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Summary. We discuss the effectiveness of linear and semidefinite relaxations in approximat-
ing the optimum for combinatorial optimization problems. Various hierarchies of these relax-
ations, such as the ones defined by Lovasz and Schrijver [47], Sherali and Adams [55] and
Lasserre [42] generate increasingly strong linear and semidefinite programming relaxations
starting from a basic one. We survey some positive applications of these hierarchies, where
their use yields improved approximation algorithms. We also discuss known lower bounds on
the integrality gaps of relaxations arising from these hierarchies, demonstrating limits on the
applicability of such hierarchies for certain optimization problems.

1 Introduction

Convex relaxations are one of the most powerful techniques for designing poly-
nomial time approximation algorithms for NP-hard optimization problems such as
Chromatic Number, MAX-CUT, Minimum Vertex Cover etc. Approximation algo-
rithms for these problems are developed by formulating the problem at hand as an
integer program. One then relaxes the integer program to a convex program which
can be solved in polynomial time, such as a linear program (LP) or semidefinite pro-
gram (SDP). A solution to the combinatorial problem is then obtained by designing
a (possibly randomized) polynomial-time algorithm to convert the solution of such
a convex relaxation, to an integer solution for the combinatorial problem, often re-
ferred to as “rounding”.

If we are dealing with (say) a maximization problem for which the true com-
binatorial optimum is OPT, then the convex relaxation will achieve a value FRAC
which is at least as large as OPT (as the integer solution is also a feasible solution
to the convex program). The rounding algorithm then uses the solution of the convex
relaxation with objective value FRAC to produce an integer solution with (possi-
bly suboptimal) value ROUND. The analysis of the algorithm then boils down to a
comparison of these three quantities which satisfy ROUND < OPT < FRAC. The
inequalities are reversed for a minimization problem.

If one just thinks of the combinatorial problem as a question of finding the (say)
maximum value of the objective (e.g. the size of the maximum cut in a graph),
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Fig. 1. The integrality gap for a maximization problem

then the rounding algorithm is not needed and the quality of approximation is mea-
sured by the ratio FRAC/OPT. If instead, the question is to search for an opti-
mum integer solution (e.g. a cut of maximum value), then one is interested in the
ratio OPT/ROUND. However, the analyses of most approximation algorithms ac-
tually require proving an upper bound on FRAC/ROUND (which in turn bounds
OPT/ROUND), simply because OPT is not known for an arbitrary instance of the
problem! Thus a lower bound on the ratio FRAC/OPT not only gives a lower bound
on the quality of approximation for the objective value, but also on the performance
of rounding algorithms (if the algorithms are analyzed by comparing FRAC and
ROUND). This ratio is called the integrality gap of the program. Figure 1 shows the
relationship between these quantities.

For a (maximization) problem, the integrality gap of a program is defined as the
supremum of the ratio FRAC/OPT over all instances of the problem. For a minimiza-
tion, we take it to be the supremum of the inverse ratio. Note that the integrality gap
is always at least 1 and a large gap indicates a poor approximation ratio. Conversly,
the analysis of an approximation algorithm bounding FRAC/ROUND in turn gives
an upper bound on the integrality gap. In cases when the integrality gap is infinite,
we express it as a function of the size of the instance, in which case it is defined as
the maximum of the relevant ratio over all instances of the given size.

2 Hierarchies of Convex Relaxations

Convex relaxations for various combinatorial problems can be strengthened by in-
cluding additional constraints which are satisfied by an integer solution. This pro-
cess of generating stronger relaxations by adding larger (but still, local) constraints
is captured by various hierarchies of convex relaxations such as the ones defined
by Lovdsz and Schrijver [47], Sherali and Adams [55] and Lasserre [42]. Starting
from a basic relaxation, these hierarchies define various levels of convex relaxations
for a problem, with the relaxations at a higher level being more powerful than the
relaxations at lower levels.

These hierarchies are known to capture the convex relaxations used in the best
available algorithms for many problems, such as the SDP relaxation for Sparsest
Cut by Arora, Rao and Vazirani [7] and the ¢-function of Lovéasz for Maximum
Independent Set [46], within a constant number of levels. It is also known that
for an integer program with n variables taking values in {0, 1}, the convex program
obtained by n levels of any of the above hierarchies has integrality gap 1, i.e., it
gives the exact solution. However, solving the program obtained by ¢ levels of these
hierarchies takes time n°® which is exponential in n for t = Q(n).
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The interesting question is then to characterize the problems for which the ¢
level of these hierarchies yields a better approximation, for a small . On the other
hand, a lower bound showing that the integrality gap of the program obtained after
many (say even (n)) levels of a hierarchy remains large, is a strong lower bound
against a class of algorithms capturing most known ones.

We describe below each of these hierarchies * . We shall use the example of
Maximum Independent Set throughout this chapter to illustrate the differences in
the programs obtained by the various hierarchies. An excellent comparison of all the
three hierarchies mentioned above is also available in [43]. The basic LP and SDP
relaxations for Maximum Independent Set (also known as Maximum Stable Set)
are given in Figure 2. We follow the convention used in the study of approximation
algorithms of writing the SDP directly in terms of inner products of vectors in the
Cholesky decomposition* of the PSD matrix of variables.

LP relaxation SDP relaxation
maximize Z X; maximize Z ||u,-||2
icV ieV
subject to xi+x;<1 VG j)eE subject to w,uj)=0 V@G, )H)eE
x €[0,1] (w,uo) = |lwl> VieV
lluol| = 1

Fig. 2. LP and SDP relaxations for Maximum Independent Set

2.1 The Lovasz- Schrijver Hierarchies

Lovasz and Schrijver [47] describe two versions of a “lift-and-project” method. This
can be thought of as an operator which when applied to a convex programming re-
laxation P of a (/1 integer linear program, produces a tighter relaxation. A weaker
version of the method, denoted LS, adds auxiliary variables and linear inequalities,
and the projection of the new relaxation on the original variables is denoted by N(P);
a stronger version, denoted LS+, adds semidefinite programming constraints as well,
and the projection on the original variables is denoted by N, (P).

Starting from a basic relaxation and iteratively applying the operator N (N,) one
gets higher and higher levels (which are called rounds for the Lovasz-Schrijver hier-
archies due to their iterative nature) of the LS (LS+) hierarchy. Thus, the relaxation
obtained by r rounds of the hierarchy is given by N(:-- N(P) - - - ) where the operator
is applied 7 times. We denote it as N'(P).

3 Some of these hierarchies can be defined in a more general context. However, we shall limit
our discussion to relaxations of 0/1 (or —1/1) integer programs.

4 The Cholesky decomposition of an n X n PSD matrix X is a collection of vectors uy, ..., u,
satisfying for all 7, j, X;; = (u;, u;).
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Lovész and Schrijver also prove that if we start from a linear programming relax-
ation of a 0/1 integer program with n variables, then n applications of the LS proce-
dures are sufficient to obtain a tight relaxation where the only feasible solutions are
convex combinations of integral solutions. If one starts from a linear program with
poly(n) inequalities, then it is possible to optimize over the set of solutions defined
by ¢ rounds of LS or LS+ in n°® time.

To describe these hierarchies it will be more convenient to work with convex
cones rather than arbitrary convex subsets of [0, 1]*. Specifically, if we are interested
in a convex set P C [0, 1]" (which might be the feasible region of our starting convex
relaxation), we first convert it into the cone cone(P) € R"*! defined as the set of all
vectors (4, Ay, ..., Ayy) such that 4 > 0 and (yy,...,y,) € P. For example, in the
“cone” linear programming relaxation of the Maximum Independent Set problem
(Yo, Y15 - - - »Yn) 1s in the feasible region (denoted by cone(S (G))) if and only if

yityi<yo V(G ) EE
0<y <y, VieV
yo >0 (cone(I1S (G)))

We would now like to “tighten” the relaxation by adding inequalities (on the so-
lution obtained after scaling to get yo = 1) that are valid for 0/1 solutions but that are
violated by other solutions. Ideally, we would like to say that a solution (1, yy, . ..,y,)
must satisfy the conditions yl.z = y;, because such a condition is satisfied only by 0/1
solutions. Equivalently, we could introduce n?> new variables Y;, ; and add the condi-
tions (i) ¥; ; = y; - y; and (ii) Y;; = y;. Unfortunately, condition (i) is neither linear
nor convex, and so we will instead “approximate” condition (i) by enforcing a set of
linear conditions that are implied by (but not equivalent to) (i). This is formalized in
the definition below.

