
How to Play any Unique Game

Eden Chlamtac ∗ Konstantin Makarychev † Yury Makarychev ‡

Princeton University
{chlamtac, kmakaryc, ymakaryc}@cs.princeton.edu

Abstract

In this paper we present a new approximation algorithm for Unique Games. For a Unique
Game with n vertices and k states (labels), if a (1− ε) fraction of all constraints is satisfiable, the
algorithm finds an assignment satisfying a

1 − O(ε
√

log n log k)

fraction of all constraints. To this end, we introduce new embedding techniques for rounding
semidefinite relaxations of problems with large domain size.

1 Introduction

The Unique Games Problem is a natural generalization of many constraint satisfaction problems.
Particularly important special cases are MAX CUT and MAX 2-LIN mod p (systems of linear
equations mod p with at most two variables in each equation). Formally, it is defined as follows:

Definition 1.1 (Unique Games Problem). Given a constraint graph G = (V,E) and a set of
permutations πuv on [k] = {1, . . . , k} (for all edges (u, v)), assign a value (state) xu from the set
[k] to each vertex u so as to satisfy the maximum number of constraints of the form πuv(xu) = xv.

In any instance of Unique Games if all constraints are satisfiable then it is easy to find a
satisfying assignment. However, even if almost all constraints are satisfiable, it is NP-hard to
find the optimal solution. Moreover, Khot [11] conjectured that for every positive ε and δ, there
exists k such that it is NP-hard to distinguish whether a (1 − ε) fraction of all constraints is
satisfiable, or only a δ fraction of all constraints is satisfiable. This conjecture, known as the
Unique Games Conjecture, implies many inapproximability results for fundamental problems,

√

which are not known to follow from more standard complexity assumptions. Thus it is interesting
to determine what fraction of constraints can be satisfied for such instances as a function of ε, k
and n (where n is the number of vertices). The recent algorithms of Charikar, Makarychev, and

√

∗Supported by a Francis Upton fellowship.
†Supported by a Gordon Wu fellowship.
‡Supported by a Gordon Wu fellowship.

Makarychev [6] achieve near-optimal results as a function of ε and k: Khot, Kindler, Mossel, and
O’Donnell [12] showed that any improvement in the guarantees will disprove the Unique Games
Conjecture. However, the question of the best achievable results in terms of n is still wide open.
Moreover, as our results indicate, there is a close connection between the results achievable as a
function of n and the approximation factor for Sparsest Cut.

Algorithmically, Unique Games pose a challenge for the development of SDP based algorithms.
While SDP approaches have been quite successful in dealing with binary constraint satisfaction
problems, it is not clear how to extend these techniques to constraint satisfaction problems (CSPs)
over large domains. Our study of Unique Games is motivated by attempting to develop an
understanding of the SDP toolkit for CSPs over larger domains.

Let us begin by describing some known results. Using semidefinite programming Khot [11]
constructed the first approximation algorithm for Unique Games in 2002. His algorithm satisfies
a δ = 1 − O(k2ε1/5

√
log(1/ε)) fraction of all constraints. Trevisan [14] developed an algorithm

√

that satisfies a 1 − O(3
√

ε log n) fraction of all constraints.
Gupta and Talwar [7] suggested an algorithm based on linear programming that satisfies a (1−

O(ε log n)) fraction of all constraints. They also raise the question of whether an algorithm based
on Khot’s semidefinite program can achieve a better performance guarantee. Finally, Charikar,
Makarychev and Makarychev [6] developed two algorithms that satisfy roughly a O(k− ε

2−ε) fraction
and a 1 − O(

√
ε log k) fraction of all constraints, respectively. Note that the approximation

√

guarantees of algorithms by Gupta and Talwar [7] and Charikar, Makarychev and Makarychev [7]
are not always comparable. But these algorithms always have better approximation guarantee
than algorithms by Khot [11] and Trevisan [14] respectively. We summarize the best known results

√

in the following table (see the third column).

Technique MAX CUT: k = 2 Unique Games

SDP (ε > 1/ log n) 1 − O(
√

ε) [9] 1 − O(
√

ε log k) [6]
SDP (ε < 1/ log n) 1 − O(ε

√
log n) [1] ?

LP (ε < 1/ log n) 1 − O(ε log n) [8] 1 − O(ε log n) [7]

It is instructive to compare these results with the best results for MAX CUT (in fact, all these
results for MAX CUT apply to general Unique Games with only 2 states1). The Goemans–
Williamson MAX CUT algorithm [9] satisfies a (1 − O(

√
ε)) fraction of all constraints. This ap-

proximation guarantee was generalized by Charikar, Makarychev, and Makarychev [6] for Unique
Games with larger domain size k. However in the range ε < 1/ log n, the approximation guarantee
for MAX CUT was significantly better than that for general Unique Games: the approximation
algorithm by Agarwal, Charikar, Makarychev, and Makarychev [1] satisfies a 1−O(ε

√
log n) frac-

tion of all constraints for MAX CUT, but no analog of this was known for larger k. Compare this
to the recent algorithm by Gupta and Talwar [7] which satisfies a 1 − O(ε log n) fraction of all
constraints2. Note that no algorithm with approximation guarantee 1 − O(ε

√
log n) was known

even for k = 3 (or MAX 2-LIN mod 3). Our paper closes the gap between the Unique Games

1This problem is variously known as MAX RES CUT (see [9]) or MAX 2-LIN mod 2. Its complement is also
called MIN UNCUT or MIN 2CNF≡ Deletion.

2It is interesting to note that the analog of Gupta and Talwar [7] for k = 2 was obtained earlier by Garg,
Vazirani, and Yannakakis [8].

2

and the MAX CUT problems (thus giving a positive answer to the question raised by Gupta and
Talwar [7]).

1.1. Our Results

The main result of this paper is as follows.

