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Abstract. For every fixed γ ≥ 0, we give an algorithm that, given an
n-vertex 3-uniform hypergraph containing an independent set of size γn,

finds an independent set of size nΩ(γ2). This improves upon a recent re-
sult of Chlamtac, which, for a fixed ε > 0, finds an independent set of
size nε in any 3-uniform hypergraph containing an independent set of
size ( 1

2
− ε)n. The main feature of this algorithm is that, for fixed γ, it

uses the Θ(1/γ2)-level of a hierarchy of semidefinite programming (SDP)
relaxations. On the other hand, we show that for at least one hierarchy
which gives such a guarantee, 1/γ levels yield no non-trivial guarantee.
Thus, this is a first SDP-based algorithm for which the approximation
guarantee improves indefinitely as one uses progressively higher-level re-
laxations.

1 Introduction

Semidefinite Programming (SDP) has been one of the key tools in the devel-
opment of approximation algorithms for combinatorial optimization problems
since the seminal work of Goemans and Williamson [12] on MAXCUT. For a
number of problems, including MAXCUT [12], MAX-3SAT [16, 29], and Unique
Games [6], SDPs lead to approximation algorithms which are essentially opti-
mal under certain complexity-theoretic assumptions [13, 18]. Howeve, for a host
of other problems, large gaps between known hardness of approximation and
approximation algorithmic guarantee persist.

One possibility for improvement on the approximation side is the use of
so-called SDP hierarchies. In general, Linear Programming (LP) and SDP hier-
archies give a sequence of nested (increasingly tight) relaxations for an integer
(0−1) program on n variables, where the nth level of the hierarchy is equivalent
to the original integer program. Such hierarchies include LS and LS+ (LP and
SDP hierarchies, respectively), proposed by Lovász and Schrijver [22], a stronger
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LP hierarchy proposed by Sherali and Adams [26], and the Lasserre [21] SDP
hierarchy (see [20] for a comparison).

SDP hierarchies have been studied more generally in the context of opti-
mization of polynomials over semi-algebraic sets [8, 23]. In the combinatorial
optimization setting, there has been quite a large number of negative results [2,
1, 25, 28, 11, 5]. This body of work focuses on combinatorial problems for which
the quality of approximation (integrality gap) of the hierarchies of relaxations
(mostly LS, LS+, and more recently Sherali-Adams) is poor (often showing no
improvement over the simplest LP relaxation) even at very high levels.

On the other hand, there have been few positive results. For random graphs,
Feige and Krauthgamer [9] have shown that Θ(log n) rounds of LS+ give a tight
relaxation (almost surely) for Maximum Independent Set (a quasi-polynomial
time improvement). De la Vega and Kenyon-Mathieu [28] showed that one ob-
tains a polynomial time approximation scheme (PTAS) for MAXCUT in dense
graphs using Sherali-Adams. SDP hierarchies at a constant level (where one can
optimize in polynomial time) were used recently by Chlamtac [7], who exam-
ined the use of the Lasserre hierarchies for Graph Coloring and for Maximum
Independent Set in 3-uniform hypergraphs. However, Chlamtac [7] used only the
third level of the Lasserre hierarchy, whereas we exploit increasingly higher levels
to get better approximation guarantees.

Our focus is on Maximum Independent Set in 3-uniform hypergraphs. k-
uniform hypergraphs are collections of sets of size k (“hyperedges”) over a vertex
set. An independent set is a subset of the vertices which does not fully contain any
hyperedge. The first SDP-based approximation algorithm for this problem was
given by Krivelevich et al. [19], who showed that for any 3-uniform hypergraph on
n vertices containing an independent set of size γn, one can find an independent
set of size Ω̃(min{n, n6γ−3}). This yielded no nontrivial guarantee for γ ≤ 1

2 .
Subsequently, it was shown by Chlamtac [7] that the SDP rounding of [19] finds
an independent set of size Ω(nε) whenever γ ≥ 1

2 − ε, for some fixed ε > 0, if
one uses the third level of the Lasserre SDP hierarchy.