Definition 1. For a cone K C R¢ we define the set N(K) (also a cone in R?) as
follows: a vectory = (yo, . .., ya—1) € R? is in N(K) if and only if there is a matrix
Y € R™? such that

1. Y is symmetric

2. Foreveryie{0,1,....d -1}, Yy, =Y, =y;
3. Each row Y; is an element of K

4. Each vector Yy — Y; is an element of K

In such a case, Y is called the protection matrix of y. If, in addition, Y is positive
semidefinite, then 'y € N.(K). We define NOK) and NE(K) as K, and N'(K) (respec-
tively, N'.(K)) as N(N""\(K)) (respectively, N.(N'"'(K))). When K = cone(P) for
P C R we denote as N'(P) the set {y eR“|(1,y) € Nt(cone(P))}, and simi-
larly for N.(P).

Let us see that these operators are in fact relaxations for condition (i) above.
Indeed, if y = (1, y1, ..., ya-1) € {0, 1}%, then we can set Yi; = yi - y;. Such a matrix
Y is clearly positive semidefinite, and it satisfies Y;; = y? = y; if the y; are in {0, 1}.



Convex Relaxations and Integrality Gaps 5

Consider now a row Y; of Y, that is, the vector r such that r; := ¥; ; = y; - y;. Then,
either y; = 0, in which case r = (0,...,0) is in every cone, or y; = 1, and r =Yy.
Similarly, if we consider r; := Yy ; — Y;; = (1 — y;) - y; we find that r either equals
the all-zero vector or it equals y. This shows thatif y = (1,yy,...,y4-1) € {0, 1} and
y € K, then also y € N, (K) for every . Hence, if K N {yo = 1} defines a relaxation of
the integral problem, so does N’ (K) N {yo = 1}, and hence also N*(K) N {yo = 1}.

For a graph G, the relaxation of the Maximum Independent Set problem result-
ing from ¢ rounds of LS+ is the result of

n
maximize Z Yi
i=1

subject to (Y05 - - - » Yn) € N\ (cone(IS (G)))
yo=1

2.2 The Sherali-Adams Hierarchy

The Sherali-Adams hierarchy [55] defines a hierarchy of linear programs which give
increasingly tighter relaxations. To see the intuition behind the hierarchy, we may
view it as a strengthening of the LS procedure. Recall that the solution to a 0/1
integer program can be specified by a vector y € {0, 1}". In the Lovasz-Schrijver
hierarchy we defined auxiliary variables Y;; and wanted to express the constraint that
Y;; = y; - y;. We then expressed it by some implied linear conditions on the variables
Y, ij-

Consider a solution (1,yy,...,y,) which is feasible at the second level of the
LS hierarchy. Then the row Y; of the protection matrix must also define a feasible
solution to the “cone” version of the relaxation, say cone(/S (G)). Now, the solution
y =Y = (Y, Y,...,Y;,) must be feasible for the first level, and so there exists a
protection matrix Y’ for it. Now, we would also like to think of ¥ ’.k as a relaxation for
yiy jyr. However, notice that the choice of protection matrix Y’ was dependent on the
fact that we first chose the row Y;. In particular, if we looked at the protection matrix
Y” for the solution y” = Y; = (Yjo, Yj1, ..., Yju), it need not be true that Y%, = Y.

The Sherali-Adams hierarchy solves this problem by introducing all the auxiliary
variables at once instead of by an inductive process. In particular, we define a variable
Y5 for each S C [n] with |S| < ¢ + 1. The intuition again is that we want to impose
Ys = [lies yi- However, we instead impose some linear conditions implied by this.
For every constraint a'y — b < 0 of the starting LP relaxation, we consider sets S, T
such that |S|+|T| < t and impose a linear implication of (a"y —b) - [1;cs ¥: - [Tjer(1-
y;) < 0, by requiring that

n

Z(—l)lm : Zai “Ysurop —b-Ysur| < 0
7°cr izl
Note again that the number of variables and constraints in the LP at level ¢ is n?®

and hence it can be solved in time n°?. Also, each such program is a relaxation,
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since for any y € {0, 1}" satisfying the initial constraints, Y5 = [],cs y; defines a valid
level-¢ solution. The program below gives the relaxation of Maximum Independent
Set obtained at the # level of the Sherali-Adams hierarchy.

n
maximize Z Y
i=1

subjectto > (=D [Ysupugy + Ysorum = Ysor| < 0 ISI+ITI<t, L)€k

T'cT

0< > D" Fsopuy < DD Vs ISI+ITI< i€V
T'cT T'cT

Yq} = l

Fig. 3. Sherali-Adams relaxation for Maximum Independent Set

Since the above program is a convex relaxation, any convex combination of 0/1
solutions is also a solution to the program. It is convenient to think of the convex
combination as defining a distribution over 0/1 solutions. With this interpretation,
we can think of Yg as the probability that all variables in set S are equal to 1. It is
easy to show that the feasible sets for Sherali-Adams relaxations are characterized
by solutions which “locally” (for every small subset of variables) look like valid
distributions.

Lemma 1. Consider a family of distributions {D(S )}scinyis|<i+2, Where each D(S) is
defined over {0, 1}5. If the distributions satisfy

1. Forall (i, j) € E and S 2 {i, j}, Pos) [ = D) A (y; = 1)| = 0, and
2. Forall S’ C S C [n]with|S| < t+ 1, the distributions D(S"), D(S) agree on S’.

T hen Ys = Pops) [ Aies (Wi = 1)] is a feasible solution for the above level-t Sherali-
Adams relaxation. Conversely, for any feasible solution (Y} for the level-(t + 1)
Sherali-Adams relaxation, there exists a family of distributions satisfying the above
properties, as well as Pops) [ N\ies/(yi = D] = Y¢, forall S” €S C [n] s.t. |S|<t+ 1.

Extending further this intuition of the variables Y as probabilities, we can also
define variables for arbitrary events over a set S of size at most ¢. A basic event is
given by a partial assignment a € {0, 1} which assigns value 0 to some variables in
S (which we denote by a~!(0)) and 1 to the others (denoted ! (1)). We can define
variables X(s o) when |S| < t and a € {0, 1}5 as

. T
X 1= Z DM gryor
TCa'(0)

Note that the previous constraints imply that X(s ) > 0 for all (S, ). For a 0/1 so-
lution, the intended values are X(s.o) = [lice-1(1) ¥i [1ica_,0)(1 — yi). The previous
program can easily be re-written in terms of the variables X(s o). This formulation in
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terms of variables for partial assignments also extends to problems where the vari-
ables in the integer program take values not in {0, 1} but in a larger finite domain [g].

2.3 The Lasserre Hierarchy

The Lasserre hierarchy gives a sequence of increasingly tight semidefinite program-
ming relaxations for a quadratic 0/1 program. As in the case of the Sherali-Adams
hierarchy, the semidefinite program after ¢ rounds of the Lasserre hierarchy also in-
troduces a new (vector valued) variable for the product of every ¢ variables in the
original program.

For concreteness, we consider the program for Maximum Independent Set. The
same procedure can be used to derive the level-r SDP for any problem formulated
as a quadratic integer program, with variables taking values in {0, 1}. Given a graph
G = (V,E), the integer program would have a variable X; for each i € V with y; = 1
if i is in the independent set and y; = O otherwise. To ensure that the solution is an
independent set, we would enforce that y; - y; = 0 for all (i, j) € E.

To obtain the Lasserre relaxation, we first think of an integer program which has
a variable Yg foreach § C V,|S| < r where the intended solution, as before, is Yg = 1
iff all vertices in S are in the independent set. We can then add the constraint that the
product Ys, - Y5, must only depend on S| US,. For homogenization, we introduce an
extra variable Yy which is always supposed to be 1. Replacing the integer variables
Ys by vectors Ug gives the semidefinite relaxation as below, where all sets S; are
assumed to be of cardinality at most ¢ + 1.

maximize Z ||U(,-)||2
i€V
subject to <U(,-),Um> =0 Y, j€eE
(Us,. Us, ) = (Us,, Us, ) VS, US,=85US,
IUl> = 1

Fig. 4. Lasserre SDP for Maximum Independent Set

Note that the program for level ¢ only has vectors for sets of size at most ¢ + 1.
It can be shown that for any set S with [S| < ¢, the vectors Ug,, S’ C S induce a
probability distribution over valid independent sets of the subgraph induced by S.
However, unlike the Sherali-Adams hierarchy, the existence of such distributions is
not a sufficient condition for the existence of a feasible solution for the semidefinite
program.

