Induction, Transitive Closure and Cycles

<u>Liron Cohen</u>, Cornell University, Reuben Rowe, University of Kent

ASL North American Annual Meeting, 2018

Transitive Closure Logic = FOL + a transitive closure operator.

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R^* of binary relation R is defined by:

 $R^* = \bigcup R^{(n)}$

where $R^{(0)} = Id, R^{(n+1)} = R^{(n)} \circ R$.

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R^* of binary relation R is defined by:

 $R^* = \bigcup R^{(n)}$

where $R^{(0)} = Id, R^{(n+1)} = R^{(n)} \circ R$.

Alternatively,

$$R^* = Id \cup \bigcap \{S \mid R \cup S \circ R \subseteq S\}$$

(Least fixed point of the composition operator)

• The concept of the transitive closure is truly basic.

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas
- A minimal extension.

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas
- A minimal extension.
 - A special case of a least fixed point.

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas
- A minimal extension.
 - A special case of a least fixed point.
- Equivalent to other extensions of *FOL*, but the most convenient from a proof theoretical perspective.

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas
- A minimal extension.
 - A special case of a least fixed point.
- Equivalent to other extensions of *FOL*, but the most convenient from a proof theoretical perspective.
- Captures inductive principles in a uniform way.

- The concept of the transitive closure is truly basic.
 - Being a 'descendent of'
 - The natural numbers
 - Well-formed formulas
- A minimal extension.
 - A special case of a least fixed point.
- Equivalent to other extensions of *FOL*, but the most convenient from a proof theoretical perspective.
- Captures inductive principles in a uniform way.
 - Not parametrized by a set of inductive principles.

The Language

The language \mathcal{L}_{TC} is defined as \mathcal{L}_{FOL} , with the additional clause:

 (*RTC_{x,y}φ*)(s, t) is a formula, for φ a formula, x, y distinct variables, and s, t terms. (x, y become bound in this formula.)

The Language

The language \mathcal{L}_{TC} is defined as \mathcal{L}_{FOL} , with the additional clause:

 (*RTC_{x,y}φ*)(s, t) is a formula, for φ a formula, x, y distinct variables, and s, t terms. (x, y become bound in this formula.)

Allows for:

- Rich testing
- Nested RTC

The Semantics

The Intended Meaning of $(RTC_{x,y}\varphi)(s,t)$ $s = t \lor \varphi(s,t) \lor \exists w_1.\varphi(s,w_1) \land \varphi(w_1,t)$ $\lor \exists w_1 \exists w_2.\varphi(s,w_1) \land \varphi(w_1,w_2) \land \varphi(w_2,t) \lor ...$

The Semantics

The Intended Meaning of $(RTC_{x,y}\varphi)(s,t)$ $s = t \lor \varphi(s,t) \lor \exists w_1.\varphi(s,w_1) \land \varphi(w_1,t)$ $\lor \exists w_1 \exists w_2.\varphi(s,w_1) \land \varphi(w_1,w_2) \land \varphi(w_2,t) \lor ...$

Formal Definition

Let *M* be a structure for \mathcal{L}_{TC} and *v* an assignment in *M*.

 $\begin{array}{l} \mathcal{M}, \mathbf{v} \models \left(RTC_{\mathbf{x}, \mathbf{y}} \varphi \right)(\mathbf{s}, t) \text{ iff there exist } \mathbf{a}_0, \ldots \mathbf{a}_n \in D \text{ s.t.} \\ \mathbf{v}\left[\mathbf{s} \right] = \mathbf{a}_0; \ \mathbf{v}\left[t \right] = \mathbf{a}_n; \ \mathcal{M}, \mathbf{v}\left[\mathbf{x} := \mathbf{a}_i, \mathbf{y} := \mathbf{a}_{i+1} \right] \models \varphi \text{ for } 0 \leq i < n. \end{array}$

The Semantics

The Intended Meaning of $(RTC_{x,y}\varphi)(s,t)$ $s = t \lor \varphi(s,t) \lor \exists w_1.\varphi(s,w_1) \land \varphi(w_1,t)$ $\lor \exists w_1 \exists w_2.\varphi(s,w_1) \land \varphi(w_1,w_2) \land \varphi(w_2,t) \lor ...$

Formal Definition

Let *M* be a structure for \mathcal{L}_{TC} and *v* an assignment in *M*.

