
Induction, Transitive Closure and Cycles

Liron Cohen, Cornell University,
Reuben Rowe, University of Kent

ASL North American Annual Meeting, 2018



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



Applications
of Logic in CS MKM

Knowledge
Reasoning

Model
Checking

Type Theory

Complexity

Verification
Database

Inductive arguments on
programs

Expressive Query languages
(WITH RECURSIVE)
SQL3, IBM DB2, Datalog

Characterization of
complexity classes

Inductive definition of
type judgments

Reachability
properties

Common knowledge, defined
inductively

Natural
numbers

What Logic?

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. On the unusual effectiveness of logic in computer science, 2001



What Logic?

FOL SOL

No inductive machinery Overkill

natural, effective extensions of FOL that allow inductive definitions

Transitive Closure Logic



What Logic?

FOL SOL

No inductive machinery

Overkill

natural, effective extensions of FOL that allow inductive definitions

Transitive Closure Logic



What Logic?

FOL SOL

No inductive machinery Overkill

natural, effective extensions of FOL that allow inductive definitions

Transitive Closure Logic



What Logic?

FOL SOL

No inductive machinery Overkill

natural, effective extensions of FOL that allow inductive definitions

Transitive Closure Logic



What Logic?

FOL SOL

No inductive machinery Overkill

natural, effective extensions of FOL that allow inductive definitions

Transitive Closure Logic



Transitive Closure Logic

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R∗ of binary relation R is defined by:

R∗ =
⋃

R(n)

where R(0) = Id ,R(n+1) = R(n) ◦ R.

Alternatively,

R∗ = Id ∪
⋂
{S | R ∪ S ◦ R ⊆ S}

(Least fixed point of the composition operator)



Transitive Closure Logic

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R∗ of binary relation R is defined by:

R∗ =
⋃

R(n)

where R(0) = Id ,R(n+1) = R(n) ◦ R.

Alternatively,

R∗ = Id ∪
⋂
{S | R ∪ S ◦ R ⊆ S}

(Least fixed point of the composition operator)



Transitive Closure Logic

Transitive Closure Logic = FOL + a transitive closure operator.

The transitive closure R∗ of binary relation R is defined by:

R∗ =
⋃

R(n)

where R(0) = Id ,R(n+1) = R(n) ◦ R.

Alternatively,

R∗ = Id ∪
⋂
{S | R ∪ S ◦ R ⊆ S}

(Least fixed point of the composition operator)



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.

• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.

• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.

• Not parametrized by a set of inductive principles.



Why Transitive Closure Logic?

• The concept of the transitive closure is truly basic.
• Being a ‘descendent of’
• The natural numbers
• Well-formed formulas

• A minimal extension.
• A special case of a least fixed point.

• Equivalent to other extensions of FOL, but the most
convenient from a proof theoretical perspective.

• Captures inductive principles in a uniform way.
• Not parametrized by a set of inductive principles.



The Language

The Language
The language LTC is defined as LFOL, with the additional clause:

• (RTCx ,yϕ)(s, t) is a formula,
for ϕ a formula, x , y distinct variables, and s, t terms.
(x , y become bound in this formula.)

Allows for:

• Rich testing
• Nested RTC



The Language

The Language
The language LTC is defined as LFOL, with the additional clause:

• (RTCx ,yϕ)(s, t) is a formula,
for ϕ a formula, x , y distinct variables, and s, t terms.
(x , y become bound in this formula.)

Allows for:

• Rich testing
• Nested RTC



The Semantics

The Intended Meaning of (RTCx ,yϕ)(s, t)
s = t ∨ ϕ(s, t) ∨ ∃w1.ϕ(s,w1) ∧ ϕ(w1, t)

∨ ∃w1∃w2.ϕ(s,w1) ∧ ϕ(w1,w2) ∧ ϕ(w2, t) ∨ ...

Formal Definition
Let M be a structure for LTC and v an assignment in M.

M, v |= (RTCx ,yϕ) (s, t) iff there exist a0, ...an ∈ D s.t.
v [s] = a0; v [t] = an; M, v [x := ai , y := ai+1] |= ϕ for 0 ≤ i < n.

a0 a1 a2 an−1 an
ss ttϕ ϕ ϕ ϕ

M, v |= (RTCx ,yϕ) (s, t) provided for every A ⊆ D, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.



The Semantics

The Intended Meaning of (RTCx ,yϕ)(s, t)
s = t ∨ ϕ(s, t) ∨ ∃w1.ϕ(s,w1) ∧ ϕ(w1, t)

∨ ∃w1∃w2.ϕ(s,w1) ∧ ϕ(w1,w2) ∧ ϕ(w2, t) ∨ ...