As in the case of the Sherali-Adams hierarchy, one can also write the above
program in terms of vectors V(s ) for partial assignments, which can be derived
from the vectors Ug (for 0/1 integer programs) as
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Vo = Z (G DIkl PP
TSa1(0)

2.4 A comparison

Let SAY(P) denote the feasible set of the linear program obtained by starting from
a basic linear relaxation ¥ (for some 0/1 program) and augmenting variables for
t levels of the Sherali-Adams hierarchy. Similarly, let LS O(P), LS E?(P), Las(P)
represent feasible sets corresponding respectively to ¢ levels of the LS, LS+ and
Lasserre hierarchies. We summarize in the facts below, a comparison of these re-
laxations. The reader is referred to the excellent survey by Laurent [43] for a more
detailed comparison.

1. LS®@®P) = LSV (®P) = SADP) = Las™(P) = I, where I denotes the
convex hull of the 0/1 solutions to the starting integer program with n variables.

2. Forall t < n, LSO(P) C LSV (®) C Las?(®), and also LS V(P) C SAD(P) C
Las"™(P). Hence, the relaxations provided by the Lasserre hierarchy at each level
are the strongest (most constrained) among the relaxations at the corresponding
level of all the hierarchies discussed above.

3. If the starting relaxation P has n°1) constraints, then one can optimize over the
sets LS O(P), LS (®), SAO(P) and Las®(P) in time n®®. This is known to
be true for LS O(P), LS 9 (P) and S AV(P) even if we only assume that P has a
weak separation oracle running in time n°(). It is not known if one can optimize
efficiently over Las”(®) using an efficient separation oracle for P.

Las®

SA® sy

N

LS®

Fig. 5. A comparison (the direction of the arrows denotes tighter relaxations)

3 Approximation Algorithms

The use of LP relaxations in approximation algorithms, as described in Section 1, is a
well-established approach which has spawned much work and a large variety of tech-
niques. On the other hand, the use of SDPs in approximation algorithms is a more
recent development, starting with the seminal work of Goemans and Williamson on
MAX-CUT [28]. This algorithm gave a better approximation than is achievable by
known LP approaches (see Section 4), and placed MAX-CUT in what is now a large
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body of NP-hard problems for which a straightforward SDP-based algorithm gives
an approximation which is conjectured to give the optimal approximation guarantee
(see Section 5).

The main idea in the work of Goemans and Williamson [28] is to use the vectors
arising from the Cholesky decomposition (defined in Section 2) of the PSD matrix
of variables, and then to apply a randomized rounding technique now known as hy-
perplane rounding, which we will describe shortly. This approach (along with some
refinements) quickly gave rise to improved approximation algorithms for a host of
problems over the next decade.

A new approach, which included hyperplane rounding, but also introduced a
subtler investigation of the geometry of finite metric spaces arising from feasible
solutions to certain SDPs, was given in the celebrated work of Arora, Rao and Vazi-
rani [7] on Sparsest Cut. Among other things, this work showed that tightening
SDPs by adding certain valid constraints (in this case, the triangle inequality for
squared-distances) could yield improvements by significantly reducing the integral-
ity gap of certain relaxations.

More generally, for any given NP-hard optimization problem, one may hope to
gain improvements in the approximation guarantee by systematically strengthening
an LP or SDP relaxation with additional constraints, as long as the strengthened re-
laxation can be solved in polynomial time. This sort of systematic strengthening is
precisely what is offered by the various LP and SDP hierarchies described in Sec-
tion 2, all of which produce polynomial time solvable convex relaxations in the first
O(1) levels (in retrospect, such relaxations subsume certain important SDP relax-
ations, such as the Sparsest Cut relaxation in Section 3.2). Unfortunately, most
results along these lines have been negative, showing that even relaxations at super-
constant (and sometimes even linear) levels of certain hierarchies hardly yield any
reduction in the integrality gap. These are discussed in Section 4.

In contrast, relatively few results, where improved approximation guarantees
arise from the first O(1) levels of a hierarchy, have recently begun to emerge. Such
positive results have been obtained, for example, for MAX-CUT in dense graphs [21],
for Minimum Vertex Cover in planar graphs [48], and for MaxMin Allocation [8].
Later in this section, we will examine three such results. The first two, for Chro-
matic Number [18] and Hypergraph Independent Set [19] make explicit use of
the interpretation of feasible solutions to relaxations arising from the Sherali-Adams
(and by extension, Lasserre) hierarchy as families of distributions over local 0/1-
assignments. Finally, we will consider the work of Karlin, Nguyen and Mathieu on
Knapsack [34], which takes quite a different approach.

3.1 Max Cut and hyperplane rounding

The approximation algorithm of Goemans and Williamson [28] for MAX-CUT is
perhaps the best known example of a simple SDP-based approximation algorithm
which gives an approximation guarantee for the problem it approximates which is
unmatched by any other method. Their algorithm gives an approximation ratio of
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1.138..., whereas until recently, all other known methods (including LP-based ap-
proaches — see Section 4) gave a 2-approximation in the worst case’. They propose
the following SDP relaxation for the corresponding -1/1 program:

. . 1 2
maximize I Z [lv; = vl
(. )EE
subject to llodl? = 1 VieV

The rounding algorithm and analysis are equally simple and straightforward.
Sample a vector z € R” uniformly at random from the unit sphere {u € R" | ||lu|| = 1},
and output cut (S ,§), where § = {i € V| (z,v;) > 0}. That is, separate the vectors on
either side of the hyperplane orthogonal to z, and take the corresponding cut in G.

It is not hard to see that the probability that any two vectors are separated is
proportional to the angle between them (where for the maximal angle, r, the vectors
are separated with probability 1). For any edge (i, j) € E, let §;; = illvi -0 j||2 be its
contribution to the objective function. Then the probability that this edge will be cut
is at least

arccos(v;,v;)  arccos(1 —26;;) . arccos(1 —26)
= > 6;; - min ——
b/d b/d 0<6<1 6

= Cow - b;js

where Cgw = 0.878. .. is the Goemans-Williamson constant. It follows immediately,
by linearity of expectation, that the expected size of the cut is at least a factor Cgw
times the value of the objective function of the SDP, thus giving a 1/Cow ~ 1.138
approximation.

Surprisingly, there is now some evidence that the Goemans-Williamson constant
Cgw is not simply an artifact of the above analysis, but in fact the best possible.
That is, assuming a conjecture about the hardness of a certain problem known as
Unigue Games, achieving an approximation of 1/Cgw — & is computationally in-
tractable for any & > 0. The Unique Games problem has similar consequences for
many optimization problems, discussed further in Section 5.

3.2 Sparsest Cut and metric embeddings

A common feature of the MAX-CUT algorithm above, and other SDP-based algo-
rithms that followed, is the use of “local” SDP relaxations. In a local relaxation,
every SDP constraint involves a single combinatorial item — a vertex, an edge, or a
clause (in a Constraint Satisfaction Problem). In turn, the analysis of the rounding
algorithm involves a local examination of the (expected) contribution of each item to
the rounded solution, either taking into account the local constraints for that item, or
comparing its contribution in the rounded solution to its contribution in the objective
function of the SDP (as in the MAX-CUT algorithm). The bound on the approxima-
tion ratio then follows directly from linearity of expectation.

3> More recently, 1.6281 . . .-approximations were obtained using spectral techniques [58, 56]
and combinatorially using random walks [32].
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We find a departure from this approach in the work of Arora, Rao and Vazirani [7]
on Sparsest Cut. This problem is defined as follows: Given a graph G = (V, E), find
acut (§,S5) that minimizes the ratio

|E(S,S)|
SIS
Their algorithm gives a +/log n-approximation, which relies on the following SDP
relaxation:

minimize Z llo; — v;I? (1

{i.j}eE

; 2 2 2 .
subjectto  lo; — v;ll” + llo; — vell” = llv; — vl i, j,k (@)

Dl =il =1 3)

i<j

Fig. 6. Sparsest Cut SDP relaxation

This relaxation is derived from the integer programming formulation as follows:
in a -1/1 solution, the objective function (1) and the left hand side of (3) would
represent 4|E(S s §)| and 4|S| |§|, respectively. We then scale the solution so that (1)
represents the ratio of the two expressions above. Note the use of the triangle in-
equality for squared-distances (2), which is already a slightly non-local constraint,
as it involves more than simply the variables associated with a single vertex or edge.
In fact, the triangle inequality is necessary, since otherwise the integrality gap may be
as large as 2(n). To see this, consider the case of the undirected cycle C,, with vertices
{0,...,n—1}and edges {(i, j) | j =i+ 1 mod n}. It is easy to see that the sparsest
cut has sparsity 8/(n — 2)?. On the other hand, without triangle inequality, the above
relaxation has the following 2-dimensional solution: v; = %(COS(Z jr/n), sin(2jr/n)),
for which the objective function has value (4 — o(1))7/n’.

