
Improved Approximation of the Minimum Cover Time

Eden Chlamtac Uriel Feige∗

February 16, 2005

Abstract

Feige and Rabinovich, in [FR], gave a deterministic O(log4 n) approximation
for the time it takes a random walk to cover a given graph starting at a given
vertex. This approximation algorithm was shown to work for arbitrary reversible
Markov Chains. We build on the results of [FR], and show that the original al-
gorithm gives a O(log2 n) approximation as it is, and that it can be modified to
give a O

(
log n(log log n)2

)
approximation. Moreover, we show that given any c(n)-

approximation algorithm for the maximum cover time (maximized over all initial
vertices) of a reversible Markov chain, we can give a corresponding algorithm for
the general cover time (of a random walk or reversible Markov chain) with approx-
imation ratio O(c(n) · log n).

1 Introduction

1.1 Random walks and Markov chains

A random walk on an undirected graph G = (V,E) is the following process: we start at

some vertex v0 ∈ V , then choose one of its neighbors uniformly at random, then move to

that neighbor, then apply the same step at the new vertex (moving to a random neighbor),

and repeat ad infinitum.

A more general notion of this process is a Markov chain. A Markov chain is any

sequence of random variables {Xt}∞t=0 over some (finite) set of states S which, with respect

to some stochastic transition matrix P = (pij), satisfies the Markov property. That is, for

any arbitrary sequence of states {xj}t−1
s=0, we have

Pr (Xt+1 = j | Xt = i, Xs = xs(0 ≤ s < t)) = Pr(Xt+1 = j | Xt = i) = pij

∗Department of Computer Science and Applied Mathematics, the Weizmann Institute of Science,
Rehovot, Israel.

1

In a random walk, we have S = V , and pij = 1/deg(vi).

In an irreducible Markov chain (one in which every state is connected to every other

state by a path of positive probability) we have a unique stationary distribution on the

set of states S, which is denoted by π(·). The stationarity property means that for every

i ∈ S we have π(i) =
∑

j∈S pji · π(j). Note that we will only concern ourselves with

irreducible Markov chains.

A reversible Markov chain is a Markov chain with transition matrix P = (pij) for

which we have π(i) · pij = π(j) · pji for all i, j ∈ S. In fact, this is only a slightly more

elaborate notion than a random walk. We can think of a reversible Markov chain as a

random walk on a weighted undirected graph G = (V,E, w), where every edge e ∈ E

(including self-loops) has some nonnegative weight w(e). The transition matrix P = (pij)

here is defined by

pij
def
=

w(vi, vj)∑
u∈V w(vi, u)

1.2 Notation for Markov chains

Let {Xt}t be a Markov chain over a state set S. For any i ∈ S we use the following

notation from [AF]:

Ti
def
= min{t ≥ 0 | Xt = i}

T+
i

def
= min{t ≥ 1 | Xt = i}

We note that Ti = T+
i unless X0 = i, in which case Ti = 0 and T+

i is the first return time

to state i. Next, we define the hitting time, and related notions.

• H(i, j)
def
= E[Tj | X0 = i] is the hitting time from state i to state j (the expected

time for a Markov chain starting at i to reach j).

• D(i, j)
def
= H(i, j)−H(j, i) is the difference time between i and j.

Finally, we have the cover time of a graph, or a set of states. For any S ′ ⊆ S (where S

is the state set of a Markov chain), and any i ∈ S we define the cover time of S ′ (starting

at i) as

Ci(S
′) def

= E[max
j∈S′

Tj | X0 = i]

which is the expected time for a Markov chain with initial state i to cover all states in

S ′. When discussing random walks, we will also use the notation Cv(G) to indicate the

cover time of all the vertices of G, which we will then simply call the “cover time of G”.

We extend our cover time notation to include

• Cmax(S
′) def

= maxi∈S′ Ci(S
′) – the maximum cover time of S ′.

2

• Cmin(S ′) def
= mini∈S′ Ci(S

′) – the minimum cover time of S ′.

Note that in the literature on random walks the term “cover time” is usually used to

mean the maximum cover time. Here we will use the term to mean the cover time of a

random walk (or reversible Markov chain) with respect to a particular starting vertex.

When we want to make the distinction clear, we will refer to this notion as the general

cover time.

1.3 Background

From a computational complexity standpoint, hitting times are amongst a family of easily

computable Markov chain parameters. The computation of these parameters is charac-

terized by solving some set of linear equations related to the transition matrix P , which

we represent, in our computational model, using rational numbers (i.e. pairs of binary

integers). This operation can be performed in polynomial time in the length of the input

(using Gaussian elimination, for instance).