Theorem 1.2. There exists a polynomial time algorithm that finds an assignment of values to
vertices satisfying a (1−O(ε

√
log n log k)) fraction of all constraints, for any instance of Unique

Games for which a (1 − ε) fraction of all constraints is satisfiable.

Remark 1.1. Since complexity reductions based on the Unique Games Conjecture use long codes,
the parameter k is typically O(log n). For such k our algorithm satisfies 1 − O(ε

√
log n log log n)

fraction of all constraints. For all values of k = no(1), our algorithm has a better approximation
guarantee than the algorithm of Gupta and Talwar [7].

The SDP solution associates a collection of orthogonal vectors for every vertex, one such vector
for every possible state of the vertex. The goal of the rounding algorithm is to pick one of these
vectors for every vertex. As the main technical tool, we introduce a new type of random parti-
tioning scheme, which we call an m-orthogonal separator. Specifically, we construct an algorithm
that, given a set of vectors in an ℓ2

2 space, produces random subsets S such that the probability
that two orthogonal vectors belong to S is equals 1/m (we assume that 1/m is very small); and
the distribution over corresponding cuts (S, S̄) is a low distortion embedding from ℓ2

2 to ℓ1. In
other words, for two orthogonal vectors u and v the events “u ∈ S” and “v ∈ S” are “almost”
disjoint. This property is crucial for our algorithm: it essentially guarantees that we assign only
one value to each vertex in a Unique Game. We stress that no known embedding satisfies this
property.

Viewed in this new framework, the random cuts generated by the algorithm for MAX CUT [1]
may be seen as “∞-antipodal separators”: the random set S never contains two antipodal vectors.
(Recall that in constraint satisfaction problems with domain size k = 2, exclusive states of vertices
are typically “encoded” by antipodal vectors; whereas if the domain size is larger, the exclusive
states are encoded by orthogonal vectors.) Despite the similarity between orthogonal separators
and antipodal separators, generating orthogonal separators seems much harder than generating
antipodal separators. The reason is that any hyperplane cut separates antipodal vectors. However,
there is no apparently simple way to separate orthogonal vectors.

In order to construct orthogonal separators we extend the methods of Charikar, Makarychev,
and Makarychev [6] and combine them with powerful metric embedding techniques developed in
the works of Arora, Rao, and Vazirani [4], of Lee [13], of Chawla, Gupta, and Räcke [5], and
of Arora, Lee, and Naor [3]. We also introduce a special transformation of the space ℓ2

2 , which
we call “normalization”. We present two algorithms: one using embeddings from ℓ2

2 to ℓ1 and
the other using embeddings from ℓ2

2 to ℓ2. While the second algorithm gives a slightly better
guarantee, the first algorithm would be improved even if better embedding techniques from ℓ2

2 to
ℓ1 at one scale are found3 (this cannot happen for embedding into ℓ2, for which current guarantees
are essentially tight).

3Previously, it was not known whether the MAX CUT algorithm of [1] exhibited this direct dependency.

3

Our new partitioning scheme is an analog of the structural theorem of Arora, Rao and Vazi-
rani [4], which has found applications in several subsequent papers. We believe that our techniques
will be useful for rounding SDP relaxations for problems involving more than two states.

In Section 2, we describe the semidefinite relaxation for Unique Games. Then in Section 3,
we introduce the notion of embeddings separating orthogonal vectors and show how to use such
embeddings to satisfy a (1 − O(ε

√
log n log k)) fraction of all constraints. Finally, in Section 4,

we construct two embedding algorithms.

2 Semidefinite Relaxation

We use the vector relaxation of Khot [11] with additional triangle inequalities. For each vertex
√

u and each state i we introduce a vector ui. The intended integer solution is as follows. For every
vector ui set ui = 1 if vertex u is assigned state i, otherwise let ui = 0. Thus for a fixed u, only
one ui is not equal to zero. To model this proprty in the SDP we add constraints that ui and
uj are orthogonal for i ̸= j; and constraints ∥u1∥2 + · · · + ∥uk∥2 = 1. We also add some triangle
inequality constraints.

Notice, that if the constraint between u and v is satisfied, then ui = vπuv(i) for all i ∈ [k]. On
the other hand if the constraint is not satisfied then the equality ui = vπuv(i) is violated for exactly
two values of i. Thus the expression

εuv =
1

2

k∑

i=1

∥ui − vπuv(i)∥2

is equal to 0, if the constraint is satisfied and 0, otherwise.
Using this observation we construct the following SDP:

minimize
1

2

∑

(u,v)∈E

k∑

i=1

∥ui − vπuv(i)∥2

subject to

∀u ∈ V ∀i, j ∈ [k], i ̸= j ⟨ui, uj⟩ = 0 (1)

∀u ∈ V
k∑

i=1

∥ui∥2 = 1 (2)

∀u, v, w ∈ V ∀i, j, l ∈ [k] ∥ui − wl∥2 ≤ ∥ui − vj∥2 + ∥vj − wl∥2 (3)

∀u, v ∈ V ∀i, j ∈ [k] ∥ui − vj∥2 ≤ ∥ui∥2 + ∥vj∥2 (4)

∀u, v ∈ V ∀i, j ∈ [k] ∥ui∥2 ≤ ∥ui − vj∥2 + ∥vj∥2 (5)

Note, that the objective function of the SDP measures how many constraints are not satisfied.

Remark 2.1. The constraints (4) and (5) are ℓ2
2 triangle inequalities with the zero vector:

∥ui − vj∥2 ≤ ∥ui − 0∥2 + ∥vj − 0∥2;

∥ui − 0∥2 ≤ ∥ui − vj∥2 + ∥vj − 0∥2.

A particularly important constraint is that the vectors ui and uj are orthogonal for i ̸= j.