The triangle-inequality constraint (2) means that the vectors {v;} form a finite
metric space, known as L2, or negative type metric. A crucial component of the algo-
rithm and analysis is the following structure theorem for certain L% metrics (slightly
simplified here):

Theorem 1. Let {v; | i € [n]} be a set of vectors in R" of constant length (i.e. which
all belong to some annulus {v € R" | 0 < ¢ < ||v|| < ¢2}) which form an L% metric,
and which satisfy
D M= vilP = 3. 4)
i<j
Then there is a polynomial-time randomized algorithm which outputs two disjoint
subsets S, T C [n] both of size Q(n), such that for everyi € S and j € T we have

llo; — vjII> = 1/ y/logn. (5)
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Consider the following algorithm, which takes as a parameter ¢ > 0, the intended
L% distance between S and T':

1. Letz = (z1,...2,) where the coordinates are independent Gaussians z; ~ N(0, 1).

2. For some constant ¢ > 0, let ' ={i | (z,v;) > ¢/2} and T’ = {ji(z, v;) < —c/2}.

3. While there is any pair (i, j) € S’ X T’ such that |jy; — v;|* < ¢*6, remove i and j from
S/, T.

4. Output the remaining sets S =S’ and T = T".

Fig. 7. Algorithm ARV-Round(9)

Note that the distribution of vector z is rotationally invariant. Thus for any fixed
unit vector v € R”, we have (z,v) ~ N(0, 1). Using this fact, the constant density of
the standard normal distribution near 0, assumption (4), and Markov’s inequality, an
easy argument shows that for an appropriate constant ¢ > 0, Step 2 yields sets S’ and
T’ of size Q(n) with constant probability. Thus, it suffices to show that in Step 3 only
o(n) pairs are removed in expectation for § = @(1/ 4/logn).

Let us first see that a “local” analysis, based on linearity of expectation, works for
0 = O(1/logn). By the properties of Gaussian distribution, we have the following
tail bound on the projection of any fixed vector v € R”, for C > |[v||:

P[(z,0) > C] < e 2/ ©

Note that every pair (i, j) € S’ x T" satisfies (z,v; — v;) > c. By (6) the probability
that this occurs for any pair that is sufficiently close to be eliminated in Step 3 is at
most e~'/@9_ which is at most 1/n3 for some 6 = O(1/logn). Thus, by linearity of
expectation, the expected number of pairs eliminated in this case is o(1).

To show that the algorithm works even for 6 = @(1/+/logn) requires a much
more subtle argument. We give an overview of the simplified proof in [45], with
some technical details omitted. We will need the following notation. For i € [n]
let us denote I'(i) = {j|||Uj —vl? < c26}, for a set I C n denote I'(1) = U,e; (),
and let I''(i) be I'(...(I'(}))...), applied ¢ times. Finally, denote by R'(i) the event
“dj e I''(i) s.t. (z,vj—v;) > cr”. Note that i is eliminated in Step 3 only when the event
R'(i) occurs. At a high level, the analysis relies on the following idea introduced
in [7], known as a chaining argument. By way of contradiction, assume that every
i € [n] is eliminated at step 3 with probability (1) (this condition can be shown to
be essentially equivalent to algorithm ARV-Round failing). That is, for every i € [n],
event R'(i) occurs with constant probability. Suppose we have already shown that
R'~(j) occurs with constant probability for all j. Then for any i € [n], with constant
probability there is some j € I'(i) because of which R!(i) occurs, and with constant
probability R'~'(j) occurs for this particular j. Together, for some k € I'""'(j) € I''(i)
the two events together imply

(o —v) ={Z, 0 — V) +{g,0; — V) 2 c(t = 1) + ¢ = ct,
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or in other words, the event R!(i).

To summarize, the chaining argument, applied for 7 steps, says that if algorithm
ARV-Round fails, then for every vertex i € [n], event R'(i) occurs with constant
probability. This has the following immediate implication:

Lemma 2. [f the chaining argument works after t steps, then ARV-Round works for
6 = Q(t/ logn).

Proof. By way of contradiction, assume that ARV-Round fails for this 6. Then ap-
plying the chaining argument for ¢ steps, we get, for all i € [n],

P [3j er'(i: (z,v;—v) > ct] =Q(1). (7)

We now make crucial use of the L% property (2): it implies that for all j € I'" we have
lv; = vi||> < ¢?6t. Thus, bound (6) and a union bound imply

P [3] er'():(zvj—v) > Ct] < ne '@
which contradicts (7).

For how many steps can we continue the above chaining argument? The main
obstacle to making the argument rigorous is that, even though the events R'(j) for the
various j € I'(i) have constant probability, we cannot chain them to the event R'()
since there is no guarantee that any of them will intersect the event R'(i). Instead,
we have to settle for slightly weaker events R'(j) which have probability close to 1.
Let R'(j) be the event “Tk € I''(j) s.t. (z, v — v;) > (¢ + 1)/2”. By considerations of
measure concentration, it can be shown that if R’( J) occurs with constant probability,
then

]P[Hk eI (zu—vj) > ct/Z] >1—¢ V/OD,

as long as 0 < ¢’ for some constant ¢’ > 0. If these events have probability close
to 1, we can then chain them with the event R'(i) to imply the event R"*!(i). For the
above probability to be close to 1, it suffices to require that t6 < ¢’ for some constant
¢” > 0. Thus the chaining argument works for # = Q(1/6) steps, which by Lemma 2
means that ARV-Round works for 6§ = Q(1/ /log n).

The Sparsest Cut problem has a generalization known as the general demand
version of Sparsest Cut. In this variant, every pair of nodes i, j € V has some edge
weight w;; > 0 (w;; = 0 for non-edges) and some demand d;; > 0, and the objective
is to find a cut (S, §') minimizing the ratio 2ies jes Wijl 2ies jes dij- For any graph G,
the worst case integrality gap of the standard LP relaxation for this problem on G
(over all choices of edge weights and demands) is known to be equivalent to the L;-
embeddability of that graph (the least distortion with which a shortest-path metric on
G can be embedded into L;, maximized over all possible edge lengths). One might
also ask whether the SDP relaxation also has connections to embeddings into L;.
Indeed, in later work, Arora, Lee and Naor [3] combined Theorem 1 with a careful
accounting scheme, to show that any n-point L% metric embeds into L, (and hence

into L;) with distortion O( y/log nloglogn).
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3.3 Chromatic Number: coloring 3-colorable graphs

The 3-Coloring problem is a classic NP-complete problem. Its optimization variant,
Chromatic Number in NP-hard to approximate within an n!~®-factor for any constant
e > 0 [23, 60]. Therefore, there has been much focus on approximation algorithms
when the chromatic number is small. Specifically, we are interested in the following
question: given a 3-colorable graph (where the coloring itself is not given), what is
the least number of colors with which we can efficiently legally color the graph?
All algorithms for this problem (or subroutines thereof) involve some assumption
on either the minimum or maximum degree in the graph. For simplicity of presen-
tation, let us only consider d-regular graphs here. After a series of purely combi-
natorial algorithms, Karger, Motwani and Sudan [33] gave an O (dl/ 3)-coloring for

such graphs (O(-) hides polylogarithmic factors) in one of the early SDP-based al-
gorithms following [28]. Subsequently and Blum and Karger [11] combined this

with an earlier combinatorial O ((n /d)3! 5)-coloring algorithm of Blum [12] to give a

O(n/'*)-coloring (or roughly n2143),

This was the state of the art until a series of two papers, by Arora, Charikar and
Chlamtac [6], and by Chlamtac [18] improved the above guarantee to roughly n%2!!
and n%%072, respectively, by carefully characterizing the tight case of the analysis of
the SDP rounding in [33] and showing it cannot occur (at least near the Blum-Karger
threshold of d = n®/'*). Whereas Arora et al. [6] achieve this by giving a chaining
and measure-concentration based argument reminiscent of [7], Chlamtac [18] makes
explicit use of a level-2 Lasserre relaxation and its implicit interpretation as a family
of local-distributions (as discussed earlier). Let us first examine the various SDP
relaxations used in these works, before giving a brief high-level description of the
intuition behind the Lasserre hierarchy-based improvement in [18].

Karger, Motwani and Sudan [33] proposed the following SDP relaxation for
Chromatic Number of a graph G = (V, E), which they called the vector chromatic
number:

minimize K ®)
subjectto  [lvill> = 1 VieV ©)
(vi,0)) < -4 Vi, j)€E (10)

This relaxation is based on the following observation: For any k € IN, there is a set
of k unit-vectors whose pairwise inner-products are all —1/(k — 1), and moreover this
is the minimum value for which such vectors exist. The vector chromatic number is
equivalent to ©9(G), where G is the complement graph, and " is the variant of the
Lovész 9-function introduced by Schrijver [541°.