We improve upon [7] by giving two algorithms with a non-trivial approxima-
tion guarantee for every γ > 0. In 3-uniform hypergraphs containing an inde-
pendent set of size γn, both algorithms find an independent set of size ≥ nΩ(γ2).
Our result is novel in that for every fixed γ > 0, the approximation guarantee
relies on the Θ(1/γ2)-level of an SDP hierarchy (which can be solved in time
nO(1/γ2)), and thus gives an infinite sequence of improvements at increasingly
high (constant) levels.

For the first of the two hierachies we use, we also show that this guarantee
cannot be achieved using a fixed constant level by giving a sequence of integrality
gaps. The second hierarchy we consider, the Lasserre hierarchy, allows us to give
a slightly better approximation guarantee, by use of an SDP rounding algorithm
which uses vectors in the higher levels of the SDP relaxation (in contrast to the
approach in [7], where the rounding algorithm was identical to that of [19], and
the analysis only relied on the existence of vectors in the second and third level).
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Note the discrepancy between our result, and the corresponding problem for
graphs, where Halperin et al. [14] have shown how to find an independent set of
size nf(γ) for some f(γ) = 3γ −O(γ2) when the graph contains an independent
set of size γn.

The rest of the paper is organized as follows. In Section 2 we define the
SDPs used in the various algorithms, and discuss some useful properties of these
relaxations. In section 3 we describe a simple integrality gap, followed by a
description of the various algorithms and their analyses. Finally, in Section 4,
we discuss the possible implications of this result for SDP-based approximation
algorithms.

2 SDP Relaxations and Preliminaries

2.1 Previous Relaxation for MAX-IS in 3-Uniform Hypergraphs

The relaxation proposed in [19] may be derived as follows. Given an independent
set I ⊆ V in a 3-uniform hypergraph H = (V, E), for every vertex i ∈ V let
xi = 1 if i ∈ I and xi = 0 otherwise. For any hyperedge (i, j, l) ∈ E it follows
that xi + xj + xl ∈ {0, 1, 2} (and hence |xi + xj + xl − 1| ≤ 1). Thus, we have
the following relaxation (where vector vi represents xi, and v∅ represents 1:
MAX-KNS(H)

Maximize
∑

i ‖vi‖2 s.t. v2
∅ = 1 (1)

∀i ∈ V v∅ · vi = vi · vi (2)

∀(i, j, l) ∈ E ‖vi + vj + vl − v∅‖2 ≤ 1 (3)

2.2 Hypergraph Independent Set Relaxations Using LP and SDP
Hierarchies

The Sherali-Adams Hierarchy The Sherali-Adams hierarchy [26] is a se-
quence of nested linear programming relaxations for 0−1 polynomial programs.
These LPs may be expressed as a system of linear constraints on the variables
{yI | I ⊆ [n]}. To obtain a relaxed (non-integral) solution to the original prob-
lem, one takes (y{1}, y{2}, . . . , y{n}).

Suppose {x∗i } is a sequence of n random variables over {0, 1}, and for all
I ⊆ [n] we have yI = E[

∏
i∈I x∗i ] = Pr[∀i ∈ I : x∗i = 1]. Then by the inclusion-

exclusion principle, for any disjoint sets I, J ⊆ [n] we have

yI,−J
def=

∑

J′⊆J

(−1)|J
′|yI∪J′ = Pr[(∀i ∈ I : x∗i = 1) ∧ (∀j ∈ J : x∗j = 0)] ≥ 0.

In fact, it is not hard to see that the constraints yI,−J ≥ 0 are a necessary and
sufficient condition for the existence of a corresponding distribution on {0, 1}
variables {x∗i }. Thinking of the intended solution {x∗i } as a set of indicator
variables for a random independent set in a hypergraph H = (V, E) motivates
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the following hierarchy of LP relaxations (assume k ≥ max{|e| | e ∈ E}):
ISSA

k (H)

y∅ = 1 (4)

∀I, J ⊆ V s.t. I ∩ J = ∅ and |I ∪ J | ≤ k
∑

J′⊆J

(−1)|J
′|yI∪J′ ≥ 0 (5)

∀e ∈ E ye = 0 (6)

Note that if {yI | |I| ≤ k} satisfy ISSA
k (H), then for any set of vertices

S ⊆ V of size k, there is a distribution over independent sets in H for which
Pr[∀i ∈ I : i ∈ ind. set] = yI for all subsets I ⊆ S.