4

Remark 2.2. The triangle inequalities also imply the “cycle constraints” introduced by Gupta
and Talwar [7] in their LP. Thus the SDP relaxation is stronger than the LP relaxation. We do
not use the “cycle constraints” specifically in our analysis.

3 Overview of Techniques

In this section we describe the main technical tool of this paper. We introduce a new type of
embeddings from ℓ2

2 to ℓ1: embeddings separating orthogonal vectors. Recall that a set of vectors
X in Rd is an ℓ2

2 space if it satisfies the following triangle inequalities:

∀u, v, w ∈ X ∥u − v∥2 + ∥v − w∥2 ≥ ∥u − w∥2.

Note that the vectors in any feasible solution to the SDP above, together with the zero vector,
form an ℓ2

2 space.

Definition 3.1. Let X be an ℓ2
2 space. We say that a random set S ⊂ X is an m-orthogonal

separator of X with distortion D and probability scale α if the following conditions hold:

1. For all u in X, Pr (u ∈ S) = α ∥u∥2.

2. For all orthogonal vectors u and v in X,

Pr (u ∈ S and v ∈ S) ≤ min (Pr (u ∈ S) , Pr (v ∈ S))

m
.

Note that the right hand side is at most α/m · ∥u∥2+∥v∥2

2 .

3. For all u and v in X, Pr (IS(u) ̸= IS(v)) ≤ αD ∥u− v∥2, where IS is the indicator function
of the set S.

The novelty of Definition 3.1 is in property 2. It says that for every orthogonal vectors u and
v the events “u ∈ S” and “v ∈ S” are almost disjoint. As always we can interpret a distribution
over random cuts as an embedding into ℓ1.

Definition 3.2. We say that a mapping f of an ℓ2
2 space X to ℓ1 is a distortion D embedding

√

m-separating orthogonal vectors if the following conditions hold. √

1. For all u in X, ∥f(u)∥1 = ∥u∥2.

2. For all orthogonal vectors u and v in X,

∥f(u) − f(v)∥1 ≥ ∥f(u)∥1 + ∥f(v)∥1 − 2
min(∥f(u)∥1, ∥f(v)∥1)

m
.

3. For all u and v in X, ∥f(u) − f(v)∥1 ≤ D ∥u − v∥2.

These definitions are equivalent in the following sense: if there exists an m-orthogonal separator
of X then there exists an embedding m-separating orthogonal vectors with the same distortion
and vice versa. We explain this connection in more detail in the full version of the paper. In this

√

paper we work only with orthogonal separators i.e. Definition 3.1.
Let us state the main technical result.

5

Theorem 3.3. There exists a randomized polynomial time algorithm that, given an ℓ2
2 space

X containing 0 and a parameter m, returns an m-orthogonal separator of X with distortion
D = O(

√
log |X| log m) and probability scale α ≥ 1/poly(m).

In the next section we show how using this theorem we obtain an approximation algorithm for
Unique Games. We shall prove Theorem 3.3 in Section 4.

3.1. Approximation Algorithm

Input: An instance of Unique Games.
Output: Assignment of states to vertices.

1. Solve the SDP.

2. Mark all vertices as unprocessed.

3. while (there are unprocessed vertices)

(a) Produce an m-orthogonal separator S with distortion D and probability scale α as in
Theorem 3.3, where m = 4k and D = O(

√
log n log m).

(b) For all unprocessed vertices u :

• Let Su = {i : ui ∈ S} .

• If Su contains exactly one element i, then assign the state i to u, and mark the
vertex u as processed.

4. If the algorithm performs more than n/α iterations, assign arbitrary values to any remaining
vertices (note that α ≥ 1/poly(k)).

Lemma 3.4. The algorithm satisfies the constraint between vertices u and v with probability
1 − O(Dεuv), where εuv is the SDP contribution of the term corresponding to the edge (u, v):

√

εuv =
1

2

k∑

i=1

∥ui − vπuv(i)∥2.

Proof. If Dεuv ≥ 1/4, then the statement holds trivially, so we assume that Dεuv < 1/4. For
the sake of analysis we also assume that πuv is the identity permutation (we can just rename the
states of the vertex v, this clearly does not affect the execution of the algorithm).

√

At the end of an iteration in which one of the vertices u or v assigned a value we mark the
constraint as satisfied or not: the constraint is satisfied, if the the same state i is assigned to the
vertices u and v; otherwise, the constraint is not satisfied (here we conservatively count the number
of satisfied constraints: a constraint marked as not satisfied in the analysis may potentially be
satisfied in the future).

Consider one iteration of the algorithm. There are three possible cases:

1. Both sets Su and Sv are equal and contain only one element, then the constraint is satisfied.

6

2. The sets Su and Sv are equal, but contain more than one or none elements, then no values
are assigned at this iteration to u and v.

3. The sets Su and Sv are not equal, then the constraint is not satisfied (a conservative as-
sumption).

Let us estimate the probabilities of each of these cases. Using the fact that for all i ̸= j the
vectors ui and uj are orthogonal, and the first and second properties of orthogonal separators we
get (below α is the probability scale):

Pr (|Su| = 1) ≥
∑

i∈[k]

Pr (i ∈ Su) −
∑

i,j∈[k]
i̸=j

Pr (i ∈ Su and j ∈ Su)

=
∑

i∈[k]

Pr (ui ∈ S) −
∑

i,j∈[k]
i̸=j

Pr (ui ∈ S and uj ∈ S)

≥
∑

i∈[k]

α ∥ui∥2 − α

m

∑

i,j∈[k]

∥ui∥2 + ∥uj∥2

2

= α − α/4 =
3

4
α.

The probability that the constraint is not satisfied is at most

Pr (Su ̸= Sv) ≤
∑

i∈[k]

Pr (IS(ui) ̸= IS(vi)) ≤ αD
∑

i∈[k]

∥ui − vi∥2 = αDεuv.