Let us focus on relaxations for 3-Coloring. Since the above relaxation is not
based on a 0/1 program, we require some manipulation in order to strengthen it us-
ing an SDP hierarchy based on 0/1 programs, such as the Lasserre hierarchy. Such

% The Lovdsz @ function itself is actually equivalent to a variant of the above relaxation,
called the strict vector chromatic number, in which we have equality in (10).



Convex Relaxations and Integrality Gaps 15

an approach has been suggested by Gvozdenovi¢ and Laurent [29], based on the fol-
lowing observation of Chvdtal [20]: Let X be a set of three colors X = {R, B, Y}. For
a graph G = (V, E), define a new graph Gy = (Vx, Ex), where Vx = Vx X, and Ex =
{((G,0),(j,O)) | (i, j) € E and C € X}U{((i,Cy),(i,C3)) | i € Vand C| # C; € X}. Then
G is 3-colorable iff Gx contains an independent set of size n (note that it can never
contain a larger independent set). Moreover, every independent set / corresponds to
a unique 3-coloring f; : V — X in the natural way: f;(i) = C for all (i, C) € I. We can
now apply any of the SDP hierarchies described earlier for Maximum Independent
Set to the graph Gy.

How does such a hierarchy give improvements over the algorithm and analysis
in [33, 11]? It suffices to consider the tight (or nearly tight) case of the SDP round-
ing in [33], and show that when the analysis is tight, there is an alternative rounding
which performs vastly better than all currently known algorithms. To understand the
tight case of the analysis, it helps to examine the interpretation of the SDP solution as
a family of distributions on local colorings (as arise in Sherali-Adams and Lasserre
relaxations, e.g. as in Lemma 1). In particular, let us fix a single vertex i, and some
coloring, say (i, R), and consider the random color assignments (over {B, Y}) to its
various neighbors N(i). A simple probabilistic argument says that it cannot be the
case that most pairs of vertices j, k € N(i) are assigned the same color with proba-
bility much less than % (since the average correlation cannot be very negative). On
the other hand, it turns out that in the tight case, these probabilities cannot be much
larger on average. Indeed, if many such pairs are assigned the same color with sig-
nificantly higher probability, then the corresponding vectors u;, ux will have a larger
inner product. At a very high level, this facilitates a better SDP rounding, since when
the SDP solution is more clustered, it becomes easier to separate vertices into fewer
color classes. To summarize, if the SDP analysis of [33] is tight, then in the inter-
pretation of the SDP solution locally as a distribution on colorings, most vertices at
distance two will be assigned the same color with probability ~ %

When can a distribution on 3-colorings with this property exist? Let us fix two
vertices j, k at distance 2 from each other which are assigned the same color with
probability %, which also have many common neighbors i € N(j) N N(k). We know
that when j and k are assigned different colors, say B and Y, then all vertices in
N(j) N N(k) will have the same color as each other (here R), while if j and k are
assigned the same color, then as before, most pairs of vertices i, € N(j) N N(k) will
have the same color with probability ~ % Thus, most pairs of common neighbors i, i’
will receive the same color with probability > 1, contradicting our earlier assertion
for vertices at distance 2. The only resolution of this contradiction is for all common
neighborhoods N(j) N N(k) to all be quite small. A simple counting argument then
gives a lower bound on the size of any 2-neighborhood N(N(})).

The precise formalization of the above argument gives a bound of [N(N(j))| >
d??. This is already a contradiction when d > n*? (thus ruling out any tight case
of the previous analysis for this range of parameters). However, when the degree d
is near the Blum-Karger threshold of n°/'4, this is not quite enough. In this case we
make use of the fact that each vertex in N(N(})) has the same color as j with proba-
bility %, which implies an independent set of size % IN(N(j))| in the 2-neighborhood.
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Standard Minimum Vertex Cover approximations then allow us to extract a large in-
dependent set (a color class in our coloring), here of size Q(dP'?) = Q(n?7123), which
makes progress towards an O(n'/?®) coloring. To summarize, this argument shows
that either the analysis of the SDP rounding in [33] is not tight (and then the algo-
rithm performs better), or a different algorithm yields a far better coloring than the
current approach. Formalizing the argument involves a careful analysis of the SDP
rounding in [33], and is beyond the scope of this chapter.

3.4 Mixed hierarchies and Hypergraph Independent Set

In all SDP-based approximation algorithms, such as the MAX-CUT and Sparsest
Cut algorithms we’ve seen, the rounding algorithm and analysis rely on the geometry
of SDP solutions. More recently, algorithms such as the coloring algorithm of [18]
also use the interpretation of solutions to Lasserre hierarchies as families of distri-
butions. However, this interpretation also arises in LP hierarchies such as Sherali-
Adams. We might ask whether weaker SDP hierarchies than Lasserre, which com-
bine an LP characterized by local distributions with a simple SDP could also yield
improved approximations. Such mixed hierarchies arise naturally in approximation
algorithms. In fact, under certain complexity theoretic assumptions, they already give
optimal approximations for k-CSPs at level k (see Section 5).

One example where such a hierarchy gives an infinite sequence of improved ap-
proximation guarantees is described in the work of Chlamtac and Singh [19] on Hy-
pergraph Independent Set. Let us focus on the 3-uniform variant of this problem:
We are given a hypergraph H = (V, E), where the hyperedges in E are all subsets
e C V of cardinality |e| = 3. Find the maximum independent set in H, where an
independent set is any subset S C V that does not contain any hyperedge as a subset.

Let us now define a mixed hierarchy of relaxations for this problem. First, for
any integer ¢ > 1, define

I, = conv ({ (TTies X)s ] * € (0, 1}).

Note that there is a one-to-one correspondence between vectors in I; and distributions
over assignments f : [f] — {0, 1}. Now, define M,(Y) for any vector (Yy) to be the
(n+1)X(n+1) moment matrix (Ysur)js|ri<i- For t > 3, Figure 8 (below) gives a level-
t relaxation for Hypergraph Independent Set. Note that the constraint M;(Y) > 0
simply means that there exists a set of n + 1 vectors vy, vy1, . . . Uy Whose pairwise
inner-products are consistent with the LP values, i.e. (vs,vr) = Ysur.

Like Chromatic Number, the problems Maximum Independent Set and Hy-
pergraph Independent Set are notoriously hard to approximate. Therefore, for
polynomial-size relaxations, we cannot expect integrality gaps smaller than n'~°(
(unless P = NP). Instead, we focus on integrality gaps parametrized by the optimum
value of the relaxation. As before, denote by FRAC and OPT the optimum of the LP
or SDP relaxation, and the 0/1 optimum, respectively. Then for y € [0, 1] we can
define the approximation curve of the relaxation to be

MINOPT,(y) = min{OPT | FRAC > yn},
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n
maximize Z Y
i=1

subjectto ¥ =0 G, k)€ E
(Ys)scr €1, IT| =1
M;(Y) =0

Fig. 8. Mixed level-t relaxation for Hypergraph Independent Set

where the minimization is over all problem instances on n variables. Thus, the ap-
proximation curve can be meaningful even when the integrality gap (in this case,
max, (yn/MINOPT(y))) is Q(n).

For example, a series of papers [2, 30] shows that for Maximum Independent
Set, the SDP relaxation given by the Lovasz ¢} function has an approximation curve
of MINOPT,(y) = Q(n/™), where f satisfies f(y) > 3y/(1 +y) for 1/y € N\ {1},
and f(y) > min{2y, 1} in general. Attempts to extend this approach to Hypergraph
Independent Set by Krivelevich, Nathaniel and Sudakov [41] yielded only partial
results. In particular, for all y < % the approximation curve given by their SDP
relaxation for this problem is quite poor: MINOPT,(y) = 2. This shortcoming is
in fact inherent. The SDP relaxation arising from level-3 of the mixed hierarchy in
Figure 8, which is at least as strong as the SDP used by [41], always has optimum
value at least n/2.

While no fixed level of the mixed hierarchy gives non-trivial guarantees for all
v > 0, the range of y for which the approximation curve is non-trivial grows as we
use higher levels, and tends to [0, 1] in the limit. Let us denote by MINOPT,,, the
value of MINOPT, as defined above with respect to the level-t mixed hierarchy in
Figure 8. Then the results of [19] for this hierarchy can be summarized as follows:

A (y) £ MINOPT, ,(y) < B,s(y),

where

2 y< 2 2 < L

’ LY S =

A =1 ¥ Bu/(y) = { A
n nv/32’72\_6 " n,y> .