The Lasserre Hierarchy The relaxations for maximum hypergraph indepen-
dent set arising from the Lasserre hierarchy [21] are equivalent to those arising
from the Sherali-Adams with one additional semidefiniteness constraint:

(yI∪J)I,J º 0.

We will express these constraints in terms of the vectors {vI |I ⊆ V } arising
from the Cholesky decomposition of the positive semidefinite matrix. In fact,
we can express the constraints on {vI} in a more succinct form which implies
the inclusion-exclusion constraints in Sherali-Adams but does not state them
explicitly:
ISLas

k (H)

v2
∅ = 1 (7)

|I| , |J | , |I ′| , |J ′| ≤ k and I ∪ J = I ′ ∪ J ′ ⇒ vI · vJ = vI′ · vJ ′ (8)
∀e ∈ E v2

e = 0 (9)

For convenience, we will henceforth write vi1...is instead of v{i1,...,is}. We will
denote by MAX-ISLas

k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {vI}I satisfy ISLas
k (H).

Since for any set S of size k all valid constraints on {vI | I ⊆ S} are implied
by ISk(H), this is, for all k ≥ 3, a tighter relaxation than that of [19].

As in the Sherali-Adams hierarchy, for any set S ⊆ V of size k, we may
think of the vectors {vI | I ⊆ S} as representing a distribution on random 0− 1
variables {x∗i | i ∈ S}, which can also be combined to represent arbitrary events
(for example, we can write v(x∗i =0)∨(x∗j =0) = v∅ − v{i,j}). This distribution is
made explicit by the inner-products. Formally, for any two events E1, E2 over the
values of {x∗i | i ∈ S}, we have vE1 · vE2 = Pr[E1 ∧ E2].

Moreover, as in the Lovász-Schrijver hierarchy, lower-level relaxations may be
derived by “conditioning on x∗i = σi” (for σi ∈ {0, 1}). In fact, we can condition
on more complex events. Formally, for any event E0 involving k0 < k variables
for which ‖vE0‖ > 0, we can define

vE |E0
def= vE∧E0/‖vE0‖,

and the vectors {vI |E0 | |I| ≤ k − k0} satisfy ISk−k0(H).
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An Intermediate Hierarchy We will be primarily concerned with a hier-
archy which combines the power of SDPs and Sherali-Adams local-integrality
constraints in the simplest possible way: by imposing the constraint that the
variables from the first two levels of a Sherali-Adams relaxation form a positive-
semidefinite matrix. Formally, for all k ≥ 3 and vectors {v∅} ∪ {vi | i ∈ V } we
have the following system of constraints:
ISmix

k (H)

∃{yI | |I| ≤ k} s.t. (10)
∀I, J ⊆ V, |I|, |J | ≤ 1 : vI · vJ = yI∪J (11)

{yI} satisfy ISSA
k (H) (12)

As above, we will denote by MAX-ISmix
k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {v∅} ∪ {vi} satisfy ISmix
k (H).

2.3 Gaussian Vectors and SDP Rounding

Recall that the standard normal distribution has density function 1√
2π

e−x2/2. A
random vector ζ = (ζ1, . . . , ζn) is said to have the n-dimensional standard normal
distribution if the components ζi are independent and each have the standard
normal distribution. Note that this distribution is invariant under rotation, and
its projections onto orthogonal subspaces are independent. In particular, for any
unit vector v ∈ <n, the projection ζ · v has the standard normal distribution.

We use the following notation for the tail bound of the standard normal
distribution: N(x) def=

∫∞
x

1√
2π

e−
t2
2 dt. The following property of the normal dis-

tribution ([10], Chapter VII) will be crucial.

Lemma 1. For s > 0, we have 1√
2π

(
1
s − 1

s3

)
e−s2/2 ≤ N(s) ≤ 1√

2πs
e−s2/2.

This implies the following corollary, which is at the core of the analysis of
many SDP rounding schemes:

Corollary 1. For any fixed constant κ > 0, we have N(κs) = Õ(N(s)κ2
).