 $M, v \models (RTC_{x,y}\varphi)(s,t) \text{ iff there exist } a_0, \dots a_n \in D \text{ s.t.}$ $v[s] = a_0; v[t] = a_n; M, v[x := a_i, y := a_{i+1}] \models \varphi \text{ for } 0 \le i < n.$

 $M, v \models (RTC_{x,y}\varphi)(s,t)$ provided for every $A \subseteq D$, if $v(s) \in A$ and $\forall a, b \in D$: $(a \in A \land M, v [x := a, y := b] \models \varphi) \rightarrow b \in A$, then $v(t) \in A$.

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{\mathcal{TC}}^{\{0,s\}}$

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{TC}^{\{0,s\}}$ (with pairs)

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{\mathcal{TC}}^{\{0,s\}}$ (with pairs)

• + is definable in $\mathcal{L}_{TC}^{\{0,s\}}$ (with pairs) by:

 $x = y + z \iff (RTC_{u,v}v.1 = s(u.1) \land v.2 = s(u.2))((0, y), (z, x))$

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{\mathcal{TC}}^{\{0,s\}}$ (with pairs)

• + is definable in $\mathcal{L}_{TC}^{\{0,s\}}$ (with pairs) by:

 $\mathbf{x} = \mathbf{y} + \mathbf{z} \iff (RTC_{u,v}v.1 = s(u.1) \land v.2 = s(u.2))((0, y), (\mathbf{z}, \mathbf{x}))$

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{\mathcal{TC}}^{\{0,s\}}$ (with pairs)

• + is definable in $\mathcal{L}_{TC}^{\{0,s\}}$ (with pairs) by:

 $\mathbf{x} = \mathbf{y} + \mathbf{z} \iff (RTC_{u,v}v.1 = s(u.1) \land v.2 = s(u.2))((0, y), (\mathbf{z}, \mathbf{x}))$

• The reflexive and the non-reflexive *TC* operators are equivalent (assuming equality).

Theorem [Avron, '03]

All recursive functions and relations are definable in $\mathcal{L}_{\mathcal{TC}}^{\{0,s\}}$ (with pairs)

• + is definable in $\mathcal{L}_{TC}^{\{0,s\}}$ (with pairs) by:

 $\mathbf{x} = \mathbf{y} + \mathbf{z} \iff (RTC_{u,v}v.1 = s(u.1) \land v.2 = s(u.2))((0, y), (\mathbf{z}, \mathbf{x}))$

$$\begin{aligned} &\forall x \, (s \, (x) \neq 0) \\ &\forall x \forall y \, (s \, (x) = s \, (y) \rightarrow x = y) \\ &\forall x \, (RTC_{w,u} \, (s(w) = u)) \, (0, x) \end{aligned}$$

$$\forall x (s (x) \neq 0) \forall x \forall y (s (x) = s (y) \rightarrow x = y) \forall x (RTC_{w,u} (s(w) = u)) (0, x)$$

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.

$$\forall x (s (x) \neq 0) \forall x \forall y (s (x) = s (y) \rightarrow x = y) \forall x (RTC_{w,u} (s(w) = u)) (0, x)$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.

$$\forall x (s (x) \neq 0) \forall x \forall y (s (x) = s (y) \rightarrow x = y) \forall x (RTC_{w,u} (s(w) = u)) (0, x)$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.
- TC-logic is inherently incomplete.

$$\forall x (s (x) \neq 0) \forall x \forall y (s (x) = s (y) \rightarrow x = y) \forall x (RTC_{w,u} (s(w) = u)) (0, x)$$

Corollaries:

- The upward Löwenheim-Skolem theorem fails for TC-logic.
- TC-logic is not compact.
- TC-logic is inherently incomplete.

The System $\mathcal{LK}_{=}$ [Gentzen, '34]

$$\frac{\psi, \Gamma \Rightarrow \Delta}{\varphi \land \psi, \Gamma \Rightarrow \Delta} (\land L_1) \qquad \qquad \frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \land \psi, \Gamma \Rightarrow \Delta} (\land L_2) \qquad \qquad \frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} (\land R)$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} (\lor L) \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \lor \psi} (\lor R_1) \qquad \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \lor \psi} (\lor R_2)$$

$$\frac{\overline{} \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} (\to L)$$
$$\Gamma \Rightarrow \Delta \phi$$

