
\begin{aligned}
& \forall x(s(x) \neq 0) \\
& \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
& \forall x\left(R T C_{w, u}(s(w)=u)\right)(0, x)
\end{aligned}
$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.
- TC-logic is inherently incomplete.

Expressive Power

Categorical Characterization of the Natural Numbers

$$
\begin{aligned}
& \forall x(s(x) \neq 0) \\
& \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
& \forall x\left(R T C_{w, u}(s(w)=u)\right)(0, x)
\end{aligned}
$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.
- TC-logic is inherently incomplete.

Proof Theory

Proof Theory

The System $\mathcal{L K}=$ [Gentzen, '34]

$$
\begin{array}{cc}
\frac{\psi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta}\left(\wedge L_{1}\right) & \frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta}\left(\wedge L_{2}\right) \\
\frac{\varphi, \Gamma \Rightarrow \Delta \psi, \Gamma \Rightarrow \Delta}{\varphi \vee \psi, \Gamma \Rightarrow \Delta}(\vee L) & \frac{\Gamma \Rightarrow \Delta, \varphi \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi}(\wedge R) \\
\frac{\Gamma \Rightarrow \Delta, \varphi}{\varphi \rightarrow \psi, \Gamma \Rightarrow \Delta}\left(\vee R_{1}\right) & \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi}\left(\vee R_{2}\right) \\
\frac{\Gamma \Rightarrow \Delta, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta}(\neg L) & \frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi}(\rightarrow R) \\
\frac{\varphi\left\{\frac{t}{x}\right\}, \Gamma \Rightarrow \Delta}{\forall x \varphi, \Gamma \Rightarrow \Delta}(\forall L) & \frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi}(\neg R) \\
\frac{\varphi\left\{\frac{y}{x}\right\}, \Gamma \Rightarrow \Delta}{\exists x \varphi, \Gamma \Rightarrow \Delta}(\exists L)^{*} & \frac{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{y}{x}\right\}}{\Gamma \Rightarrow \Delta, \forall x \varphi}(\forall R)^{*} \\
\hline
\end{array}
$$

The System $\mathcal{L K}=$ [Gentzen, '34]

$$
\begin{aligned}
& \underset{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(w k L) \\
& \frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}(c n t L) \\
& \frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(c u t) \\
& \frac{\Gamma \Rightarrow \Delta}{\Gamma\left\{\frac{\overrightarrow{5}}{\bar{x}}\right\} \Rightarrow \Delta\left\{\frac{\vec{s}}{\bar{x}}\right\}} \text { (sub) } \\
& \overline{\varphi \Rightarrow \varphi}(i d) \\
& \frac{\Gamma \Rightarrow \Delta, s=t \Gamma \Rightarrow \Delta, \varphi\left\{\frac{s}{x}\right\}}{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{t}{x}\right\}}(e q) \\
& \overline{\Rightarrow t=t}(e q)
\end{aligned}
$$

Finitary Proof System - RTC ${ }_{G}$

Reflexivity

$$
\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, s)
$$

Step

$$
\frac{\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta,\left(T C_{x, y} \varphi\right)(s, t)}
$$

Induction

$$
\frac{\Gamma, \psi(x), \varphi(x, y) \Rightarrow \Delta, \psi\left\{\frac{y}{x}\right\}}{\Gamma, \psi\left\{\frac{s}{x}\right\},\left(R T C_{x, y} \varphi\right)(s, t) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}}
$$

provided $x \notin F V(\Gamma \cup \Delta)$ and $y \notin F V(\Gamma \cup \Delta \cup\{\psi\})$.

RTC $_{G}$ 'Captures' TC-logic

$$
\frac{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{s}{x}, \frac{r}{y}\right\} \Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(r, t)}{\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, t)}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, t) \\
\Gamma \Rightarrow \Delta,\left(R T C_{y, x} \varphi\right)(t, s) \\
\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, t) \\
\hline \Rightarrow \Delta,\left(R T C_{u, v} \varphi\left\{\frac{u}{x}, \frac{v}{y}\right\}\right)(s, t)
\end{array} & \begin{array}{c}
\Gamma, \varphi \Rightarrow \Delta, \psi
\end{array} \\
\frac{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \Rightarrow \Delta,\left(R T C_{x, y} \psi\right)(s, t)}{} & \frac{\left(R T C_{x, y} \varphi\right)(s, t), \Gamma \Rightarrow \Delta}{\left(R T C_{u, v}\left(R T C_{x, y} \varphi\right)(u, v)\right)(s, t), \Gamma \Rightarrow \Delta} \\
\frac{\varphi\left\{\frac{s}{x}\right\}, \Gamma \Rightarrow \Delta}{\left(R T C_{x, y} \varphi\right)(s, t), \Gamma \Rightarrow s=t, \Delta} & \\
\Gamma \Rightarrow \Delta, s=t, \exists z\left(\left(R T C_{x, y} \varphi\right)(s, z) \wedge \varphi\left\{\frac{z}{x}, \frac{t}{y}\right\}\right)
\end{array}
$$