3 Integrality Gap and Algorithms

3.1 A Simple Integrality Gap

As observed in [26, 7], MAX-KNS(H) ≥ n
2 for any hypergraph H (even the com-

plete hypergraph). In this section we will show the necessity of using increasingly
many levels of the SDP hierarchy MAX-ISmix to yield improved approximations,
by demonstrating a simple extention of the above integrality gap:

Theorem 1. For every integer k ≥ 3 and any 3-uniform hypergraph H, we have
MAX-ISmix

k ≥ 1
k−1n.
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Proof. Suppose V (H) = [n] and let v∅, u1, . . . , un be n + 1 mutually orthogonal
unit vectors. For every i ∈ V let vi = 1

k−1v∅+
√

1
k−1 − 1

(k−1)2 ui, and y{i} = 1
k−1 .

Let y∅ = 1 and for every pair of distinct vertices i, j ∈ V let y{i,j} = 1
(k−1)2 . For

all sets I ⊆ V s.t. 3 ≤ |I| ≤ k, let yI = 0.
It is immediate that constraint (11) and the Sherali-Adams constraint (4) are

satisfied. Since yI = 0 for all sets I of size 3, Sherali-Adams constraint (6) is also
satisfied. To verify Sherali-Adams constraints (5), it suffices to show, for any set
S ⊆ [n] of size k, a corresponding distribution on 0 − 1 variables {x∗i | i ∈ S}.
Indeed, the following is such a distribution: Pick a pair of distinct vertices i, j ∈ S
uniformly at random. With probability k

2(k−1) , set x∗i = x∗j = 1 and for all other
l ∈ S, set x∗l = 0. Otherwise, set all x∗l = 0. ut

3.2 The Algorithm of Krivelevich, Nathaniel and Sudakov

We first review the algorithm and analysis given in [19]. Let us introduce the
following notation: For all l ∈ {0, 1, . . . , dlog ne}, let Tl

def= {i ∈ V | l/ log n ≤
‖vi‖2 < (l + 1)/ log n}. Also, since ‖vi‖2 = v∅ · vi, we can write vi = (v∅ · vi)v∅ +√

v∅ · vi(1− v∅ · vi)ui, where ui is a unit vector orthogonal to v∅. They show the
following two lemmas, slightly rephrased here:

Lemma 2. If the optimum of KNS(H) is ≥ γn, there exists an index l ≥
γ log n− 1 s.t. |Tl| = Ω(n/ log2 n).

Lemma 3. For index l = β log n and hyperedge (i, j, k) ∈ E s.t. i, j, k ∈ Tl,
constraint (3) implies

‖ui + uj + uk‖2 ≤ 3 + (3− 6β)/(1− β) + O(1/ log n). (13)

Note that constraint (13) becomes unsatisfiable for constant β > 2/3. Thus,
for such β, if KNS(H) ≥ βn, one can easily find an independent set of size Ω̃(n).
Using the above notation, we can now describe the rounding algorithm in [19],
which is applied to the subhypergraph induced on Tl, where l is as in Lemma 2.

KNS-Round(H, {ui}, t)
– Choose ζ ∈ Rn from the n-dimensional standard normal distribution.
– Let Vζ(t)

def= {i | ζ · ui ≥ t}. Remove all vertices in hyperedges fully
contained in Vζ(t), and return the remaining set.

The expected size of the remaining independent set can be bounded from
below by E[|Vζ(t)|]− 3E[|{e ∈ E : e ⊆ Vζ(t)}|], since each hyperedge contributes
at most three vertices to Vζ(t). If hyperedge (i, j, k) is fully contained in Vζ(t),
then we must have ζ · (ui + uj + uk) ≥ 3t, and so by Lemma 3, ζ · ui+uj+uk

‖ui+uj+uk‖ ≥
(
√

(3− 3γ)/(2− 3γ)−O(1/ log n))t. By Corollary 1, and linearity of expectation,
this means the size of the remaining independent set is at least

Ω̃(N(t)n)− Õ(N(t)(3−3γ)/(2−3γ) |E|).
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Choosing t appropriately then yields the guarantee given in [19]:

Theorem 2. Given a 3-uniform hypergraph H on n vertices and m hyperedges
containing an independent set of size ≥ γn, one can find, in polynomial time,
an independent set of size Ω̃(min{n, n3−3γ/m2−3γ}).