$$\frac{1}{\neg\varphi,\Gamma\Rightarrow\Delta}\left(\neg L\right)$$

$$\frac{\varphi\left\{\frac{t}{x}\right\}, \Gamma \Rightarrow \Delta}{\forall x\varphi, \Gamma \Rightarrow \Delta} (\forall L)$$

$$\frac{\varphi\left\{\frac{\gamma}{x}\right\}, \Gamma \Rightarrow \Delta}{\exists x \varphi, \Gamma \Rightarrow \Delta} (\exists L)^{*}$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} (\rightarrow R)$$
$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi} (\neg R)$$
$$\Gamma \Rightarrow \Delta, \varphi \left\{ \frac{y}{x} \right\}_{(\forall R)^*}$$

$$\frac{\neg \Delta, \varphi \left(\times \right)}{\Gamma \Rightarrow \Delta, \forall x \varphi} (\forall R)^{2}$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{t}{x}\right\}}{\Gamma \Rightarrow \Delta, \exists x \varphi} \left(\exists R\right)$$

The System $\mathcal{LK}_{=}$ [Gentzen, '34]

$$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} (wkL)$$

$$\frac{\varphi,\varphi,\Gamma\Rightarrow\Delta}{\varphi,\Gamma\Rightarrow\Delta} (cntL)$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} (wkR)$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} \left(cntR \right)$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} (cut)$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma\left\{\frac{\vec{s}}{\vec{x}}\right\} \Rightarrow \Delta\left\{\frac{\vec{s}}{\vec{x}}\right\}} (sub)$$

$$\frac{1}{\varphi \Rightarrow \varphi} (id)$$

$$\frac{\Gamma \Rightarrow \Delta, s = t \ \Gamma \Rightarrow \Delta, \varphi\left\{\frac{s}{x}\right\}}{\Gamma \Rightarrow \Delta, \varphi\left\{\frac{t}{x}\right\}} (eq)$$

$$\frac{1}{\Rightarrow t=t} (eq)$$

Finitary Proof System – RTC_G

Reflexivity

 $\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,s)$

Step

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta, (TC_{x,y}\varphi)(s,t)}$$

Induction

$$\frac{\Gamma, \psi(x), \varphi(x, y) \Rightarrow \Delta, \psi\left\{\frac{y}{x}\right\}}{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x, y}\varphi)(s, t) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}}$$

provided $x \notin FV(\Gamma \cup \Delta)$ and $y \notin FV(\Gamma \cup \Delta \cup \{\psi\})$.

RTC_G 'Captures' TC-logic

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}$$

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}$$

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}$$

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}{(RTC_{x,y}\varphi)(s,t)}$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta, \psi}{\Gamma, (RTC_{x,y}\varphi)(s,t) \Rightarrow \Delta, (RTC_{x,y}\psi)(s,t)}$$

$$\frac{(RTC_{x,y}\varphi)(s,t), \Gamma \Rightarrow \Delta}{(RTC_{x,y}\varphi)(s,t), \Gamma \Rightarrow s = t, \Delta}$$

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t), \Gamma \Rightarrow s = t, \Delta}{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,t)}$$

TC for Arithmetics

 RTC_G+A is obtained from RTC_G by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

TC for Arithmetics

 RTC_G+A is obtained from RTC_G by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

Theorem

 RTC_G+A is equivalent to the sequent calculi of *PA*, i.e. there is a provability preserving translation algorithm between them.

TC for Arithmetics

 RTC_G+A is obtained from RTC_G by the addition of the standard axioms for successor and addition, and the axiom characterizing the natural numbers in TC-logic.

Theorem

 RTC_G+A is equivalent to the sequent calculi of *PA*, i.e. there is a provability preserving translation algorithm between them.

Corollary

The ordinal number of the $RTC_G + A$ is ε_0 .

A σ -Henkin structure is a triple $M = \langle D, I, D' \rangle$ (frame), s.t.:

- 1. $\langle D, I \rangle$ is a FO structure for σ
- 2. $D' \subseteq P(D)$ is closed under parametric definability.

A σ -Henkin structure is a triple $M = \langle D, I, D' \rangle$ (frame), s.t.:

- 1. $\langle D, I \rangle$ is a FO structure for σ
- 2. $D' \subseteq P(D)$ is closed under parametric definability.