Formal Definition
Let M be a structure for LTC and v an assignment in M.

M, v |= (RTCx ,yϕ) (s, t) iff there exist a0, ...an ∈ D s.t.
v [s] = a0; v [t] = an; M, v [x := ai , y := ai+1] |= ϕ for 0 ≤ i < n.

a0 a1 a2 an−1 an
ss ttϕ ϕ ϕ ϕ

M, v |= (RTCx ,yϕ) (s, t) provided for every A ⊆ D, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.



The Semantics

The Intended Meaning of (RTCx ,yϕ)(s, t)
s = t ∨ ϕ(s, t) ∨ ∃w1.ϕ(s,w1) ∧ ϕ(w1, t)

∨ ∃w1∃w2.ϕ(s,w1) ∧ ϕ(w1,w2) ∧ ϕ(w2, t) ∨ ...

Formal Definition
Let M be a structure for LTC and v an assignment in M.

M, v |= (RTCx ,yϕ) (s, t) iff there exist a0, ...an ∈ D s.t.
v [s] = a0; v [t] = an; M, v [x := ai , y := ai+1] |= ϕ for 0 ≤ i < n.

a0 a1 a2 an−1 an
ss ttϕ ϕ ϕ ϕ

M, v |= (RTCx ,yϕ) (s, t) provided for every A ⊆ D, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC

(with
pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉

〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉

〈2, y + 2〉 〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉

〈z, y + x〉



Expressive Power

• The reflexive and the non-reflexive TC operators are
equivalent (assuming equality).

Theorem [Avron, ’03]

All recursive functions and relations are definable in L{0,s}
TC (with

pairs)

• + is definable in L{0,s}
TC (with pairs) by:

x = y + z ⇐⇒ (RTCu,v v .1 = s (u.1) ∧ v .2 = s (u.2)) ((0, y) , (z , x))

〈0, y〉 〈1, y + 1〉 〈2, y + 2〉 〈z, y + x〉



Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.
• TC-logic is not compact.
• TC-logic is inherently incomplete.



Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.

• TC-logic is not compact.
• TC-logic is inherently incomplete.



Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.
• TC-logic is not compact.

• TC-logic is inherently incomplete.



Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.
• TC-logic is not compact.
• TC-logic is inherently incomplete.



Expressive Power

Categorical Characterization of the Natural Numbers

∀x (s (x) 6= 0)
∀x∀y (s (x) = s (y)→ x = y)
∀x (RTCw ,u (s(w) = u)) (0, x)

Corollaries:

• The upward Löwenheim-Skolem theorem fails for TC-logic.
• TC-logic is not compact.
• TC-logic is inherently incomplete.



Proof Theory

Infinitary
Systems

Finitary
Systems

Effectiveness

Completeness



Proof Theory

Infinitary
Systems

Finitary
Systems

Effectiveness

Completeness



The System LK= [Gentzen, ’34]

ψ, Γ ⇒ ∆
ϕ ∧ ψ, Γ ⇒ ∆ (∧L1)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆
ϕ ∨ ψ, Γ ⇒ ∆ (∨L)

ϕ, Γ ⇒ ∆
ϕ ∧ ψ, Γ ⇒ ∆ (∧L2)

Γ ⇒ ∆, ϕ
Γ ⇒ ∆, ϕ ∨ ψ

(∨R1)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ∧ ψ

(∧R)

Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ∨ ψ

(∨R2)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆
ϕ → ψ, Γ ⇒ ∆ (→ L)

Γ ⇒ ∆, ϕ
¬ϕ, Γ ⇒ ∆ (¬L)

ϕ
{ t

x

}
, Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆ (∀L)

ϕ
{ y

x

}
, Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆ (∃L)∗

ϕ, Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ → ψ

(→ R)

ϕ, Γ ⇒ ∆
Γ ⇒ ∆,¬ϕ (¬R)

Γ ⇒ ∆, ϕ
{ y

x

}
Γ ⇒ ∆, ∀xϕ (∀R)∗

Γ ⇒ ∆, ϕ
{ t

x

}
Γ ⇒ ∆,∃xϕ (∃R)



The System LK= [Gentzen, ’34]

Γ ⇒ ∆
ϕ, Γ ⇒ ∆ (wkL)

ϕ,ϕ, Γ ⇒ ∆
ϕ, Γ ⇒ ∆ (cntL)

Γ ⇒ ∆, ϕ ϕ, Γ ⇒ ∆
Γ ⇒ ∆ (cut)

Γ ⇒ ∆
Γ ⇒ ∆, ϕ (wkR)