Finally the probability of satisfying the constraint is at least

Pr (|Su| = 1 and Su = Sv) ≥
3

4
α − αDεuv ≥ 1

2
α.

Since the algorithm performs n/α iterations, the probability that it does not assign any value to
u or v before step 4 is exponentially small. At each iteration the probability of failure is at most
O(Dεuv) times the probability of success, thus the probability that the constraint is not satisfied
is O(Dεuv).

We now show that the approximation algorithm satisfies 1 − O(
√

log n log k ε) fraction of all
constraints. √

Proof of Theorem 1.2. By Lemma 3.4, the expected number of unsatisfied constraints is equal to
∑

(u,v)∈E

O(D × εuv) = O(
√

log n log k) × SDP,

where SDP is the SDP value. Thus the expected fraction of unsatisfied constraints is O(
√

log n log k)×
SDP . Since SDP ≤ ε|E|, the algorithm satisfies 1 − O(

√
log n log k ε) fraction of all constraints

with high probability.

7

4 Producing orthogonal separators

In this section we present two algorithms that generate m-orthogonal separators with distor-
tions D1 = O(

√
log |X| log m) and D2 = O(

√
log |X| log m). The main difference between the

algorithms is that the first algorithm uses embeddings to ℓ1 as an intermediate step, while the
second one uses embeddings to ℓ2. Thus any improvements in embeddings to ℓ1 will result in a
better distortion for the first algorithm. We also believe that the first algorithm is simpler than
the second one.

The algorithms generate orthogonal separators in three steps. First we normalize all vectors
in a special way. Namely, we transform the set X into a set of functions in L2[0,∞], so that the
image of every non-zero vector is a function with L2 norm 1; the images of orthogonal vectors
are orthogonal; and the new configuration satisfies L2

2 triangle inequalities. Then we embed the
transformed set into ℓ1 or ℓ2. Finally, we produce orthogonal separators based on the ℓ1 or ℓ2

embedding and the original lengths of vectors.

4.1. Normalization: Embedding into L2[0,∞]

The space L2[0,∞] is the space of square integrable functions f : [0,∞) → Rd equipped with
the following inner product:

⟨f1, f2⟩ =

∫ +∞

0

⟨f1(t), f2(t)⟩ dt;

and norm:

∥f∥2 =
√

⟨f, f⟩ ≡

√∫ +∞

0

∥f(t)∥2 dt.

We construct a mapping ϕ from Rd into L2[0,∞] as follows

ϕ(u)(t) =

{
u, if t ≤ 1/∥u∥2;

0, otherwise.

We map the zero vector to 0. Let us see what properties the embedding ϕ has.

Lemma 4.1. Let X ⊂ Rd be an ℓ2
2 metric space containing the zero vector. Then

1. The image ϕ(X) satisfies triangle inequalities in L2
2:

∀u, v, w ∈ X ∥ϕ(u) − ϕ(v)∥2
2 + ∥ϕ(v) − ϕ(w)∥2

2 ≥ ∥ϕ(u) − ϕ(w)∥2
2.

2. For all non-zero vectors u and v in X,

⟨ϕ(u),ϕ(v)⟩ =
⟨u, v⟩

max(∥u∥2, ∥v∥2)
.

3. For all non-zero vectors u in X, ∥ϕ(u)∥2
2 = 1.

4. For all orthogonal u and v in X, the images ϕ(u) and ϕ(v) are also orthogonal.

8

5. For all non-zero vectors u and v in X,

∥ϕ(v) − ϕ(u)∥2
2 ≤

2 ∥v − u∥2

max(∥u∥2, ∥v∥2)
.

Proof. 1. The triangle inequality for the functions ϕ(u), ϕ(v) and ϕ(w) is equivalent to the
following inequality:

∫ ∞

0

∥ϕ(u)(t) − ϕ(v)(t)∥2 + ∥ϕ(v)(t) − ϕ(w)(t)∥2 − ∥ϕ(u)(t) − ϕ(w)(t)∥2 dt ≥ 0.

This inequality holds for every t, since the vectors ϕ(u)(t), ϕ(v)(t) and ϕ(w)(t) lie in the set
{0, u, v, w} ⊂ X and vectors in X satisfy ℓ2

2 triangle inequalities.
2. Without loss of generality assume that ∥u∥ ≤ ∥v∥, then

⟨ϕ(u),ϕ(v)⟩ =

∫ ∞

0

⟨ϕ(u)(t),ϕ(v)(t)⟩ dt =

∫ 1/∥v∥2

0

⟨u, v⟩ dt =
⟨u, v⟩
∥v∥2

.

Parts 3 and 4 follow from part 2. (The zero vector maps to 0, so ϕ(0) is orthogonal to any
function).
5. Assume without loss of generality that ∥u∥ ≤ ∥v∥, then

∥ϕ(v) − ϕ(u)∥2
2 =

1

∥v∥2
· ∥v − u∥2 +

(
1

∥u∥2
− 1

∥v∥2

)
· ∥u∥2

=
1

∥v∥2
·
(
∥v − u∥2 + ∥v∥2 − ∥u∥2

)

≤ 2

∥v∥2
·
(
∥v − u∥2

)
.

Here we used the triangle inequality ∥v − 0∥2 ≤ ∥v − u∥2 + ∥u − 0∥2.

Remark 4.1. How can we represent the embedding in L2
2[0,∞] efficiently? Note that L2[0,∞]

√

is a Hilbert space, so the metric on every finite subset of L2
2[0,∞] is uniquely determined by its

Gram matrix4. Hence we just need to compute the Gram matrix for the vectors/functions from
ϕ(X). This can be done using the formula from Lemma 4.1.2. We get the following corollary.

Corollary 4.2. There exists a polynomial time algorithm that, given an ℓ2
2 space X, computes

the Gram matrix of the set of vectors ϕ(X).