Note that m can be as large as Ω(n3), giving no non-trivial guarantee for
γ ≤ 1

2 . Chlamtac [7] showed that when the vectors satisfy ISLas
3 (H), the same

rounding algorithm does give a non-trivial guarantee (nε) for γ ≥ 1
2 − ε (for

some fixed ε > 0). However, it is unclear whether this approach can work for
arbitrarily small γ > 0.

Let us note the following Lemma which was implicitly used in the above
analysis, and which follows immediately from Corollary 1. First, we introduce
the following notation for hyperedges e along with the corresponding vectors
{ui | i ∈ e}:

α(e) def= 1
|e|(|e|−1)

∑
i∈e

∑
j∈e\{i} ui · uj

Lemma 4. In algorithm KNS-Round, the probability that a hyperedge e is fully
contained in Vζ(t) is at most Õ(N(t)|e|/(1+(|e|−1)α(e))).

3.3 Improved Approximation Via Sherali-Adams Constraints

Before we formally state our rounding algorithm, let us motivate it with an
informal overview.

Suppose ‖vi‖2 = γ for all i ∈ V . A closer examination of the above analysis
reveals the reason the KNS rounding works for γ > 1

2 : For every hyperedge e ∈ E
we have α(e) < 0. Thus, the main obstacle to obtaining a large independent set
using KNS-Round is the presence of many pairs i, j with large inner-product
ui · uj . As we shall see in section 3.4, we can use higher-moment vectors in
the Lasserre hierarchy to turn this into an advantage. However, just using local
integrality constraints, we can efficiently isolate a large set of vertices on which
the induced subhypergraph has few hyperedges containing such pairs, allowing
us to successfully use KNS-Round.

Indeed, suppose that some pair of vertices i0, j0 ∈ V with inner-product
vi0 · vj0 ≥ γ2/2 participates in many hyperedges. That is, the set S1 = {k ∈
V | (i, j, k) ∈ E} is very large. In that case, we can recursively focus on the
subhypergraph induced on S1. According to our probabilistic interpretation of
the SDP, we have Pr[x∗i0 = x∗j0 = 1] ≥ γ2/2. Moreover, for any k ∈ S1 the event
“x∗k = 1” is disjoint from the event “x∗i0 = x∗j0 = 1”. Thus, if we had to repeat
this recursive step due to the existence of bad pairs (i0, j0), . . . , (is, js), then the
events “x∗il

= x∗jl
= 1” would all be pairwise exclusive. Since each such event has

probability Ω(γ2), the recursion can have depth at most O(1/γ2), after which
point there are no pairs of vertices which prevent us from using KNS-Round.

We are now ready to describe our rounding algorithm. It takes an n-vertex
hypergraph H for which MAX-ISmix

k (H) ≥ γn, where k = Ω(1/γ2) and {vi} is
the corresponding SDP solution.



8 Eden Chlamtac and Gyanit Singh

H-Round(H = (V, E), {vi}, γ)

1. Let n = |V | and for all i, j ∈ V , let Γ (i, j) def= {k ∈ V | (i, j, k) ∈ E}.
2. If for some i, j ∈ V s.t. vi · vj ≥ γ2/2 we have |Γ (i, j)| ≥ {n1−vi·vj/2},

then find an ind. set using H-Round(H|Γ (i,j), {vk | k ∈ Γ (i, j)}, γ).
3. Otherwise,

(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have
wi · wj = γ

24 (ui · uj) (outward rotation).
(b) Let t be s.t. N(t) = n−(1−γ2/16), and return the independent set

found by KNS-Round(H, {wi | i ∈ V }, t).

Theorem 3. For any constant γ > 0, given an n-vertex 3-uniform hypergraph
H = (V, E), and vectors {vi} satisfying ISmix

4/γ2(H) and | ‖vi‖2 − γ| ≤ 1/ log n

(for all vertices i ∈ V ), algorithm H-Round finds an independent set of size
Ω(nγ2/32) in H in time O(n3+2/γ2

).