Γ ⇒ ∆, ϕ, ϕ
Γ ⇒ ∆, ϕ (cntR)

Γ ⇒ ∆
Γ
{

~s
~x

}
⇒ ∆

{
~s
~x

} (sub)

ϕ ⇒ ϕ
(id)

Γ ⇒ ∆, s = t Γ ⇒ ∆, ϕ
{ s

x

}
Γ ⇒ ∆, ϕ

{ t
x

} (eq) ⇒ t = t (eq)



Finitary Proof System – RTCG

Reflexivity
Γ⇒ ∆, (RTCx ,yϕ) (s, s)

Step
Γ⇒ ∆, (RTCx ,yϕ) (s, r) Γ⇒ ∆, ϕ

{
r
x ,

t
y

}
Γ⇒ ∆, (TCx ,yϕ) (s, t)

Induction
Γ, ψ (x) , ϕ(x , y)⇒ ∆, ψ

{ y
x
}

Γ, ψ
{ s

x
}
, (RTCx ,yϕ)(s, t)⇒ ∆, ψ

{ t
x
}

provided x /∈ FV (Γ ∪ ∆) and y /∈ FV (Γ ∪ ∆ ∪ {ψ}).



RTCG ‘Captures’ TC-logic

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆, (RTCy,xϕ) (t, s)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆,

(
RTCu,vϕ

{ u
x ,

v
y

})
(s, t)

ϕ
{ s

x

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆

Γ ⇒ ∆, ϕ
{ s

x ,
r
y

}
Γ ⇒ ∆, (RTCx,yϕ) (r , t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ, ϕ ⇒ ∆, ψ
Γ, (RTCx,yϕ) (s, t) ⇒ ∆, (RTCx,yψ) (s, t)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆
(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ ∆

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
Γ ⇒ ∆, s = t,∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{ z
x ,

t
y

})



Arithmetics in RTCG

TC for Arithmetics
RTCG+A is obtained from RTCG by the addition of the standard
axioms for successor and addition, and the axiom characterizing
the natural numbers in TC-logic.

Theorem
RTCG+A is equivalent to the sequent calculi of PA, i.e. there is a
provability preserving translation algorithm between them.

Corollary
The ordinal number of the RTCG+A is ε0.



Arithmetics in RTCG

TC for Arithmetics
RTCG+A is obtained from RTCG by the addition of the standard
axioms for successor and addition, and the axiom characterizing
the natural numbers in TC-logic.

Theorem
RTCG+A is equivalent to the sequent calculi of PA, i.e. there is a
provability preserving translation algorithm between them.

Corollary
The ordinal number of the RTCG+A is ε0.



Arithmetics in RTCG

TC for Arithmetics
RTCG+A is obtained from RTCG by the addition of the standard
axioms for successor and addition, and the axiom characterizing
the natural numbers in TC-logic.

Theorem
RTCG+A is equivalent to the sequent calculi of PA, i.e. there is a
provability preserving translation algorithm between them.

Corollary
The ordinal number of the RTCG+A is ε0.



Henkin Semantics

A σ-Henkin structure is a triple M = 〈D, I,D′〉 (frame), s.t.:

1. 〈D, I〉 is a FO structure for σ
2. D′ ⊆ P (D) is closed under parametric definability.

M, v |= (RTCx ,yϕ) (s, t) provided for every A ∈ D′, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.

Completeness Theorem
T `RTCG ϕ⇐⇒ T |=H ϕ.



Henkin Semantics

A σ-Henkin structure is a triple M = 〈D, I,D′〉 (frame), s.t.:

1. 〈D, I〉 is a FO structure for σ
2. D′ ⊆ P (D) is closed under parametric definability.

M, v |= (RTCx ,yϕ) (s, t) provided for every A ∈ D′, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.

Completeness Theorem
T `RTCG ϕ⇐⇒ T |=H ϕ.



Henkin Semantics

A σ-Henkin structure is a triple M = 〈D, I,D′〉 (frame), s.t.:

1. 〈D, I〉 is a FO structure for σ
2. D′ ⊆ P (D) is closed under parametric definability.

M, v |= (RTCx ,yϕ) (s, t) provided for every A ∈ D′, if v (s) ∈ A
and ∀a, b ∈ D : (a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A,
then v (t) ∈ A.

Completeness Theorem
T `RTCG ϕ⇐⇒ T |=H ϕ.



So Far

standard validity Henkin validity

RTCG



So Far

standard validity Henkin validity

RTCG



Proof Theory

Infinitary
Systems

Finitary
Systems

Effectiveness

Completeness



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective

can be effective?