For example, suppose for some fixed state s ∈ S, we wish to compute all the hitting

times of the form H(i, s). Then the variables {xi}i∈S, xi = H(i, s) are characterized by

the linear equations xs = 0, and xi = 1 +
∑

j∈S pij · xj for all i 6= s. This is a harmonic

system of linear equations with fixed boundary conditions, and therefore has a unique

solution (see, for example, [DS] for an elegant discussion). From this we can immediately

compute the commute and difference times, and in a similar fashion we can also compute

the first hitting time of a set of states, as well as various other parameters. We also note

that Tetali [Tet1] showed how to compute all hitting times {H(i, j)}i,j∈S using a single

matrix inversion (as opposed to solving n systems of linear equations, as discussed here).

While hitting times in random walks and general Markov chains pose an easy compu-

tational problem, computation of cover times has remained more elusive. Specifically, to

date there is no known deterministic algorithm which approximates the maximum cover

time, or specific cover times, to within a constant factor. This is somewhat peculiar in

light of the existence of a very simple randomized algorithm which approximates the cover

time of random walks to within any desired degree of accuracy; simply simulate the chain

several times, measuring the cover time of each simulation, and output the average. Note

that this approach does not work for arbitrary reversible Markov chains, where the cover

time may be exponential in the number of states.

Note that there is a method to compute cover times which is analogous to the compu-

tation of hitting times. The drawback is that it is not efficient (i.e. the computation time

is exponential in the number of states). The key is to construct a Markov chain (of expo-

nential size) with hitting times corresponding to cover times of the original Markov chain.

3

For example, if we want to compute the cover time of the Markov chain (S, P) starting at

state s ∈ S, then the state set of the new Markov chain will be {(i, S ′) | i, s ∈ S ′, S ′ ⊆ S},
and the transition probabilities p ((i, S ′), (j, S ′ ∪ {j})) = pij. This Markov chain imitates

the original Markov chain, while keeping track of all states covered so far. The cover time

of the original Markov chain will simply be the hitting time (in the new Markov chain)

from state (s, {s}) to the set of states {(i, S) | i ∈ S}.
It was long known that the maximum cover time is at most a O(ln n) factor greater than

the maximum hitting time (note that it cannot be less than the maximum hitting time).

Matthews [Mat] showed that the maximum cover time is at most a ln n factor greater

than the maximum hitting time (as well as giving a corresponding lower bound) using the

following elegant argument. Let H be the maximum hitting time of a Markov chain over

state space S = {1, . . . , n}, and suppose we wish to bound the cover time starting at state

1. Let σ(·) be a permutation on the states {2, . . . , n} chosen uniformly at random and

independently of the Markov chain, and extend it to include σ(1) = 1. Now, consider the

first time we have covered all the states σ(1), . . . , σ(k). What is the probability that up

to this time we have left σ(k +1) uncovered? Fixing any single progression of the Markov

chain, this is simply the probability that σ(k + 1) is the last state discovered in the set

{σ(2), . . . , σ(k + 1)}. This probability is 1
k

since σ is chosen uniformly at random and

independently of the Markov chain. This is still the case when we take expectation over

the choice of transitions. Therefore the expected time to cover σ(v2), . . . , σ(vk+1) after

we already covered σ(v2), . . . , σ(vk) is bounded by 1
k
·H. By linearity of expectation, the

cover time is bounded by
∑n−1

1
1
k
·H < ln n ·H. This argument holds for arbitrary (not

necessarily reversible) irreducible Markov chains.

Following this result, the first deterministic algorithm approximating general cover

times (with respect to specific initial vertices, and for arbitrary reversible Markov chains)

was given by Feige and Rabinovich [FR], which gave a O(log4 n) approximation, and

which will be the primary focus here. Finally, Kahn et al. [KKLV] gave a O ((log log n)2)

approximation for the maximum cover time, which also works for reversible Markov chains.

2 The Feige-Rabinovich Algorithm

2.1 Previous results, current improvements

We shall focus here on the deterministic algorithm given by Feige and Rabinovich [FR],

which approximates the expected time it takes a random walk to cover a given graph,

starting at a given vertex.

The strategy used in [FR] was to order and partition the vertices of the graph into a

4

sequence of disjoint subsets (or intervals), so that the choice of starting vertex will not

cause the cover time of any particular interval to vary by more than some factor O(c(n)),

and such that the time for the walk to progress from one interval to the next will also be

relatively small.