Combining this result with Lemma 2 (applying Theorem 3 to the induced
subhypergraph H|Tl

), we get:

Corollary 2. For all constant γ > 0, there is a polynomial time algorithm
which, given an n-vertex 3-uniform hypergraph H containing an independent
set of size ≥ γn, finds an independent set of size Ω̃(nγ2/32) in H.

Before we prove Theorem 3, let us first see that algorithm H-Round makes
only relatively few recursive calls in Step 2, and that when Step 3b is reached,
the remaining hypergraph still contains a large number of vertices.

Proposition 1. For constant γ > 0, n-vertex hypergraph H = (V,E), and vec-
tors {vi} as in Thereom 3:

1. Algorithm H-Round makes at most 2/γ2 recursive calls in Step 2.
2. The hypergraph in the final recursive call to H-Round contains at least

√
n

vertices.

Proof. Let (i1, j1), . . . , (is, js) be the sequence of vertices (i, j) in the order
of recursive calls to H-Round in Step 2. Let us first show that for any s′ ≤
min{s, 2/γ2} we have

s′∑

l=1

vil
· vjl

≤ 1. (14)

Indeed, let T =
⋃{il, jl | 1 ≤ l ≤ s′}. Since vectors {vi} satisfy ISmix

4/γ2(H), and
|T | ≤ 2s′ ≤ 4/γ2, there must be some distribution on independent sets S ⊆ T
satisfying Pr[k, k′ ∈ S] = vk · vk′ for all pairs of vertices k, k′ ∈ T . Note that
by choice of vertices il, jl, we have il2 , jl2 ∈ Γ (il1 , jl1) for all l1 < l2. Thus, the
events “il, jl ∈ S” are pairwise exclusive, and so

s′∑

l=1

vil
· vjl

= Pr[∃l ≤ s′ : il, jl ∈ S] ≤ 1.
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Similarly, if s′ ≤ min{s, 2/γ2 − 1}, then for any k ∈ ⋂
l≤s′ Γ (il, jl) we have

∑s′

l=1 vil
· vjl

+ vk · vk ≤ 1. However, by choice of il, jl, we also have
∑s′

l=1 vil
·

vjl
+vk ·vk ≥ |s′|γ2/2+γ−(1/ log n). Thus, we must have s ≤ 2/γ2−1, otherwise

letting k = i2/γ2 above, we would derive a contradiction. This proves part 1.
For part 2, it suffices to note that the number of vertices in the final recursive

call is at least n
∏

(1−vil
·vjl

/2), and that by (14) we have
∏

(1 − vil
· vjl

/2) ≥
1−∑

vil
· vjl

/2 ≥ 1
2 .

ut

We are now ready to prove Theorem 3.

Proof (of Theorem 3). For the sake of simplicity, let us assume that for all
vertices i ∈ V , ‖vi‖2 = γ. Violating this assumption can adversely affect the
probabilities of events or sizes of sets in our analysis by at most a constant
factor, whereas we will ensure that all inequalities have at least polynomial slack
to absorb such errors. Thus, for any i, j ∈ V , we have

vi · vj = γ2 + (γ − γ2)ui · uj . (15)

For brevity, we will write vi · vj = θijγ for all i, j ∈ V (note that all θij ∈ [0, 1]).
Moreover, we will use the notation α(e) introduced earlier, but this time in the
context of the vector solution {wi}:

α(e) =
1
3

∑

i,j∈e
i<j

wi · wj .

The upper-bound on the running time follows immediately from part 1 of
Proposition 1. By part 2 of Proposition 1, it suffices to show that if the condition
for recursion in Step 2 of H-Round does not hold, then in Step 3b, algorithm
KNS-Round finds an independent set of size Ω(N(t)n) = Ω(nγ2/16) (where n is
the number of vertices in the current hypergraph).

Let us examine the performance of KNS-Round in this instance. Recall that
for every i ∈ V , the probability that i ∈ Vζ(t) is exactly N(t). Thus, by linearity
of expectation, the expected number of nodes in Vζ(t) is N(t)n. To retain a large
fraction of Vζ(t), we must show that few vertices participate in hyperedges fully
contained in this set, that is E[|{i ∈ e | e ∈ E ∧ e ⊆ Vζ(t)}|] = o(N(t)n). In
fact, since every hyperedge contained in Vζ(t) contributes at most three vertices,
it suffices to show that E[|{e ∈ E | e ⊆ Vζ(t)}|] = o(N(t)n). We will consider
separately two types of hyperedges, as we shall see.