Note that the second case in bound A, ,(y) together with the first case in bound
B, ,(y) shows that indeed, there is an infinite sequence of strict improvements in the
approximation guarantee as f increases (for instance, MINOPT, 4,2 (y) is much larger
than MINOPT,, ;.1 (y) in the range 2/(3t) < y < 1/f). While slightly better parame-
ters for A, ;(y) are known for the Lasserre hierarchy, there are currently no bounds
such as B, () for this hierarchy (in particular, no bounds which would preclude the
possibility that even the level-2 Lasserre relaxation gives a non-trivial guarantee for
every y > 0).
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3.5 Sherali-Adams and Lasserre relaxations for Knapsack

The Knapsack problem is defined as follows: Given a set of n items with costs ¢; > 0
and rewards r; > 0, and some capacity C > 0, find a subset S C [n] of cost } ;.5 ¢; at
most C which maximizes the reward ) ;cg 7;. This is a well-understood classic NP-
complete problem which is easy to approximate — it admits an FPTAS [31, 44]. While
from the perspective of approximation algorithms, there is nothing to be gained by
applying convex optimization techniques to this problem, it is a useful tool for gain-
ing a better understanding of the strengths and properties of various hierarchies of
relaxations. Let us review the results of Karlin, Mathieu and Nguyen [34], who re-
cently investigated this topic.
Consider the natural LP relaxation for Knapsack:

maximize Z riY; (1D
subject to Z cy; < C (12)
0<y <1 Vi € [n] 13)

Fig. 9. Standard LP relaxation for Knapsack

This LP relaxation has an integrality gap of 2. Due to the existence of simple
combinatorial (1 + &)-approximations for Knapsack, one would expect that strength-
ening this relaxation would quickly reduce the integrality gap. Nevertheless, the au-
thors of [34] show that this is not the case for Sherali-Adams:

Theorem 2. For any 0 < § < %, the integrality gap of the level-6n Sherali-Adams

relaxation for Knapsack is at least 2/(1 + 6).

This follows by considering a simple instance of Knapsack: let all the costs and
rewards be 1, and the capacity be C = 2 — ¢ for some sufficiently small £ > 0.
The optimum in this instance has reward 1, while the LP admits a solution of value
(2-¢)/(1 + (1 —&)o) (the lemma follows by letting & tend to 0). To see this, consider
the Sherali-Adams solution Yy = 1, Y;; = p for all i € [n], where p = 2 - &)/((1 +
(1 — &)o)n), and Y; = O for all |I| > 1. This clearly gives valid distributions over
assignments to sets of size 1/p > dn. It can be checked that for this solution, the
only relevant constraints that need to be verified are certain lifts of constraint (12).
Specifically, under the interpretation of Sherali-Adams as a relaxation for a global
distribution over knapsack solutions K C [n], for all J C [n] of cardinality |J| < 6n,
we need to verify the constraint corresponding to E[|K|| J N K = 0] < C. But for
the above LP solution, the expression corresponding to this expectation is simply
(n—|J)p/(1 —|J|p) < 2 — & (assuming |J| < 6n).

Why is the integrality gap so large after so many rounds? The main reason is that
Sherali-Adams is very inconsistent with respect to the value of the objective func-
tion. Specifically, in the above example, the objective function takes value }; Yy;
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which is nearly 2. However, if we lift this expression by one round by “conditioning
on x; = 17 for a fixed j € [n], we get (Yjy + Xicpnij Y1)/ Y1y = 1. We can circum-
vent this problem by rephrasing the initial LP as a feasibility LP, with the objective
function as an added constraint, as in Figure 10. Note that R in constraint (14) is an
external parameter, and not an LP variable. We can now take this relaxation and apply
Sherali-Adams to it, and find the maximum R that for which the new Sherali-Adams
relaxation is feasible (say, by binary search).

find Yy Yn
which satisfy Z riyi 2 R (14)
Dcu<C (15)
O0<y <1 Vi€ [n] (16)

Fig. 10. Parametrized feasibility LP relaxation for Knapsack

Applying Sherali-Adams to the feasibility LP above significantly reduces the
integrality gap:

Theorem 3. The integrality gap of level-t of the Sherali-Adams hiersarchy applied
to the feasibility LP in Figure 10 is at most 1 + 1/(t — 2).

To see why lifting the objective function helps, we first need the following well-
known lemma (here, Greedy is the value of the combinatorial greedy algorithm for
Knapsack, which does not use any convex relaxations of the problem):

Lemma 3. The standard LP relaxation satisfies FRAC < Greedy+max; r;(< 20PT).

The bound in Theorem 3 now follows from a simple rounding algorithm: Let
S ={i|r;>OPT/(t — 1)} (we can guess this set in n trials by sorting). At most
(t — 2) items in §,_; can fit in the knapsack (otherwise OPT would be higher). So,
as long as there exists an item i € S, ; with non-zero LP value, condition the LP
solution on picking this item. After at most (# — 1) steps, all the remaining items in
S ;1 have LP value 0. Let K; be the set of items picked so far, with reward Ry = r(Kj),
and consider the current LP solution {Y’} restricted to [n] \ S,_;. Since we lifted the
objective function, the value of this LP is now } ;4 , ¥/ > R — Ry. Now apply the

greedy algorithm to the remaining items, giving some additional reward R,. By the
above bound on the LP value, and Lemma 3, we have

R-Ro< YV < Ry+maxr; <Ry +OPT/(t=1) < Ry + R/ = ).
igS 1 ek

Therefore, the value of the rounded solution is Ry+R,; > R—R/(1—1) = R(1-1/(t-1)).
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Surprisingly, the Lasserre hierarchy does not require such manipulations. Apply-
ing it directly to the standard (maximization) LP immediately yields essentially the
same guarantee as in Theorem 3:

Theorem 4. Level-t of the Lasserre hierarchy applied to the standard relaxation for
Knapsack has integrality gap < 1 + .

This follows from a similar rounding algorithm as above. We need to adapt the
rounding of the fractional solution for the high-reward items S, to the current setting,
after which we can apply the greedy algorithm to the remaining items, just as before.
Note that for the same analysis to go through, the rounding for S, should be lossless,
in the sense that it does not decrease the overall objective value.

The existence of a lossless rounding for §; follows immediately from the follow-
ing key observation: the solution to the above SDP restricted to the set S, is already
in the integral hull. To see this, consider any set S for which the SDP solution sat-
isfies |[U7|| = O for all subsets T € S of cardinality |7| = ¢. Then we can add zero
vectors Uy = 0 for all subsets T C S of cardinality |T| > ¢, without violating the
essential consistency constraints

YT1,T5, T3, T4 €S st. Ty UT, =T3UTy: <UT1,UT2> = (UT3,UT4>.

This would extend the current solution to a valid level-|S | Lasserre solution. Such a
solution must be in the integral hull (as would be any level-|S | relaxation restricted
to |S| vertices for any of the hierarchies we consider here).

In our case, this defines a distribution over assignments f : §; — {0,1} and
feasible LP solutions {y‘if }; which are integral on S, such that for all i € [n] we have
Ef [ylf ] = ||Uli]||2~ Thus, by linearity of expectation, at least one such LP solution

has objective value at least }; ri||U[,~}||2. Moreover, since there are at most |S |/~
assignments in the support of this distribution (each assignment assigns 1 to at most
t — 1 items), we can enumerate over all such assignments (and correpsonding LP
solutions) in polynomial time.

4 Lower bounds on Integrality Gaps

From the perspective of complexity theory, one can view the various hierarchies of
programs as restricted models of computation, with the number of applications of
these operators as a resource. This also corresponds naturally to time, as optimizing
over the level-f relaxations takes time n%®.

Showing that the integrality gap for a problem remains large after many levels of
the hierarchy then corresponds to a strong lower bound, which unconditionally (not
even assuming P # NP) rules out a large and general class of algorithms. Also, for
some problems where NP-hardness results are not known, such lower bounds give
some evidence of hardness for the problem.
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4.1 Integrality gaps for Vertex Cover

Minimum Vertex Cover, the problem of finding the smallest subset of vertices in a
graph such that every edge is incident to some vertex in the subset, is perhaps the
most studied problem with regard to integrality gaps. While a simple LP relaxation
for the problem gives a factor 2 approximation, it can also be shown that the inte-
grality gap after many levels of the different LP hierarchies remains at least 2 — ¢.
However, among the SDP hierarchies, lower bounds close to factor 2 are known only
in the LS+ hierarchy.

