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Transitive Closure Logic

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R∗ of binary relation R is defined by:

R∗ =
⋃

R(n)

where R(0) = Id ,R(n+1) = R(n) ◦ R.

Alternatively,

R∗ = Id ∪
⋂
{S | R ∪ S ◦ R ⊆ S}

(Least fixed point of the composition operator)
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Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.

• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.
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The Language

The Language
The language LTC is defined as LFOL, with the additional clause:

• (RTCx ,yϕ)(s, t) is a formula,
for ϕ a formula, x , y distinct variables, and s, t terms.
(x , y become bound in this formula.)

Allows for:

• Rich testing
• Nested RTC
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The Semantics

The Intended Meaning of (RTCx ,yϕ)(s, t)
s = t ∨ ϕ(s, t) ∨ ∃w1.ϕ(s,w1) ∧ ϕ(w1, t)

∨ ∃w1∃w2.ϕ(s,w1) ∧ ϕ(w1,w2) ∧ ϕ(w2, t) ∨ ...

Formal Definition
Let M be a structure for LTC and v an assignment in M.

M, v |= (RTCx ,yϕ) (s, t) iff there exist a0, ...an ∈ D s.t.
v [s] = a0; v [t] = an; M, v [x := ai , y := ai+1] |= ϕ for 0 ≤ i < n.

a0 a1 a2 an−1 an
ss ttϕ ϕ ϕ ϕ

M, v |= (RTCx ,yϕ) (s, t) provided for every A ⊆ D, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.
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Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉
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Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.
• TC-logic is not compact.
• TC-logic is inherently incomplete.
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The System LK= [Gentzen, ’34]

ψ, Γ ⇒ ∆
ϕ ∧ ψ, Γ ⇒ ∆ (∧L1)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆
ϕ ∨ ψ, Γ ⇒ ∆ (∨L)

ϕ, Γ ⇒ ∆
ϕ ∧ ψ, Γ ⇒ ∆ (∧L2)

Γ ⇒ ∆, ϕ
Γ ⇒ ∆, ϕ ∨ ψ

(∨R1)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ∧ ψ

(∧R)

Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ∨ ψ

(∨R2)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆
ϕ → ψ, Γ ⇒ ∆ (→ L)

Γ ⇒ ∆, ϕ
¬ϕ, Γ ⇒ ∆ (¬L)

ϕ
{ t

x

}
, Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆ (∀L)

ϕ
{ y

x

}
, Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆ (∃L)∗

ϕ, Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ → ψ

(→ R)

ϕ, Γ ⇒ ∆
Γ ⇒ ∆,¬ϕ (¬R)

Γ ⇒ ∆, ϕ
{ y

x

}
Γ ⇒ ∆, ∀xϕ (∀R)∗

Γ ⇒ ∆, ϕ
{ t

x

}
Γ ⇒ ∆,∃xϕ (∃R)



The System LK= [Gentzen, ’34]

Γ ⇒ ∆
ϕ, Γ ⇒ ∆ (wkL)

ϕ,ϕ, Γ ⇒ ∆
ϕ, Γ ⇒ ∆ (cntL)

Γ ⇒ ∆, ϕ ϕ, Γ ⇒ ∆
Γ ⇒ ∆ (cut)

Γ ⇒ ∆
Γ ⇒ ∆, ϕ (wkR)

Γ ⇒ ∆, ϕ, ϕ
Γ ⇒ ∆, ϕ (cntR)

Γ ⇒ ∆
Γ
{

~s
~x

}
⇒ ∆

{
~s
~x

} (sub)

ϕ ⇒ ϕ
(id)

Γ ⇒ ∆, s = t Γ ⇒ ∆, ϕ
{ s

x

}
Γ ⇒ ∆, ϕ

{ t
x

} (eq) ⇒ t = t (eq)



Finitary Proof System – RTCG

Reflexivity
Γ⇒ ∆, (RTCx ,yϕ) (s, s)

Step
Γ⇒ ∆, (RTCx ,yϕ) (s, r) Γ⇒ ∆, ϕ

{
r
x ,

t
y

}
Γ⇒ ∆, (TCx ,yϕ) (s, t)

Induction
Γ, ψ (x) , ϕ(x , y)⇒ ∆, ψ

{ y
x
}

Γ, ψ
{ s

x
}
, (RTCx ,yϕ)(s, t)⇒ ∆, ψ

{ t
x
}

provided x /∈ FV (Γ ∪ ∆) and y /∈ FV (Γ ∪ ∆ ∪ {ψ}).