Arithmetics in RTC_{G}

TC for Arithmetics
$\mathrm{RTC}_{G}+\mathrm{A}$ is obtained from RTC_{G} by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

Arithmetics in RTC_{G}

TC for Arithmetics

$\mathrm{RTC}_{G}+\mathrm{A}$ is obtained from RTC_{G} by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

Theorem

RTC $_{G}+\mathrm{A}$ is equivalent to the sequent calculi of $P A$, i.e. there is a provability preserving translation algorithm between them.

Arithmetics in RTC_{G}

TC for Arithmetics

$\mathrm{RTC}_{G}+\mathrm{A}$ is obtained from RTC_{G} by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

Theorem

RTC $_{G}+\mathrm{A}$ is equivalent to the sequent calculi of $P A$, i.e. there is a provability preserving translation algorithm between them.

Corollary
The ordinal number of the $\mathrm{RTC}_{G}+\mathrm{A}$ is ε_{0}.

Henkin Semantics

A σ-Henkin structure is a triple $M=\left\langle D, I, D^{\prime}\right\rangle$ (frame), s.t.:

1. $\langle D, I\rangle$ is a FO structure for σ
2. $D^{\prime} \subseteq P(D)$ is closed under parametric definability.

Henkin Semantics

A σ-Henkin structure is a triple $M=\left\langle D, I, D^{\prime}\right\rangle$ (frame), s.t.:

1. $\langle D, I\rangle$ is a FO structure for σ
2. $D^{\prime} \subseteq P(D)$ is closed under parametric definability.
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$ provided for every $A \in D^{\prime}$, if $v(s) \in A$ and $\forall a, b \in D:(a \in A \wedge M, v[x:=a, y:=b] \vDash \varphi) \rightarrow b \in A$, then $v(t) \in A$.

Henkin Semantics

A σ-Henkin structure is a triple $M=\left\langle D, I, D^{\prime}\right\rangle$ (frame), s.t.:

1. $\langle D, I\rangle$ is a FO structure for σ
2. $D^{\prime} \subseteq P(D)$ is closed under parametric definability.
$M, v \models\left(R T C_{x, y} \varphi\right)(s, t)$ provided for every $A \in D^{\prime}$, if $v(s) \in A$ and $\forall a, b \in D:(a \in A \wedge M, v[x:=a, y:=b] \vDash \varphi) \rightarrow b \in A$, then $v(t) \in A$.

Completeness Theorem
$T \vdash_{\operatorname{RTC}_{G}} \varphi \Longleftrightarrow T \models_{H} \varphi$.

So Far

standard validity

So Far

standard validity
Henkin validity

Proof Theory

Infinitary?

Infinitary Systems

Infinite Descent-Style Proof System

Infinite Descent-Style Proof System

Infinite height, not width

- Proofs can be infinite, non-well-founded trees, provided that every infinite path admits some infinite descent.
- The descent is witnessed by tracing terms/formulas corresponding to elements of a well-founded set.
- This global trace condition is decidable using Büchi automata.
- Systems of implicit induction.

Infinitary Proof System - RTC ${ }_{G}^{\omega}$

Reflexivity

$$
\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, s)
$$

Step

$$
\frac{\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta,\left(T C_{x, y} \varphi\right)(s, t)}
$$

Case-split

$$
\frac{\Gamma, s=t \Rightarrow \Delta \quad \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi\left\{\frac{z}{x}, \frac{t}{y}\right\} \Rightarrow \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \Rightarrow \Delta}
$$

provided z is fresh.