4.2. Embedding into ℓ1 and ℓ2

We use the following theorem of Arora, Lee, and Naor [3], which is based on the results of
Arora, Rao and Vazirani [4], Lee [13], and Chawla, Gupta and Räcke [5].

4The Gram matrix of a set of vectors is the matrix, where (ij)-th element is equal to the inner product of i-th
and j-th vectors.

9

Theorem 4.3 ([3], Theorem 3.1). There exist constants C ≥ 1 and 0 < p < 1/2 such that for
every n-point ℓ2

2 space X with distance d(u, v) = ∥u − v∥2 and every ∆ > 0, the following holds.
There exists a distribution µ over subsets U ⊂ X such that for every u, v ∈ X with d(u, v) ≥ ∆,

µ

{
U : u ∈ U and d(v, U) ≥ ∆

C
√

log n

}
≥ p.

Note that we can efficiently sample from the distribution µ. We need the following easy corol-
laries. We sketch their proofs in Appendix B.

Corollary 4.4. There exists an efficient algorithm that, given an ℓ2
2 space X, generates random

subsets Y such that the following conditions hold.

1. For every u and v in X,

Pr (IY (u) ̸= IY (v)) ≤ D ∥u − v∥2.

2. For every u and v s.t. ∥u − v∥ ≥ 1,

Pr (IY (u) ̸= IY (v)) ≥ β,

where β is a universal constant, D = O(
√

log |X|).

Corollary 4.5. There exists an efficient algorithm, that constructs an embedding ψ of an ℓ2
2 space

X into ℓ2 such that the following conditions hold.

1. For all u and v in X,
∥ψ(u) − ψ(v)∥ ≤ D ∥u − v∥2.

2. For every u and v s.t. ∥u − v∥ ≥ 1,

∥ψ(u) − ψ(v)∥ ≥ 2γ.

3. The set ψ(X) lies on the unit sphere: ∀u ∈ X

∥ψ(u)∥ = 1,

where γ is a universal constant; D = O(
√

log |X|).

4.3. Generating orthogonal separators via ℓ1

We present an algorithm to generate orthogonal separators with distortion O(
√

log |X| log m).
This result is not as strong as the one given in the next section, but is arguably simpler, and
demonstrates a number of the same ideas. Using this algorithm, in conjunction with Lemma 3.4,
implies the following result:

Theorem 4.6. There exists a polynomial time algorithm that finds an assignment of values to
vertices satisfying a (1 − O(ε

√
log n log k)) fraction of all constraints, for any instance of Unique

Games for which a (1 − ε) fraction of all constraints is satisfiable.

10

The following algorithm generates orthogonal separators as specified above.

Input: An ℓ2
2 set of vectors X (containing 0), a parameter m.

Output: A random set S.

1. Set l = ⌈ln m/β⌉ (where β is as in Corollary 4.4).

2. Obtain ϕ(X), a normalization of X, as described in Section 4.1.

3. Apply the algorithm from Corollary 4.4 to the set ϕ(X), to generate l random independent
subsets Y1, . . . , Yl ⊂ ϕ(X).

4. For every vector u ∈ X, construct a word W (u) of length l corresponding to inclusion or
exclusion of ϕ(u) from the sets Yi:

W (u) = IY1(ϕ(u)) . . . IYl
(ϕ(u)).

5. Pick a random word W in {0, 1}l s.t. the probability that W = W (u) (for each u) equals
1/|X|. This is feasible since the number of distinct words constructed in step 4 is at most
|X| (possibly we may pick a word not corresponding to any W (u)).

6. Pick a random uniform value r in the interval (0, 1).

7. Find all vectors u of ℓ2
2-length at least r such that W (u) = W :

S =
{
u ∈ X : ∥u∥2 ≥ r and W (u) = W

}
.

8. Return S.

Lemma 4.7. The algorithm generates an m-orthogonal separator of X with distortion O(
√

log |X| log m)
and probability scale α = 1/|X|.

Proof. Let us verify that all the conditions of Definition 3.1 hold.
1. Fix an arbitrary u. Conditional on the event r ≤ ∥u∥2 the probability of picking u in S is equal
to 1/|X|. Thus

Pr (u ∈ S) =
1

|X| · Pr
(
r ≤ ∥u∥2

)
=

1

|X| · ∥u∥
2.

2. Fix orthogonal vectors u and v from X. By Lemma 4.1 (parts 3 and 4), ∥ϕ(u) − ϕ(v)∥2
2 = 2,

hence by Corollary 4.4,
Pr (IYi(u) = IYi(v)) ≤ 1 − β.

Thus the probability that W (u) = W (v) is at most (1 − β)l ≤ 1
m . The probability that u and v

are in S is as follows:

Pr (u, v ∈ S) = Pr
(
W (u) = W (v) and W = W (u) and r ≤ min(∥u∥2, ∥v∥2)

)

= Pr (W (u) = W (v)) · Pr (W = W (u)) · Pr
(
r ≤ min(∥u∥2, ∥v∥2)

)

≤ 1

|X| ·
min(∥u∥2, ∥v∥2)

m
=

min(Pr (u ∈ S) , Pr (v ∈ S))

m
.

11

3. Fix u and v from X and assume ∥u∥ ≤ ∥v∥. Similarly to part 2, we have

Pr (IS(u) ̸= IS(v)) = Pr
(
W (u) ̸= W (v) and (W = W (u) or W = W (v)) and r ≤ ∥u∥2

)

+ Pr
(
W = W (v) and ∥u∥2 ≤ r ≤ ∥v∥2

)

≤ 2∥u∥2

|X| · Pr (W (u) ̸= W (v)) +
1

|X|
(
∥v∥2 − ∥u∥2

)
.