Viewing solutions as local distributions

The technique most useful for proving lower bounds on LP integrality gaps has been
the view of LP solutions as “local distributions” as was stated for the Sherali-Adams
hierarchy in Lemma 1 (the lemma was stated for Maximum Independent Set, but an
identical claim also holds for Minimum Vertex Cover). The LS hierarchy of linear
programs does not have such a direct characterization in terms of local distributions,
but intuition of probability distributions can still be applied when reasoning about it.

To describe this view for the LS hierarchy, we re-interpret what its conditions
mean for a point X € $ which is indeed a convex combination of integer solutions.
Such a point x is expressible as x = Y, 1,zZ” where 3;4; = 1 and Vi. z) € PN
{0,1}*, A; > 0. Then, we can consider a random variable z which takes value z
with probability 4;. For j € {1,...,n}, the numbers x; are then equal to P [zj- = 1] i.e.
the marginals of this distribution.

To prove that x € N(P), we then require a matrix ¥ € R"*! which satisfies the
conditions stated in Definition 1. For each z such a matrix Y can be given as
YD = (1,291, 27T where (1,2?) € {0, 1})"*! € R**!. The matrix Y for X can then
be exhibited as Y = 3; ;Y where each entry ¥;; = P [(z,- =A@ = l)]. Arguing
that the vector Y; € cone(%P) is then equivalent to arguing that the vector x*! € R”
defined as

xgi’l) = Yij/x; = ]P[Zj =1lz= 1]

is in P. Similarly, Y, — ¥; € cone(P) is equivalent to proving that the vector x9 with
coordinates x(ji’o) =Yy -Yi)/(1-x) = P [Zj =llz; = 0], isin P.

Thus, to prove that a vector x of marginal probabilities is in N(#), we need to
provide a vector of conditional probabilities, where the conditioning is on being an
arbitrary variable chosen by an adversary being 0 or 1. For proving x € N'(P), we can
think of #-step game, where at each step we are required to provide the conditional

probabilities and the adversary can further condition on one more variable.

Integrality gaps in the LS hierarchy

The study of integrality gaps in this model was initiated by the works of Arora,
Bollobas, Lovasz and Tourlakis [4, 5]. They showed that the integrality gap remains
at least 2 — g even after Q(log n) levels of the hierarchy. Since the integrality gap can
be easily shown to be at most 2 even for the starting linear relaxation, this showed
that even using time n20°¢" in the computational model of the LS hierarchy yields
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no significant improvement. The results were later improved to 3/2 for Q(log2 n)
levels by Tourlakis [57] and to an optimal lower bound of 2 — & for Q(n) levels
by Schoenebeck, Trevisan and Tulsiani [53]. Note that the last result even rules out
exponential time algorithms (as Q(n/ log n) levels would correspond to 2 time) in
this model.

To produce instances with a large integrality gap, one considers sparse random
graphs which have no cycles of size less than Q2(logn) so that any subgraph with
O(log n) vertices is a tree. One then starts with a solution which has fractional value
1/2 + € on every vertex. The move of the adversary then corresponds to selecting
a vertex where the solution has a fractional value, and fixing it to 1 or O i.e. con-
ditioning it to be in or out of the vertex cover. As long as the adversary conditions
on O(log n) vertices, the set of conditioned vertices form a tree, restricted to which
there is an actual distribution of vertex covers with marginal values 1/2 + . Hence,
one can use this to produce the required conditional distribution. We remark that this
is just an intuition for the proof in [5]. The actual proof proceeds by looking at the
duals of the linear programs obtained by the LS hierarchy and involves significantly
more work.

The result in [53] for 2(n) levels uses an explicit version of the above intuitive
argument together with a more careful use of the sparsity of these graphs. Their tech-
niques also give an integrality gap of 2 — ¢ for relaxation of MAX-CUT obtained by
Q(n) levels of the LS hierarchy. The results for MAX-CUT also exhibit a separation
between linear and semidefinite programs. As shown in Section 3.1, even a basic
semidefinite program at the first level of the SDP hierarchy can be shown to have
integrality gap at most 1/0.878 =~ 1.139; while even the linear programs obtained by
Q(n) levels have integrality gap close to 2.

Integrality gaps in the Sherali-Adams hierarchy

Charikar, Makarychev and Makarychev [16] proved that for any & > 0, there is a §
such that the integrality gap of the LP relaxation for Minimum Vertex Cover obtained
by n° levels of the Sherali-Adams hierarchy is at least 2 — &. They used an intuition
similar to that in [53], where one defines a process to sample vertex covers on trees
by including the root with probability 1/2 + &; and including a child with probability
1 if the parent is excluded and & otherwise. The value of & is chosen so that the
marginal probability for each vertex is 1/2 + &. They also defined an extension of this
process on graphs which are not trees, to produce local distributions for subsets of
size n°. The number of levels is less than in [53] as the conditions imposed on local
distributions by the Sherali-Adams hierarchy are stronger than those imposed by the
LS hierarchy.

Using similar techniques, Charikar, Makarychev and Makarychev also showed a
gap of 2 —& for MAX-CUT after n° levels. They also extended it show Sherali-Adams
integrality gaps for Uniqgue Games and many other problems to which Unique
Games can be reduced (see Section 5 for more on Unique Games).
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Integrality gaps for semidefinite programs

Integrality gaps for the semidefinite hierarchies have been somewhat harder to prove.
It was shown by Goemans and Kleinberg [39] that the integrality gap of an SDP
relaxation for Minimum Vertex Cover based on the ¢-function of Lovdsz (which
is weaker than the relaxation obtained by one application of N,) is at least 2 — &.
The result was strengthened by Charikar [14], who showed that the same gap holds
even when the relaxation is augmented with a subset of the “triangle inequalities”
discussed in Section 3.2 . . The gap was extended to Q(+/logn/loglogn) levels
of the LS, hierarchy by Georgiou et al. [26]. Interestingly, all the these results for
LS+ were proven for the same family of graphs, inspired by a paper of Frankl and
Rodl [25]. It is an interesting problem to construct an alternate family which is also
an integrality gap instance, or to extend the above results to even 2(log n) levels.

Somewhat incomparable to the above results, lower bounds of factor 7/6 for Q2(n)
levels of the LS+ hierarchy were obtained by Schoenebeck et al. [52]. These were
later strengthened to 7/6 for Q(n) levels of the Lasserre hierarchy by Schoenebeck
[51] and 1.36 for n®D levels of Lasserre by Tulsiani [59]. These results also dif-
fer from the ones discussed above in that they do not directly exhibit a family of
integrality gap instances for vertex cover. Instead, they start with an integrality gap
instance for a constraint satisfaction problem, and proceed by using a reduction from
the constraint satisfaction problem to vertex cover.

4.2 Results for Constraint Satisfaction Problems

For constraint satisfaction problems (CSPs) with 3 or more variables in each con-
straint, very strong lower bounds have been shown even for the Lovasz-Schrijver
and Lasserre semidefinite (and hence also the linear) hierarchies. For these problems
one studies how well convex relaxations approximate the maximum number of con-
straints that can be satisfied by any assignment to the variables. Instances exhibiting
a large integrality gap for CSPs are also useful as they can often be transformed to
lower bounds for other problems using reductions (see Section 4.3).

Proofs of integrality gaps for CSPs were significantly influenced by arguments in
proof complexity and crucially used an expansion property of the problem instances.
In proof complexity, expansion arguments were used for proving exponential lower
bounds on the size of proofs in the resolution proof system to show that a certain
SAT formula was unsatisfiable . Specifically, they showed that ¢ is an unsatisfiable
formula in n variables in conjunctive normal form and 3 variables in each clause,
with each set of s clauses (for say s < n/1000) involving at least (say) 3s/2 variables;
then any proof of the unsatisfiability of ¢ in the resolution proof system must have
exponential size (see [10], [9]).

For proving large integrality gaps, one is often interested in showing that such
an unsatisfiable SAT formula (or instance of some other CSP) “seems highly satisfi-
able” to a convex relaxation. In the context of the hierarchies, expansion guarantees

7 Resolution is the proof system where one uses two clauses of the form (¢, V x) and (i, V —x)
to derive (¥ V ¥,). Unsatisfiability is proved by deriving the empty clause.
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that any small set of variables is scattered across various clauses and hence the for-
mula restricted to these variables looks highly satisfiable. This intuition is formalized
differently for different hierarchies leading to the corresponding bounds.

Integrality gaps for the Lovdsz-Schrijver hierarchies

For the LS+ hierarchy, optimal lower bounds of factor 2¢/(2% — 1) for MAX k-SAT
with & > 5 and Q(n) levels were shown by Buresh-Oppenheim et al. [13]. They
were also the first to use the expansion arguments in the context of Lovasz-Schrijver
hierarchy. Their results were later extended to the important remaining case of
MAX 3-SAT by Alekhnovich et al. [1], who also proved strong lower bounds for
approximating Minimum Vertex Cover in hypergraphs.