Let us first consider hyperedges which contain some pair i, j for which θij ≥
γ/2. We denote this set by E+. We will assign every hyperedge in E+ to the
pair of vertices with maximum inner-product. That is, for all i, j ∈ V , define
Γ+(i, j) = {k ∈ Γ (i, j) | θik, θjk ≤ θij}. By (15), for all i, j ∈ V and k ∈ Γ+(i, j)
we have

α(i, j, k) ≤ wi · wj =
γ

24
(ui · uj) =

γ(θij − γ)
24(1− γ)

≤ θijγ

24
. (16)
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Now, by our assumption, the condition for recursion in Step 2 of H-Round was
not met. Thus, for all i, j ∈ V s.t. θij ≥ γ/2, we have

|Γ+(i, j)| ≤ |Γ (i, j)| ≤ n1−θijγ/2. (17)

By linearity of expectation, we have

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] ≤
∑

e∈E+

Pr[e ⊆ Vζ(t)]

≤
∑

e∈E+

Õ(N(t)3/(1+2α(e))) by Lemma 4

≤
∑

i,j∈V
θij≥γ/2

∑

k∈Γ+(i,j)

Õ(N(t)3/(1+ 1
12 θijγ)). by (16)

By (17), this gives

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] ≤
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγN(t)3/(1+ 1

12 θijγ))

= N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγN(t)(2−

1
12 θijγ)/(1+ 1

12 θijγ))

= N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγ−(1− 1

16 γ2)(2− 1
12 θijγ)/(1+ 1

12 θijγ))

≤ N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγ−(1− 1

8 θijγ)(2− 1
12 θijγ)/(1+ 1

12 θijγ))

= N(t)
1
n

∑

i,j∈V
θij≥γ/2

Õ(n−
5
96 θ2

ijγ2/(1+ 1
12 θijγ))

≤ N(t)nÕ(n−
5

384 γ4/(1+ 1
24 γ2)) = o(N(t)n).

We now consider the remaining hyperedges E− = E \ E+ = {e ∈ E | ∀i, j ∈
e : θij ≤ γ/2}. By (15), and by definition of {wi}, we have

α(e) ≤ − γ2

48(1− γ)
(18)
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for every hyperedge e ∈ E−. Thus we can bound the expected cardinality of
E− ∩ {e ⊆ Vζ(t)} as follows:

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤
∑

e∈E+

Pr[e ⊆ Vζ(t)]

≤
∑

e∈E−

Õ(N(t)3/(1+2α(e))) by Lemma 4

= N(t)
∑

e∈E−

Õ(N(t)(2−2α(e))/(1+2α(e)))

≤ N(t)n3Õ(N(t)(2−2γ+ 1
24 γ2)/(1−γ− 1

24 γ2)) by (18)

By our choice of t, this gives

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤ N(t)Õ(n3−(1− 1
16 γ2)(2−2γ+ 1

24 γ2)/(1−γ− 1
24 γ2))

= N(t)Õ(n1−( 1
8 γ3− 1

384 γ4)/(1−γ− 1
24 γ2)) = o(N(t)n).

This completes the proof. ut

3.4 A Further Improvement Using The Lasserre Hierarchy

Here, we present a slightly modified algorithm which takes advantage of the
Lasserre hierarchy, and gives a slightly better approximation guarantee. As be-
fore, the algorithm takes an n-vertex hypergraph H for which MAX-ISLas

k (H) ≥
γn, where k = Ω(1/γ2) and {vI}I is the corresponding SDP solution.

H-RoundLas(H = (V,E), {vI | |I| ≤ k}, γ)

1. Let n = |V | and let l = γ′ log n − 1 be as in Lemma 2 (where γ′ ≥ γ).
If γ′ > 2/3 + 2/ log n, output Tl.

2. Otherwise, set H = H|Tl
, and γ = γ′.

3. If for some i, j ∈ Tl s.t. ρij = vi · vj ≥ γ2/2 we have
|Γ (i, j)| ≥ {n1−ρij}, then find an independent set using
H-Round(H|Γ (i,j), {vI |x∗i =0∨x∗j =0 | I ⊆ Γ (i, j), |I| ≤ k−2}, γ/(1−ρij)).