Now, by Corollary 4.4.1 and Lemma 4.1.5,

Pr (W (u) ̸= W (v)) ≤
l∑

i=1

Pr (IYi(ϕ(u)) ̸= IYi(ϕ(v))) ≤ l
√

log |X| · ∥ϕ(u) − ϕ(v)∥2
2

≤
2l

√
log |X| · ∥u − v∥2

∥v∥2
.

Using ℓ2
2 triangle inequality ∥v∥2 − ∥u∥2 ≤ ∥u − v∥2 we get

Pr (IS(u) ̸= IS(v)) ≤ 1

|X|

(
4∥u∥2

∥v∥2
· l

√
log |X| + 1

)
∥u − v∥2

=
1

|X| ∥u − v∥2 · O(
√

log |X| log m).

4.4. Generating orthogonal separators via ℓ2

In this section we prove Theorem 3.3, which in turn implies Theorem 1.2 (using Lemma 3.4).
We present an algorithm to generate orthogonal separators using embeddings to ℓ2. It uses ideas
from the algorithm of Charikar, Makarychev and Makarychev [6].

Input: An ℓ2
2 set of vectors X (containing 0), a parameter m.

Output: A random set S.

1. Fix m′ = p(m), where p(x) is a polynomial we specify later.

2. Obtain ϕ(X), a normalization of X, as described in Section 4.1.

3. Embed ϕ(X) into the unit sphere in ℓ2 (see Corollary 4.5). Denote the image of the vector
ϕ(u) by ψ(u).

4. Generate a random Gaussian vector g with independent components distributed as N (0, 1).

5. Fix a threshold t s.t. Pr (ξ ≥ t) = 1/m′, where ξ ∼ N (0, 1) (i.e. t is (1 − 1/m′)-quantile of
the standard normal distribution).

6. Pick a random uniform value r in the interval (0, 1).

12

7. Find all vectors u of ℓ2
2-length at least r such that ⟨ψ(u), g⟩ ≥ t:

S =
{
u ∈ X : ∥u∥2 ≥ r and ⟨ψ(u), g⟩ ≥ t

}
.

8. Return S.

Lemma 4.8. The algorithm generates an m-orthogonal separator of X with distortion
O(

√
log |X| log m′) and probability scale α = 1/m′.

Proof. Let us verify that all the conditions of Definition 3.1 hold.
1. Fix an arbitrary u. Conditional on the event r ≤ ∥u∥2 the probability of picking u in S is equal
to 1/m′. Thus

Pr (u ∈ S) =
1

m′ · Pr
(
r ≤ ∥u∥2

)
=

1

m′ · ∥u∥
2.

2. Fix orthogonal vectors u and v from X. Simirlaly to Lemma 4.7 (part 2), we have

Pr (u ∈ S and v ∈ S) = Pr
(
⟨ψ(u), g⟩ ≥ t and ⟨ψ(v), g⟩ ≥ t and r ≤ min(∥u∥2, ∥v∥2)

)

= Pr (⟨ψ(u), g⟩ ≥ t and ⟨ψ(v), g⟩ ≥ t) · min(∥u∥2, ∥v∥2)

≤ Pr (⟨(ψ(u) + ψ(v))/2, g⟩ ≥ t) · min(∥u∥2, ∥v∥2)

= m′ Pr (⟨(ψ(u) + ψ(v))/2, g⟩ ≥ t) · min(Pr (u ∈ S) , Pr (v ∈ S)).

We need to show that
Pr (⟨(ψ(u) + ψ(v))/2, g⟩ ≥ t) ≤ 1/(m · m′).

By Lemma 4.1 (parts 3 and 4), ∥ϕ(u) − ϕ(v)∥2
2 = 2. Thus by Corollary 4.5, ∥ψ(u) − ψ(v)∥ ≥ 2γ,

where γ is a positive constant. Hence

Var [⟨(ψ(u) + ψ(v))/2, g⟩] =

∥∥∥∥
ψ(u) + ψ(v)

2

∥∥∥∥
2

≤ 1 − γ2.

Now by Lemma A.1.2 from the Appendix,

Pr

(〈
ψ(u) + ψ(v)

2
, g

〉
≥ t

)
≤ Φ̃

(
t√

1 − γ2

)
≤ 1

t

(
C · t

m′

) 1
1−γ2

=
1

m′ · O
((

log m′

m′

) 1
1−γ2 −1

)
.

(here Φ̃(x) denotes the probability that a standard normal random variable is greater than x).
Recall that we fixed m′ to be p(m), where p(x) is a polynomial. It is easy to see that for an

appropriate p(x) (that depends only on the constant γ) the expression O

((
log m′

m′

)1/(1−γ2)−1
)

is

less than 1/m, therefore the value of the right hand side is less than 1/(m · m′).
3. For all u and v from X,

Pr (u ∈ S and v /∈ S) = Pr
(
⟨ψ(u), g⟩ ≥ t and ⟨ψ(v), g⟩ ≤ t and r ≤ min(∥u∥2, ∥v∥2)

)

+ Pr
(
⟨ψ(u), g⟩ ≥ t and ∥v∥2 ≤ r ≤ ∥u∥2

)

≤ Pr (⟨ψ(u), g⟩ ≥ t and ⟨ψ(v), g⟩ ≤ t) · min(∥u∥2, ∥v∥2)

+ 1/m′ · |∥u∥2 − ∥v∥2|.

13

By Lemma A.2 from the Appendix,

Pr (⟨ψ(u), g⟩ ≥ t and ⟨ψ(v), g⟩ ≤ t) = O(∥ψ(v) − ψ(u)∥
√

log m′/m′)

≤ O
(
∥ϕ(v) − ϕ(u)∥2

2 ·
√

log n ·
√

log m′/m′
)

≤ O

(
∥v − u∥2

max(∥u∥2, ∥v∥2)
·
√

log n ·
√

log m′/m′
)

.