The arguments for the above results start with a vector with a fractional value for
each variable and prove that the vector is in N (P) for t = Q(n). As before, we think
of an adversary fixing one of the fractional variables to 1 or O (i.e. true or false) at
each of 7 steps, and one is required to provide a fractional assignment consistent with
the fixing which is still in the polytope of feasible solutions. However, at each step,
instead of proving that the solutions they provide are in the polytope, they express
it as a convex combination of a set O of fractional solutions, and prove that all the
solutions in O are in the polytope.

The set O is obtained by fixing additional variables at each step to maintain the
invariant that if one considers the formula restricted only to the variables which have
not been fixed to 0 or 1, then the formula is still expanding (in the sense that a set of
s clauses will contain at least 35/2 unfixed variables). Expansion essentially means
that even when O(n) variables are fixed, most clauses still have a large number of
unfixed variables, whose value can be modified suitably to satisfy the constraints of
the convex program.

Integrality gaps in the Lasserre hierarchy

Optimal 2(n) level lower bounds for other constraint satisfaction problems were also
proved for the relaxations in the Lasserre hierarchy by Schoenebeck [51] and Tul-
siani [59]. Schoenebeck proved the first integrality gaps in the Lasserre hierarchy for
the MAX k-XOR problem where each constraint is a linear equation in IF; involving
k variables. He showed an optimal integrality gap of 2 — ¢ for Q(n) levels of the hier-
archy. His techniques were extended in [59] to a large family of CSPs, also showing
that for the general problem MAX k-CSP with arbitrary constraints, the integrality
gap is at least 2k 2k after Q(n) levels. The latter result matches, up to a constant
factor, the result of Charikar, Makarychev and Makarychev [15], who gave an SDP
based approximation algorithm for MAX k-CSP achieving an approximation ratio of
02k /k).

Schoenebeck’s result was based on a significant extension of a technique for
creating SDP solutions for MAX k-XOR, previously used by Feige and Ofek [24] and
Schoenebeck et al. [52]. He showed that for a random instance of MAX k-XOR, the
SDP relaxation has value 1 (the objective is the maximum fraction of constraints that
can be satisfied) while the integer optimum can be easily shown to be at most 1/2 +
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£. He created the SDP solutions for relaxation obtained by ¢ levels of the Lasserre
hierarchy, by creating vectors with one coordinate for each linear form in at most
2t variables over IF,. The vector for a partial assignment to the variables then takes
value 1 or —1 depending on the parity of the corresponding linear form according to
the partial assignment e.g. the vector corresponding to the partial assignment (x; =

1,x, = 1) takes value (—1)*' = —1 in the coordinate for x; and (-=1)"** = 1 in the
coordinate for x; + x,. In addition, the linear equations in the constraints (say x; +
X2 + x3 = 1) imply certain additional constraints on the parities ((—1)**2 = —(—1)"

for all assignments). These were imposed by grouping linear forms into equivalence
classes if they were related by an equation, and having a single coordinate for each
class instead. Expansion was used to prove that it was indeed possible to partition
the linear forms consistently.

The above technique was extended in [59] to handle more general constraints,
but it still required them to be expressible in some way as linear equations. On the
other hand, optimal Sherali-Adams integrality gaps were proved by Georgiou et al.
[27] for a much more general class of constraints (which do not have such a linear
structure). It remains an interesting open problem to prove the corresponding gaps in
the Lasserre hierarchy.

4.3 Results for other problems

A very useful technique in proving integrality gaps for other problems has been the
use of reductions. This was first used by Khot and Vishnoi [38] in converting inte-
grality gaps for Unique Games to those for Sparsest Cut. For the purposes of this
discussion, we may think of Unique Games as simply a CSP with each constraint
being a linear equation in two variables modulo a large prime p. It has been shown
to be a very convenient starting point for many reductions. Khot and Vishnoi exhib-
ited an integrality gap for Unique Games, and using a reduction to Sparsest Cut® ,
proved that the integrality gap is at least Q((loglog n)!/®) for the SDP in figure 3.2.
The bound was later improved to Q(log log n) by Krauthgamer and Rabani [40].

Their results were extended by Raghavendra and Steurer [50], who showed that
the integrality gap remains at least 2((log log n)?) even for the programs obtained by
Q((loglogn)”) levels of the mixed hierarchy, for some absolute constants 4,y > 0. A
similar result was independently obtained by Khot and Saket [37]. The lower bound
for the SDP in figure 3.2 has been recently improved to Q((log 1)) for some small
positive constant d, by Cheeger, Kleiner and Naor [17]. Note that this still remains
far from the best known upper bound of O(+/logn).

Reductions were also used by Tulsiani [59] to convert integrality gaps for CSPs
in the Lasserre hierarchy, to those for Maximum Independent Set, Minimum Vertex
Cover and coloring problems. The arguments there involve considering the reduc-

8 The results in [38] were actually for a generalized version of the Sparsest Cut problem,
where the denominator is not the total number of pairs |S |IS| with one vertex in S, but rather
each pair has a different cost associated with it. This is known as the non-uniform version
of the problem. The result for the uniform version was proven later by Devanur et al. [22].
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tions used for proving the hardness of approximating theses problems, and gener-
alizing the proofs of correctness of the reductions to work with vector solutions,
instead of integer solutions.

5 Integrality Gaps and Hardness of Approximation

For constraint satisfaction problems, a very elegant connection between the integral-
ity gaps and the NP-hardness of approximating these problems was exhibited by
Raghavendra [49]. He considered a basic semidefinite relaxation for any constraint
satisfaction problem, and showed that assuming a conjecture about the hardness of
approximating the Unique Games problem, it is NP-hard to achieve a better approx-
imation ratio than the basic SDP.

Recall that Unique Games is a constraint satisfaction problem with each con-
straint being a linear equation in two variables, modulo a large prime p. It was
conjectured by Khot [35] that the for all &, there is a p such that it is NP-hard to
distinguish instances of Unique Games (with equations modulo p) in which 1 — &
fraction of the constraints are satisfiable from those in which at most ¢ fraction are
satisfiable. This conjecture, known as the Unique Games Conjecture, has been used
as an assumption in a large number of complexity results.

The semidefinite relaxation considered by Raghavendra is best stated in terms of
the mixed hierarchy defined in Section 3.4. For an instance of MAX k-CSP, where
each constraint is over k variables, we consider the program given by the k™ level
of the mixed hierarchy. To describe the relaxation when the variables in the CSP are
boolean, we introduce real variables Y for all subsets of variables with |S| < k.

Let m be the number of constraints. If S; is the set of variables involved in the
i constraint, then one can find a multilinear polynomial in the variables {xj} jes,
which is 1 when the values of the variables satisfy the constraint and 0 otherwise.
Let the polynomial be 3 7.cs, i, - (H jeT, xj). We then let the term in the objective

function corresponding to the i constraint be Y75, ¢;7,Yr,. For example, in the
case of an inequality constraint between x; and x, as in MAX-CUT, the polynomial
is 1 —x; —xp + 2x; x, and the term in the objective function is Yy — Y1) — Yj2; + 2Y}12
(where Yy = 1).

m
maximize Z Z cir, - Y,

i=1 T,CS;
subject to (Ys)scr € Ik T =k
M (Y)=0

Fig. 11. Mixed level-k relaxation for a k-CSP

Note that the condition M;(Y) > 0 is equivalent to the existence of vectors
Ug,...,u, such that Y = [jug|> = 1 and (up,w;) = (u;,w;) = Y, <u,~,u_,~> = Y}
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for 1 < i, j < n. The above program can also expressed in terms of the variables
X(s.e) for partial assignments as described in Section 2.2. The formulation in terms
of partial assignments can then be generalized for CSPs with non-boolean variables
while the above program is specialized to the case of boolean variables.

It is easy to check that for MAX-CUT, the above relaxation is equivalent to the
one discussed in Section 3.1. For MAX-CUT, it was shown by Khot et al. [36] that it is
NP-hard to achieve an approximation better than 1/Cgw — & for any & > 0 (assuming
the Unique Games Conjecture). This was significantly generalized by Raghavendra
who showed that given an instance with integrality gap « for the above SDP for a
given type of constraints, one can convert an algorithm achieving an approximation
a—e¢ for the corresponding CSP, to an algorithm for the Unique Games problem. As-
suming the Unique Games Conjecture, one then gets that it is NP-hard to achieve an
approximation ratio better than the integrality gap of the above program. This points
to a very interesting connection between the the the power of convex relaxations and
those of general polynomial time algorithms.
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