RTCG ‘Captures’ TC-logic

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆, (RTCy,xϕ) (t, s)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆,

(
RTCu,vϕ

{ u
x ,

v
y

})
(s, t)

ϕ
{ s

x

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆

Γ ⇒ ∆, ϕ
{ s

x ,
r
y

}
Γ ⇒ ∆, (RTCx,yϕ) (r , t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ, ϕ ⇒ ∆, ψ
Γ, (RTCx,yϕ) (s, t) ⇒ ∆, (RTCx,yψ) (s, t)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆
(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ ∆

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆, s = t,∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{ z
x ,

t
y

})



Arithmetics in RTCG

TC for Arithmetics
RTCG+A is obtained from RTCG by the addition of the standard
axioms for successor and addition, and the axiom characterizing
the natural numbers in TC-logic.

Theorem
RTCG+A is equivalent to the sequent calculi of PA, i.e. there is a
provability preserving translation algorithm between them.

Corollary
The ordinal number of the RTCG+A is ε0.
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Henkin Semantics

A σ-Henkin structure is a triple M = 〈D, I,D′〉 (frame), s.t.:

1. 〈D, I〉 is a FO structure for σ
2. D′ ⊆ P (D) is closed under parametric definability.

M, v |= (RTCx ,yϕ) (s, t) provided for every A ∈ D′, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.

Completeness Theorem
T `RTCG ϕ⇐⇒ T |=H ϕ.
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Infinite Descent-Style Proof System

...
...

..

• • . . .
. . .

. .

. . .
. .

(Inference)
•···
•

(Axiom)
• ·····•

Infinite height,
not width

• Proofs can be infinite, non-well-founded trees, provided that
every infinite path admits some infinite descent.

• The descent is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set.

• This global trace condition is decidable using Büchi automata.
• Systems of implicit induction.
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Infinitary Proof System – RTCω
G

Reflexivity
Γ⇒ ∆, (RTCx ,yϕ) (s, s)

Step
Γ⇒ ∆, (RTCx ,yϕ) (s, r) Γ⇒ ∆, ϕ

{
r
x ,

t
y

}
Γ⇒ ∆, (TCx ,yϕ) (s, t)

Case-split
Γ, s = t ⇒ ∆ Γ, (RTCx ,yϕ)(s, z), ϕ

{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx ,yϕ)(s, t)⇒ ∆

provided z is fresh.
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Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!
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(Axiom)
•

• An effective subsystem can be obtained by considering only
the regular infinite proofs.

• Regular proofs = represented as finite, possibly cyclic, graphs.
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Implicit Induction Subsumes Explicit Induction

(Eq)

ψ

{v
x

}
, v = w ⇒ ψ

{w
x

}
..
..
..
.

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z)⇒ ∆, ψ

{ z
x

}
Γ, ψ(x), ϕ(x , y)⇒ ∆, ψ

{y
x

}
(Subst)

Γ, ψ
{ z

x

}
, ϕ
{

z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}
(Cut)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}

(Case-split)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{ s

x

}
, (RTCx ,y ϕ)(s, t)⇒ ∆, ψ

{ t
x

}

• Normal Cyclic Proofs = non-overlapping cyclic proofs.
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to premise) is eventually followed
by a trace of RTC -formulas (on the
left-hand side) which progresses (via
case-split) infinitely often.

• Normal Cyclic Proofs = non-overlapping cyclic proofs.
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Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.
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Is the Cyclic System Stronger?

• For arithmetics, the explicit and cyclic systems are equivalent.

• In general, the question of the (in)equivalence between the
systems remains open.

• In systems for FOL with inductive
definition, the equivalence was refuted
when both systems have the same set
of inductive definitions. [Berardi,
Tatsuta, 2017]

• In the TC framework all inductive definitions at once.
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Future (and Current) Work

• Resolving the open question of the (in)equivalence of RTCG
and CRTCω

G .
• Implementing CRTCω

G and investigating the practicalities of
TC-logic to support automated inductive reasoning.

• Using the uniformity of TC-logic to better study the
relationship between implicit and explicit induction.

• Cuts required in each system
• Relative complexity of proofs

• Incorporating coinductive reasoning into the formal system.
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