For each interval, the maximum cover time is approximated, for example, using the

Matthews bound. (In fact, the c(n) factor mentioned above is simply the approximation

ratio of the algorithm used for these local approximations.) The Feige-Rabinovich algo-

rithm outputs the sum of these local bounds, plus the total expected time to progress

from each interval to the next.

It is elementary to see why this gives an upper bound. However, the lower bound

requires more in-depth analysis. [FR] used a series of sifting steps, in which they filtered

out many of the intervals in the partition. The remaining intervals had comparable cover

times, as well as other uniformities regarding the likely course of a random walk prior

to reaching them. This facilitated the final step of the analysis, in which the remaining

intervals were used in a sense as “milestones” in analyzing the behavior of a random walk

as if it were progressing along the path of ordered vertices.

Two improvements are given here. The first is in the analysis of the Feige-Rabinovich

algorithm. The original analysis showed a O
(
log4 n

)
approximation ratio. Some of these

log n factors were lost due to the “sifting” steps in the analysis. Here, we follow the

same general lines, but replacing the case analysis in [FR] (which relied on the uniformity

of remaining intervals) with a greedy algorithm which takes into account the differences

between the intervals. This eliminates the need for sifting, improving the known approx-

imation ratio of the original algorithm to O
(
log2 n

)
.

The second improvement pertains to the algorithm itself. When [FR] was first pub-

lished, the best approximation available for the maximum cover time was still the Matthews

bound, which gives a ln n approximation. Since then, Kahn et al. [KKLV] have shown a

O((log log n)2) approximation, using what they call the augmented Matthews bound. Here

we show that given any algorithm for approximating the maximum cover time, with a

c(n) approximation ratio, we can modify the Feige-Rabinovich algorithm to use the new

algorithm as a subroutine for the local bounds, yielding a O(c(n) · log n) approximation.

In particular, substituting the augmented Matthews bound yields an approximation ratio

of O (log n(log log n)2).

We stress that our assumption here is the existence of an algorithm which approxi-

mates the maximum cover time of arbitrary reversible Markov chains, even if we only wish

to approximate general cover times of a simple random walk. Though currently known

(deterministic) methods for approximating the maximum cover time apply to simple ran-

dom walks as well as arbitrary reversible Markov chains, it is not at all self-evident that

5

this would be the case for any algorithm which approximates the maximum cover time

for simple random walks.

The algorithm will be presented here in its more general form (i.e. using an unspecified

approximation algorithm for the maximum cover time as a black box). The results of

the improved analysis as pertaining to the original Feige-Rabinovich algorithm will be a

special case of the more general results that follow.

2.2 Some preliminaries

Recall the notion of difference time between vertices in a random walk D(u, v) = H(u, v)−
H(v, u). Another important notion is the commute time, defined as κ(u, v)

def
= H(u, v) +

H(v, u). Tetali’s hitting time formula [Tet3] (in terms of electrical resistance) gives

H(u, v) =
1

2
κ(u, v) +

1

2
(κ(π, v)− κ(π, u))

where κ(π, u)
def
=

∑
i π(i)κ(i, u). Equivalently, this may be written as D(u, v) = κ(π, v)−

κ(π, u). From this equality the following two results from [CTW], [TW] immediately

follow. For any three vertices u, v, w we have D(u, w) = D(u, v) + D(v, w). Furthermore,

the vertices of a graph can be sorted (evidently, by decreasing order of κ(π, u), breaking

ties arbitrarily) so that for any u < v we have D(u, v) ≤ 0 (i.e. H(u, v) ≤ H(v, u)). We

call this the difference order, and henceforth we will denote the vertices of an n-vertex

graph by {1, 2, . . . , n}, according the difference order.

Next, we note that to approximate the cover time Cv(G) for any vertex v, it suffices to

approximate C1(G). This is because H(v, 1) + C1(G) is a good approximation for Cv(G),

as follows from the properties of the difference order:

Cv(G) ≤ H(v, 1) + C1(G) ≤ H(v, 1) + H(1, v) + Cv(G) ≤ 2H(v, 1) + Cv(G) ≤ 3Cv(G)

Hence the Feige-Rabinovich algorithm concentrates on approximating C1(G). Using the

same argument, we see that in fact C1(G) is at most twice the minimum cover time, so the

Feige-Rabinovich algorithm may be seen as an approximation algorithm for the minimum

cover time.