Infinitary Proof System - RTC ${ }_{G}^{\omega}$

Reflexivity

$$
\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, s)
$$

Step

$$
\frac{\Gamma \Rightarrow \Delta,\left(R T C_{x, y} \varphi\right)(s, r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta,\left(T C_{x, y} \varphi\right)(s, t)}
$$

Case-split

$$
\frac{\Gamma, s=t \Rightarrow \Delta \quad \Gamma,\left(R T C_{x, y} \varphi\right)(s, z), \varphi\left\{\frac{z}{x}, \frac{t}{y}\right\} \Rightarrow \Delta}{\Gamma,\left(R T C_{x, y} \varphi\right)(s, t) \Rightarrow \Delta}
$$

provided z is fresh.

Soundness and Completeness

Completeness Theorem

$T \vdash \vdash_{\operatorname{RTC}}^{\underset{G}{\omega}} \varphi \Longleftrightarrow T \models \varphi$.

Soundness and Completeness

Completeness Theorem
 $T \vdash_{\text {RTC }}^{\text {cf }} \underset{G}{\omega} \varphi \Longleftrightarrow T \models \varphi$.

Global soundness via an infinite descent proof-by-contradiction:

Soundness and Completeness

Completeness Theorem

$T \vdash_{\operatorname{RTC}}^{\underset{G}{\omega}} \varphi \Longleftrightarrow T \models \varphi$.
Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

Soundness and Completeness

Completeness Theorem

$$
T \vdash_{\operatorname{RTC}}^{G}{ }_{G}^{\omega} \underset{ }{\omega} \varphi T \models \varphi .
$$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models

Soundness and Completeness

Completeness Theorem

$$
T \vdash_{\operatorname{RTC}}^{G}{ }_{G}^{\omega} \underset{ }{\omega} \varphi T \models \varphi .
$$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
- Mapped to the minimal length for witnessing the transitive closure trace.

Soundness and Completeness

Completeness Theorem

$$
T \vdash_{\operatorname{RTC}}^{G} \underset{G}{c} \underset{ }{\omega} \varphi T \models \varphi
$$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
- Mapped to the minimal length for witnessing the transitive closure trace.
- Global trace condition entails the chain is infinitely descending

Soundness and Completeness

Completeness Theorem

$$
T \vdash_{\operatorname{RTC}}^{G} \underset{G}{c} \underset{ }{\omega} \varphi T \models \varphi
$$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
- Mapped to the minimal length for witnessing the transitive closure trace.
- Global trace condition entails the chain is infinitely descending
- But the numbers are well-founded ... contradiction!

So Far

standard validity
Henkin validity

So Far

standard validity

Henkin validity

Proof Theory

The Cyclic Subsystem - CRTC ${ }_{G}^{\omega}$

The Cyclic Subsystem - CRTC ${ }_{G}^{\omega}$

- An effective subsystem can be obtained by considering only the regular infinite proofs.
- Regular proofs $=$ represented as finite, possibly cyclic, graphs.

Implicit Induction Subsumes Explicit Induction

Implicit Induction Subsumes Explicit Induction

Implicit Induction Subsumes Explicit Induction

- Normal Cyclic Proofs $=$ non-overlapping cyclic proofs.

Cyclic Proof vs. Explicit Induction

Induction invariant

Cyclic Proof vs. Explicit Induction

Cyclic Proof vs. Explicit Induction

Cyclic Proof vs. Explicit Induction

- Complex induction schemes naturally represented by nested and overlapping cycles.

Cyclic Proof vs. Explicit Induction

- Complex induction schemes naturally represented by nested and overlapping cycles.
- Every sequent provable using the explicit induction rule is also derivable using cyclic proof.

standard validity

Henkin validity

standard validity
Henkin validity

So Far

standard validity
Henkin validity

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.
- In systems for FOL with inductive definition, the equivalence was refuted when both systems have the same set of inductive definitions. [Berardi, Tatsuta, 2017]

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.
- In systems for FOL with inductive definition, the equivalence was refuted when both systems have the same set of inductive definitions. [Berardi, Tatsuta, 2017]
- In the TC framework all inductive definitions at once.

So Far

standard validity

Henkin validity

So Far

standard validity

Henkin validity

Future (and Current) Work

- Resolving the open question of the (in)equivalence of RTC $_{G}$ and $\operatorname{CRTC}{ }_{G}^{\omega}$.
- Implementing CRTC ${ }_{G}^{\omega}$ and investigating the practicalities of TC-logic to support automated inductive reasoning.
- Using the uniformity of TC-logic to better study the relationship between implicit and explicit induction.
- Cuts required in each system
- Relative complexity of proofs
- Incorporating coinductive reasoning into the formal system.

Summary

standard validity
Henkin validity

Summary

standard validity
Henkin validity