Infinitary Systems

Infinitary ?

width

infinite rules
finite proofs

height

finite rules
infinite proofs

non-effective can be effective?



Infinite Descent-Style Proof System

...
...

..

• • . . .
. . .

. .

. . .
. .

(Inference)
•···
•

(Axiom)
• ·····•

Infinite height,
not width

• Proofs can be infinite, non-well-founded trees, provided that
every infinite path admits some infinite descent.

• The descent is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set.

• This global trace condition is decidable using Büchi automata.
• Systems of implicit induction.



Infinite Descent-Style Proof System

...
...

..

• • . . .
. . .

. .

. . .
. .

(Inference)
•···
•

(Axiom)
• ·····•

Infinite height,
not width

• Proofs can be infinite, non-well-founded trees, provided that
every infinite path admits some infinite descent.

• The descent is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set.

• This global trace condition is decidable using Büchi automata.
• Systems of implicit induction.



Infinitary Proof System – RTCω
G

Reflexivity
Γ⇒ ∆, (RTCx ,yϕ) (s, s)

Step
Γ⇒ ∆, (RTCx ,yϕ) (s, r) Γ⇒ ∆, ϕ

{
r
x ,

t
y

}
Γ⇒ ∆, (TCx ,yϕ) (s, t)

Case-split
Γ, s = t ⇒ ∆ Γ, (RTCx ,yϕ)(s, z), ϕ

{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx ,yϕ)(s, t)⇒ ∆

provided z is fresh.



Infinitary Proof System – RTCω
G

Reflexivity
Γ⇒ ∆, (RTCx ,yϕ) (s, s)

Step
Γ⇒ ∆, (RTCx ,yϕ) (s, r) Γ⇒ ∆, ϕ

{
r
x ,

t
y

}
Γ⇒ ∆, (TCx ,yϕ) (s, t)

Case-split
Γ, s = t ⇒ ∆ Γ, (RTCx ,yϕ)(s, z), ϕ

{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx ,yϕ)(s, t)⇒ ∆

provided z is fresh.



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



Soundness and Completeness

Completeness Theorem
T `cf

RTCω
G
ϕ⇐⇒ T |= ϕ.

Global soundness via an infinite descent proof-by-contradiction:

• Assume the conclusion of the proof is invalid

• Local soundness entails an infinite sequence of counter models

• Mapped to the minimal length for witnessing the transitive
closure trace.

• Global trace condition entails the chain is infinitely descending

• But the numbers are well-founded . . . contradiction!



So Far

standard validity Henkin validity

RTCG

(cut-free)
RTCω

G



So Far

standard validity Henkin validity

RTCG
(cut-free)
RTCω

G



Proof Theory

Infinitary
Systems

Finitary
Systems

Effectiveness

Completeness



The Cyclic Subsystem – CRTCω
G

...
...

..

• • . . .
. . .

. .

(Inference)
•···
•

(Axiom)
•

(Axiom)
•·······•

(Axiom)
•

• An effective subsystem can be obtained by considering only
the regular infinite proofs.

• Regular proofs = represented as finite, possibly cyclic, graphs.



The Cyclic Subsystem – CRTCω
G

...
...

..

• • . . .
. .

(Inference)
•···
•

(Axiom)
• •····•

•

• An effective subsystem can be obtained by considering only
the regular infinite proofs.

• Regular proofs = represented as finite, possibly cyclic, graphs.



Implicit Induction Subsumes Explicit Induction

(Eq)

ψ

{v
x

}
, v = w ⇒ ψ

{w
x

}
..
..
..
.

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z)⇒ ∆, ψ

{ z
x

}
Γ, ψ(x), ϕ(x , y)⇒ ∆, ψ

{y
x

}
(Subst)

Γ, ψ
{ z

x

}
, ϕ
{

z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}
(Cut)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}

(Case-split)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{ s

x

}
, (RTCx ,y ϕ)(s, t)⇒ ∆, ψ

{ t
x

}

• Normal Cyclic Proofs = non-overlapping cyclic proofs.



Implicit Induction Subsumes Explicit Induction

(Eq)

ψ

{v
x

}
, v = w ⇒ ψ

{w
x

}
..
..
..
.

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z)⇒ ∆, ψ

{ z
x

}
Γ, ψ(x), ϕ(x , y)⇒ ∆, ψ

{y
x

}
(Subst)

Γ, ψ
{ z

x

}
, ϕ
{

z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}
(Cut)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}

(Case-split)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{ s

x

}
, (RTCx ,y ϕ)(s, t)⇒ ∆, ψ

{ t
x

} Every infinite path (from conclusion
to premise) is eventually followed
by a trace of RTC -formulas (on the
left-hand side) which progresses (via
case-split) infinitely often.