Therefore,

Pr(IS(u) ̸= IS(v)) = Pr (u ∈ S and v /∈ S) + Pr (u /∈ S and v ∈ S)

≤ O

(
∥v − u∥2

max(∥u∥2, ∥v∥2)
·
√

log n ·
√

log m′/m′
)
· min(∥u∥2, ∥v∥2)

+ 2/m′ · |∥u∥2 − ∥v∥2|

≤ O
(
∥v − u∥2

√
log n ·

√
log m′/m′

)
.

This finishes the proof.

5. Acknowledgements

We thank Moses Charikar for valuable discussions and comments.

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n) approximation
algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pp. 573–581, 2005.

[2] G. Andersson, L. Engebretsen, and J. H̊astad. A new way of using semidefinite programming
with applications to linear equations mod p. Journal of Algorithms, vol. 39, issue 2, pp. 162–
204, May 2001.

[3] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pp. 553-562, 2005.

[4] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph par-
titioning. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pp. 222–231, 2004.

[5] S. Chawla, A. Gupta, and H. Räcke. Approximations for generalized sparsest cut and embed-
dings of ℓ2 into ℓ1. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 102–111, 2005.

[6] M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal Algorithms for Unique
Games. To appear in Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 2006.

14

[7] A. Gupta and K. Talwar. Approximating Unique Games. In Proceedings of the 17th ACM-
SIAM Symposium on Discrete Algorithms, pp. 99–106, 2006.

[8] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theo-
rems and their applications. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, pp. 698–707, 1993.

[9] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, vol. 42, no. 6,
pp. 1115–1145, Nov. 1995.

[10] M. Goemans and D. Williamson. Approximation algorithms for MAX-3-CUT and other
problems via complex semidefinite programming. Journal of Computer and System Sciences
(Special Issue for STOC 2001), vol. 68, issue 2, pp. 442–470, Mar. 2004. Preliminary version
in Proceedings of 33rd ACM Symposium on Theory of Computing, pp. 443–452, 2001.

[11] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pp. 767–775, 2002.

[12] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs? ECCC Report TR05-101, 2005.

[13] J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 92–
101, 2005.

[14] L. Trevisan. Approximation Algorithms for Unique Games. In Proceedings of the 46th IEEE
Symposium on Foundations of Computer Science, pp. 197–205, 2005.

A. Properties of Normal Distribution

For completeness we prove some standard results used in the paper. Denote the probability
that a standard normal random variable is greater than t ∈ R by Φ̃(t), in other words

Φ̃(t) ≡ 1 − Φ0,1(t) = Φ0,1(−t),

where Φ0,1 is the normal distribution function.

Lemma A.1. 1. For every t > 0,

t√
2π(t2 + 1)

e−
t2

2 < Φ̃(t) <
1√
2πt

e−
t2

2 .

2. There exist constants c1, C1, c2, C2 and C3 such that for all 0 < p < 1/3, t ≥ 0 and ρ ≥ 1
the following inequalities hold:

c1√
2π(t + 1)

e−
t2

2 ≤ Φ̃(t) ≤ C1√
2π(t + 1)

e−
t2

2 ;

15

c2

√
log (1/p) ≤ Φ̃−1(p) ≤ C2

√
log (1/p);

Φ̃(ρt) ≤ 1

t
(CtΦ̃(t))ρ2

.

Proof. 1. Observe, that in the limit t → ∞ all three expressions are equal to 0. Hence the lemma
follows from the following inequality on the derivatives:

(
t√

2π(t2 + 1)
e−

t2

2

)′

> Φ̃(t)′ ≡ − 1√
2π

e−
t2

2 >

(
1√
2πt

e−
t2

2

)′

.

2. This trivially follows from (1).

Lemma A.2. Let X and Y be two standard normal random variables with covariance 1 − 2ε2;
and let Φ̃(t) = 1/m < 1/3, t > 1. Then

Pr (X ≥ t and Y ≤ t) = O(ε
√

log m/m).

Proof. If εt ≥ 1 or ε ≥ 1/2, then we are done, since ε
√

log m = Ω(εt) = Ω(1) and

Pr (X ≥ t and Y ≤ t) ≤ Pr (X ≥ t) =
1

m
.

So assume that εt ≤ 1 and ε < 1/2. Let

ξ =
X + Y

2
√

1 − ε2
; η =

X − Y

2ε
.

Then ξ and η are independent standard random variables. We have

Pr
(
X ≥ t and Y ≤ t

)
= Pr

(√
1 − ε2 ξ + εη ≥ t and

√
1 − ε2 ξ − εη ≤ t

)

=

∫ ∞

0

Pr
(√

1 − ε2 ξ + εx ≥ t and
√

1 − ε2 ξ − εx ≤ t
)

dFη(x)

=
1√
2π

∫ ∞

0

Pr
(
t − εx ≤

√
1 − ε2 ξ ≤ t + εx

)
e−

x2

2 dx

≤ 1√
2π

∫ t/ε

0

Pr
(
t − εx ≤

√
1 − ε2 ξ ≤ t + εx

)
e−

x2

2 dx +
1√
2π

∫ ∞

t/ε

e−
x2

2 dx.

The density of the random variable
√

1 − ε2 ξ on the interval (t − εx, t + εx) for x ∈ [0, t/ε] is at
most

1√
2π(1 − ε2)

e
−(t−εx)2

2(1−ε2) ,

hence

Pr
(
t − εx ≤

√
1 − ε2 ξ ≤ t + εx

)
≤ 2εx√

2π(1 − ε2)
e
− (t−εx)2

2(1−ε2) .

16

Let us bound the first integral in the right hand side.