 $M, v \models (RTC_{x,y}\varphi)(s,t)$ provided for every $A \in D'$, if $v(s) \in A$ and $\forall a, b \in D$: $(a \in A \land M, v[x := a, y := b] \models \varphi) \rightarrow b \in A$, then $v(t) \in A$.

A σ -Henkin structure is a triple $M = \langle D, I, D' \rangle$ (frame), s.t.:

- 1. $\langle D, I \rangle$ is a FO structure for σ
- 2. $D' \subseteq P(D)$ is closed under parametric definability.

 $M, v \models (RTC_{x,y}\varphi)(s,t)$ provided for every $A \in D'$, if $v(s) \in A$ and $\forall a, b \in D : (a \in A \land M, v[x := a, y := b] \models \varphi) \rightarrow b \in A$, then $v(t) \in A$.

Completeness Theorem

 $T \vdash_{\mathsf{RTC}_{G}} \varphi \Longleftrightarrow T \models_{H} \varphi.$

Infinitary ?

Infinite Descent-Style Proof System

Infinite Descent-Style Proof System

- Proofs can be infinite, non-well-founded trees, provided that every infinite path admits some infinite descent.
- The descent is witnessed by tracing terms/formulas corresponding to elements of a well-founded set.
- This global trace condition is decidable using Büchi automata.
- Systems of implicit induction.

Infinitary Proof System – RTC_{G}^{ω}

Reflexivity

 $\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,s)$

Step

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta, (TC_{x,y}\varphi)(s,t)}$$

$\begin{aligned} \textbf{Case-split} \\ \frac{\Gamma, s = t \Rightarrow \Delta \quad \Gamma, (RTC_{x,y}\varphi)(s,z), \varphi\left\{\frac{z}{x}, \frac{t}{y}\right\} \Rightarrow \Delta}{\Gamma, (RTC_{x,y}\varphi)(s,t) \Rightarrow \Delta} \end{aligned}$

provided z is fresh.

Infinitary Proof System – RTC_{G}^{ω}

Reflexivity

 $\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,s)$

Step

$$\frac{\Gamma \Rightarrow \Delta, (RTC_{x,y}\varphi)(s,r) \quad \Gamma \Rightarrow \Delta, \varphi\left\{\frac{r}{x}, \frac{t}{y}\right\}}{\Gamma \Rightarrow \Delta, (TC_{x,y}\varphi)(s,t)}$$

$\begin{aligned} \textbf{Case-split} \\ \frac{\Gamma, s = t \Rightarrow \Delta \quad \Gamma, (RTC_{x,y}\varphi)(s,z), \varphi\left\{\frac{z}{x}, \frac{t}{y}\right\} \Rightarrow \Delta}{\Gamma, (RTC_{x,y}\varphi)(s,t) \Rightarrow \Delta} \end{aligned}$

provided z is fresh.

$$T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$$

$$T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{\mathsf{G}}} \varphi \Longleftrightarrow T \models \varphi.$$

Global soundness via an infinite descent proof-by-contradiction:

$$T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$$

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

$$T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
Completeness Theorem

 $T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
 - Mapped to the minimal length for witnessing the transitive closure trace.

Completeness Theorem

 $T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
 - Mapped to the minimal length for witnessing the transitive closure trace.
- Global trace condition entails the chain is infinitely descending

Completeness Theorem

 $T \vdash^{cf}_{\mathsf{RTC}^{\omega}_{G}} \varphi \Longleftrightarrow T \models \varphi.$

Global soundness via an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness entails an infinite sequence of counter models
 - Mapped to the minimal length for witnessing the transitive closure trace.
- Global trace condition entails the chain is infinitely descending
 - But the numbers are well-founded ... contradiction!

The Cyclic Subsystem – $CRTC_G^{\omega}$

The Cyclic Subsystem – $CRTC_G^{\omega}$

- An effective subsystem can be obtained by considering only the regular infinite proofs.
- Regular proofs = represented as finite, possibly cyclic, graphs.