• Normal Cyclic Proofs = non-overlapping cyclic proofs.



Implicit Induction Subsumes Explicit Induction

(Eq)

ψ

{v
x

}
, v = w ⇒ ψ

{w
x

}
..
..
..
.

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z)⇒ ∆, ψ

{ z
x

}
Γ, ψ(x), ϕ(x , y)⇒ ∆, ψ

{y
x

}
(Subst)

Γ, ψ
{ z

x

}
, ϕ
{

z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}
(Cut)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v , z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{w
x

}

(Case-split)

Γ, ψ
{v

x

}
, (RTCx ,y ϕ)(v ,w)⇒ ∆, ψ

{w
x

}
(Subst)

Γ, ψ
{ s

x

}
, (RTCx ,y ϕ)(s, t)⇒ ∆, ψ

{ t
x

} Every infinite path (from conclusion
to premise) is eventually followed
by a trace of RTC -formulas (on the
left-hand side) which progresses (via
case-split) infinitely often.

• Normal Cyclic Proofs = non-overlapping cyclic proofs.



Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.



Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.



Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.



Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.



Cyclic Proof vs. Explicit Induction

Induction invariant

Explicit induction
requires it a priori

Major challenge for
automatic proof search

Cyclic proof enables
its ‘discovery’

More exploratory approach
to proof search

• Complex induction schemes naturally represented by nested
and overlapping cycles.

• Every sequent provable using the explicit induction rule is also
derivable using cyclic proof.



So Far

standard validity Henkin validity

RTCG
(cut-free)
RTCω

G

CRTCω
G



So Far

standard validity Henkin validity

RTCG
(cut-free)
RTCω

G

CRTCω
G



So Far

standard validity Henkin validity

RTCG
(cut-free)
RTCω

G

CRTCω
G

NCRTCω
G



Is the Cyclic System Stronger?

• For arithmetics, the explicit and cyclic systems are equivalent.

• In general, the question of the (in)equivalence between the
systems remains open.

• In systems for FOL with inductive
definition, the equivalence was refuted
when both systems have the same set
of inductive definitions. [Berardi,
Tatsuta, 2017]

• In the TC framework all inductive definitions at once.



Is the Cyclic System Stronger?

• For arithmetics, the explicit and cyclic systems are equivalent.

• In general, the question of the (in)equivalence between the
systems remains open.

• In systems for FOL with inductive
definition, the equivalence was refuted
when both systems have the same set
of inductive definitions. [Berardi,
Tatsuta, 2017]

• In the TC framework all inductive definitions at once.



Is the Cyclic System Stronger?

• For arithmetics, the explicit and cyclic systems are equivalent.

• In general, the question of the (in)equivalence between the
systems remains open.

• In systems for FOL with inductive
definition, the equivalence was refuted
when both systems have the same set
of inductive definitions. [Berardi,
Tatsuta, 2017]

• In the TC framework all inductive definitions at once.



Is the Cyclic System Stronger?

• For arithmetics, the explicit and cyclic systems are equivalent.

• In general, the question of the (in)equivalence between the
systems remains open.

• In systems for FOL with inductive
definition, the equivalence was refuted
when both systems have the same set
of inductive definitions. [Berardi,
Tatsuta, 2017]

• In the TC framework all inductive definitions at once.



So Far

standard validity Henkin validity

(cut-free)
RTCω

G
RTCG

CRTCω
G

NCRTCω
G

CRTCω
G+A RTCG+A



So Far

standard validity Henkin validity

(cut-free)
RTCω

G
RTCG

CRTCω
G

NCRTCω
G

CRTCω
G+A RTCG+A



Future (and Current) Work

• Resolving the open question of the (in)equivalence of RTCG
and CRTCω

G .
• Implementing CRTCω

G and investigating the practicalities of
TC-logic to support automated inductive reasoning.

• Using the uniformity of TC-logic to better study the
relationship between implicit and explicit induction.

• Cuts required in each system
• Relative complexity of proofs

• Incorporating coinductive reasoning into the formal system.



Summary

standard validity Henkin validity

(cut-free)
RTCω

G
RTCG

CRTCω
G

NCRTCω
G

CRTCω
G+A RTCG+A

?

?

?

Thank you



Summary

standard validity Henkin validity

(cut-free)
RTCω

G
RTCG

CRTCω
G

NCRTCω
G

CRTCω
G+A RTCG+A

?

?

?

Thank you