1√
2π

∫ t/ε

0

Pr
(
t − εx ≤

√
1 − ε2 ξ ≤ t + εx

)
e−

x2

2 dx

≤ 1√
2π

∫ ∞

0

2εx√
2π(1 − ε2)

e
− (t−εx)2

2(1−ε2) e−
x2

2 dx

≤ ε

π
√

(1 − ε2)

∫ ∞

0

e−
(t−εx)2

2 e−
x2

2 x dx

≤ 2εe−t2/2

π

∫ ∞

0

eεtx e−
x2

2 x dx

≤ 2εe−t2/2

π

∫ ∞

0

ex e−
x2

2 x dx

= O
(
εe−t2/2

)
= O (εt/m) = O

(
ε
√

log m/m
)

.

Now we estimate the second integral.

1√
2π

∫ ∞

t/ε

e−
x2

2 dx = Φ̃(t/ε) = O

⎛

⎝ε e−
t2

2ε2

t

⎞

⎠ = O

(
ε e−

t2

2

t

)
= O(ε/m).

B. Details of Section 4.2

We sketch the proofs of Corollary 4.4 and Corollary 4.5.

Corollary 4.4. There exists an efficient algorithm that, given an ℓ2
2 space X, generates random

subsets Y such that the following conditions hold.

1. For every u and v in X,

Pr (IY (u) ̸= IY (v)) ≤ D ∥u − v∥2.

2. For every u and v s.t. ∥u − v∥ ≥ 1,

Pr (IY (u) ̸= IY (v)) ≥ β,

where β is a universal constant, D = O(
√

log |X|).

Sketch of the proof. We apply Theorem 4.3 to the space X with the distance function d(u, v) =
∥u − v∥2 and ∆ = 1. Let r be a random variable uniformly distributed in [0, 1

C
√

log n
], where C is

the constant from Theorem 4.3. Let Y be the r-neighborhood of U . Then

Pr (IY (u) ̸= IY (v)) = Pr (d(u, U) < r ≤ d(v, U) or d(v, U) < r ≤ d(u, U))

≤ C
√

log n · E [|d(u, U) − d(v, U)|] ≤ C
√

log n · ∥u − v∥2.

17

We verified condition 1 for D = C
√

log n. Now if ∥u − v∥2 ≥ 1 by Theorem 4.3 we have

Pr (u ∈ Y, v /∈ Y) ≥ Pr

(
u ∈ U and d(v, U) ≥ ∆

C
√

log n

)
≥ p.

Therefore, Pr (IY (u) ̸= IY (v)) = Pr (u ∈ Y, v /∈ Y) + Pr (u /∈ Y, v ∈ Y) ≥ 2p. We proved that
condition 2 holds for β = 2p.

Corollary B.1 (cf. [3], Lemma 3.5). There exists an efficient algorithm, that constructs an
embedding h of an ℓ2

2 space X into L2 such that the following conditions hold.

1. For all u and v in X,
∥h(u) − h(v)∥ ≤ D ∥u − v∥2.

2. For every u and v s.t. ∥u − v∥ ≥ 1,

∥h(u) − h(v)∥ ≥ 2γ.

3. The set h(X) lies in the unit ball:

∀u ∈ X ∥h(u)∥ ≤ 1.

where γ is a universal constant; D = O(
√

log |X|).

Sketch of the proof. We apply Theorem 4.3 to the space X with the distance function d(u, v) =
∥u − v∥2 and ∆ = 1. Define an embedding h of X into L2(µ) as follows:

h(u) = min(C
√

log n · d(u, U), 1).

We verify that all conditions 1–3 are satisfied.
1. We prove that the expansion of h is at most D ≡ C

√
log n.

∥h(u) − h(v)∥2
L2(µ) = E

[
|h(u) − h(v)|2

]
= E

[
|min(D · d(u, U), 1) − min(D · d(v, U), 1)|2

]

≤ E
[(

D · ∥u − v∥2
)2

]
= (D · ∥u − v∥2)2.

2. Now if ∥u − v∥2 ≥ 1 by Theorem 4.3 we have

Pr

(
u ∈ U and d(v, U) ≥ ∆

C
√

log n

)
≥ p.

Therefore, Pr (h(u) = 0, h(v) = 1) ≥ p. Hence ∥h(u) − h(v)∥2
L2(µ) ≥ Pr (h(u) = 0, h(v) = 1) +

Pr (h(u) = 1, h(v) = 0) ≥ 2p. We verified condition 2 for γ =
√

p/2.
3. We have

∥h(u)∥2 = E
[
min(C

√
log n · d(u, U), 1)2

]
≤ 1.

18

Corollary 4.5. There exists an efficient algorithm, that constructs an embedding ψ of an ℓ2
2 space

X into ℓ2 such that the following conditions hold.

1. For all u and v in X, ∥ψ(u) − ψ(v)∥ ≤ D ∥u − v∥2.

2. For every u and v s.t. ∥u − v∥ ≥ 1, ∥ψ(u) − ψ(v)∥ ≥ 2γ.

3. The set ψ(X) lies on the unit sphere: ∀u ∈ X ∥ψ(u)∥ = 1,

where γ is a universal constant; D = O(
√

log |X|).

Proof. Construct an embedding h(u) from Corollary B.1. Standard arguments show that we can
assume that h(u) is an embedding into ℓ2 (which is isometric to L2). Define a new embedding as

√

follows:
ψ(u) = h(u)/2 +

√
1 − ∥h(u)∥2/4 · e,

where e is a unit vector orthogonal to all vectors in h(X). It is easy to see that the embedding ψ
satisfies conditions 2 and 3. Let us check condition 1:

∥ψ(u) − ψ(v)∥ ≤ ∥h(u) − h(v)∥/2 + |
√

1 − ∥h(u)∥2/4 −
√

1 − ∥h(v)∥2/4|
≤ C1∥h(u) − h(v)∥ ≤ C1 D∥u − v∥2,

since 0 ≤ ∥h(u)∥/2 ≤ 1/2, and the function
√

1 − x2 is a Lipschitz function on the interval
[0, 1/2].

19