Implicit Induction Subsumes Explicit Induction

$$\frac{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}}{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\varphi)(v,z) \Rightarrow \Delta, \psi\left\{\frac{z}{x}\right\}} (Subst) \qquad \frac{\Gamma, \psi(x), \varphi(x,y) \Rightarrow \Delta, \psi\left\{\frac{y}{x}\right\}}{\Gamma, \psi\left\{\frac{x}{x}\right\}, \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} (Cut)$$

$$\frac{\overline{\psi\left\{\frac{v}{x}\right\}, v = w \Rightarrow \psi\left\{\frac{w}{x}\right\}}}{\overline{\psi\left\{\frac{v}{x}\right\}}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Case-split) \qquad (Case-split)} (Case-split)$$

$$\frac{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}}{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\varphi)(v,z), \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)}$$

Implicit Induction Subsumes Explicit Induction

$$\frac{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\,\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}}{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\,\varphi)(v,z) \Rightarrow \Delta, \psi\left\{\frac{z}{x}\right\}} (Subst) \qquad \frac{\Gamma, \psi(x), \varphi(x,y) \Rightarrow \Delta, \psi\left\{\frac{y}{x}\right\}}{\Gamma, \psi\left\{\frac{x}{x}\right\}, \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} (Cut)$$

$$\frac{\overline{\psi\left\{\frac{v}{x}\right\}, v = w \Rightarrow \psi\left\{\frac{w}{x}\right\}}}{\overline{\psi\left\{\frac{v}{x}\right\}}, (RTC_{x,y}\,\varphi)(v,z) \Rightarrow \Delta, \psi\left\{\frac{x}{x}\right\}} (Subst)} \xrightarrow{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\,\varphi)(v,z), \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Cut)} (Cut)$$

$$\frac{\overline{\psi\left\{\frac{v}{x}\right\}, v = w \Rightarrow \psi\left\{\frac{w}{x}\right\}}}{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\,\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} (Case-split)$$

$$\frac{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\,\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}} (Subst)}{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\,\varphi)(s,t) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}} (Subst)} (Subst)$$

Implicit Induction Subsumes Explicit Induction

$$\frac{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}}{\Gamma, \psi\left\{\frac{v}{x}\right\}, (RTC_{x,y}\varphi)(v,z) \Rightarrow \Delta, \psi\left\{\frac{z}{x}\right\}} (Subst) \qquad \frac{\Gamma, \psi(x), \varphi(x,y) \Rightarrow \Delta, \psi\left\{\frac{y}{x}\right\}}{\Gamma, \psi\left\{\frac{x}{x}\right\}, \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} (Cut)$$

$$\frac{\overline{\psi\left\{\frac{v}{x}\right\}, v = w \Rightarrow \psi\left\{\frac{w}{x}\right\}}}{\overline{\psi\left\{\frac{v}{x}\right\}}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} \qquad (Case-split)$$

$$\frac{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}}{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\varphi)(v,z), \varphi\left\{\frac{z}{x}, \frac{w}{y}\right\} \Rightarrow \Delta, \psi\left\{\frac{w}{x}\right\}} (Subst)} (Subst) \qquad (Case-split)$$

$$\frac{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\varphi)(v,w) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}} (Subst)}{\Gamma, \psi\left\{\frac{s}{x}\right\}, (RTC_{x,y}\varphi)(s,t) \Rightarrow \Delta, \psi\left\{\frac{t}{x}\right\}} (Subst)} \qquad (Case-split) \qquad (Case-s$$

• Normal Cyclic Proofs = non-overlapping cyclic proofs.

Induction invariant

 Complex induction schemes naturally represented by nested and overlapping cycles.

- Complex induction schemes naturally represented by nested and overlapping cycles.
- Every sequent provable using the explicit induction rule is also derivable using cyclic proof.

• For arithmetics, the explicit and cyclic systems are equivalent.

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.
- In systems for FOL with inductive definition, the equivalence was refuted when both systems have the same set of inductive definitions. [Berardi, Tatsuta, 2017]

Is the Cyclic System Stronger?

- For arithmetics, the explicit and cyclic systems are equivalent.
- In general, the question of the (in)equivalence between the systems remains open.
- In systems for FOL with inductive definition, the equivalence was refuted when both systems have the same set of inductive definitions. [Berardi, Tatsuta, 2017]

• In the TC framework all inductive definitions at once.

Future (and Current) Work

- Resolving the open question of the (in)equivalence of RTC_G and CRTC_G^ω.
- Implementing $CRTC_G^{\omega}$ and investigating the practicalities of TC-logic to support automated inductive reasoning.
- Using the uniformity of TC-logic to better study the relationship between implicit and explicit induction.
 - Cuts required in each system
 - Relative complexity of proofs
- Incorporating coinductive reasoning into the formal system.

Summary

Summary