4. Otherwise,
(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have

wi · wj = γ
12 (ui · uj) (outward rotation).

(b) Let t be s.t. N(t) = n−(1−γ2/8), and return the independent set
found by KNS-Round(H, {wi | i ∈ V }, t).

For this algorithm, we have the following guarantee:

Theorem 4. For any constant γ > 0, given an n-vertex 3-uniform hypergraph
H = (V, E) for which MAX-ISLas

8/(3γ2)(H) ≥ γn and vectors {vI} the correspond-

ing solution, algorithm H-RoundLas finds an independent set of size Ω(nγ2/8) in
H in time O(n3+8/(3γ2)).
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We will not prove this theorem in detail, since the proof is nearly identical to
that of Theorem 3. Instead, we will highlight the differences from algorithm H-
Round, and the reasons for the improvement. First of all, the shortcut in step 1
(which accounts for the slightly lower level needed in the hierarchy) is valid since
(as can be easily checked) constraint (3) cannot be satisfied (assuming (2) holds)
when ‖vi‖2, ‖vj‖2, ‖vl‖2 > 2/3.

The improvement in the approximation guarantee can be attributed to the
following observation. Let {(i1, j1), . . . , (is, js)} be the pairs of vertices chosen
for the various recursive invocations of the algorithm in Step 3. Then in the
probabilistic interpretation of the SDP solution, we have carved an event of
probability ρ = ρi1j1 + . . . + ρisjs

out of the sample space, and thus the SDP
solution is conditioned on an event of probability 1−ρ. Hence, the hypergraph in
the final call contains nρ ≥ Ω̃(n1−ρ) vertices, and the SDP value is γρnρ where
γρ ≥ γ/(1 − ρ). Thus one only needs to show that assuming the condition in
Step 3 does not hold, the call to KNS-Round in Step 4b returns an independent
set of size at least

n
γ2

ρ/8
ρ ≥ nγ2/(8(1−ρ)) ≥ nγ2/8.

The proof of this fact is identical to the proof of Theorem 3.

4 Discussion

Theorem 3, together with the integrality gap of Theorem 1, demonstrate that
the hierarchy of relaxations MAX-ISmix

k gives an infinite sequence of improved
approximations for higher and higher levels k. We do not know if similar in-
tegrality gaps hold for the Lasserre hierarchy, though we know that at least
the integrality gap of Theorem 1 cannot be lifted even to the second level in
the Lasserre hierarchy. In light of our results, we are faced with two possible
scenarios:

1. For some fixed k, the kth level of the Lasserre hierarchy gives a better ap-
proximation than MAX-ISmix

l for any (arbitrary large constant) l, or
2. The approximation curve afforded by the kth level Lasserre relaxation gives

strict improvements for infinitely many values of k.

While the second possibility is certainly the more exciting of the two, a result
of either sort would provide crucial insights into the importance of lift-and-
project methods for approximation algorithms. Recently Schoenebeck [27] has
produced strong integrality gaps for high-level Lasserre relaxations for random
3XOR formulas, which rely on properties of the underlying 3-uniform hypergraph
structure. It will be very interesting to see whether such results can be extended
to confirm the second scenario, above.

Finally, we note that the existence of provably improved approximations
at infinitely many constant levels of an SDP hierarchy is surprising in light
of the recent work of Raghavendra [24]. One implication of that work is that
if the Unique Games Conjecture [17] is true, then for every k-CSP, the kth
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level of a mixed hierarchy (such as MAX-ISmix) suffices to get the best possible
approximation (achievable in polynomial time). Our result, when combined with
the work of Raghavendra [24], does not refute the Unique Games Conjecture
(essentially, since the guaranteed optimality of the relaxations in [24] is only up
to any arbitrary additive linear error). However, it may help shed light on the
characteristics of combinatorial optimization problems which stand to benefit
from the use of lift-and-project techniques.
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