Finally, we note that all this holds for arbitrary reversible Markov chains (in fact, the

identity D(u,w) = D(u, v)+D(v, w) is an equivalent condition to reversibility in Markov

chains [Tet2]). The original Feige-Rabinovich algorithm was shown in [FR] to work for

arbitrary reversible Markov chains. The approximation analysis is given for the case of

random walks (on simple, unweighted graphs), though arguing as in [FR], we can show

that the algorithm in its general form works equally well for arbitrary reversible Markov

chains. The details are provided in appendix A.

6

2.3 The algorithm

Suppose we have some deterministic algorithm which approximates the maximum cover

time of a reversible Markov chain up to some factor c(n). For any set of vertices S ⊆ V , let

us denote the lower and upper bounds which the algorithm returns by C∗(S) and C∗(S),

respectively. Also, we know that C∗(S) ≤ c(n) · C∗(S). For example, the original Feige-

Rabinovich algorithm used the Matthews bound, which gives C∗(S) = maxu,v∈S H(u, v)

and C∗(S) = C∗(S) · Ln(|S|) (where Ln(k)
def
=

∑k−1
i=1

1
i
≈ ln(k)).

The algorithm partitions the vertices of G, arranged from left to right by the difference

order, into consecutive intervals I1, . . . , Is. For each interval I, we denote

D(I)
def
= max

i,j∈I
D(i, j) = D(right(I), left(I))

H(I)
def
= max

i,j∈I
H(i, j)

The algorithm, which computes an upper bound on C1(G), is as follows:

• Arrange the vertices by the difference order.

• Create the partition I1, . . . , Is as follows:

– Scan vertices from left to right.

– Increase current interval, I, as long as D(I) ≤ 1
2
C∗(I).

– Once current interval can no longer be extended (according

to above rule), move on to next interval starting at the next

uncovered vertex.

• For i = 1, . . . , s− 1 define

wi
def
= C∗(Ii) + max

v∈Ii

H(v, left(Ii+1))

and

ws
def
= C∗(Is)

• Compute and output
∑s

i=1 wi

To see why this is an upper bound, define the following series of random variables.

For all i < s let Λi be the time it takes a random walk starting at left(Ii) to cover interval

Ii and then walk until left(Ii+1) is reached. Let Λs be the time it takes a random walk

starting at left(Is) to cover interval Is. We can look at {Λi}i as measuring mutually

exclusive portions of a single random walk starting at vertex 1 which ultimately covers

7

all vertices. Even though a random walk which covers G need not cover the intervals in

this order, {Λi}i are always well defined, and the sum
∑s

i=1 Λi is always greater than or

equal to the cover time. Note that E[Λi] ≤ wi for all i = 1, . . . , s (by definition of wi).

Hence, by linearity of expectation, we have

C1(G) ≤ E
[

s∑
i=1

Λi

]
≤

s∑
i=1

E[Λi] ≤
s∑

i=1

wi

Note a slight discrepancy between our assumptions regarding approximation of the

maximum cover time, and the actual use thereof in this algorithm. We assume we have

an algorithm which approximates the maximum cover time of a reversible Markov chain,

but in practice, we use it to approximate the time it takes to cover only a subset of the

vertices. It is not self-evident that any algorithm which approximates the maximum cover

time can do so for a subset of vertices. However, with some additional work, it can be

adapted to perform this task as well. Since the details are not crucial to understanding

the analysis of the Feige-Rabinovich algorithm, we defer the discussion to Section 2.5.

For now, observe that since we know hitting and distance times to be computable

in polynomial time, and assuming C∗(·) and C∗(·) are also computable in polynomial

time, since we only perform O(n) such operations, the Feige-Rabinovich algorithm is

polynomial.

2.4 The lower bound

Here we prove our main claim regarding the general Feige-Rabinovich algorithm.

Theorem 2.1. Given an approximation algorithm for the maximum cover time of an ar-

bitrary reversible Markov chain with approximation ratio c(n), we can give a deterministic

approximation algorithm for the general cover time – starting at a specific vertex – of a

random walk (or reversible Markov chain) with approximation ratio O(c(n) · log(n)).

Substituting the augmented Matthews bound of [KKLV], we have our main concrete

result.

Corollary 2.2. Given an n-state reversible Markov chain with starting state s, we can de-

terministically approximate the expected cover time of this chain to within a O(log n(log log n)2)

factor.

Let us denote the output of the algorithm by FR(G). Since we’ve already seen the

upper bound C1(G) ≤ FR(G), let us proceed to proving the following lower bound:

C1(G) ≥ Ω

(
1

c(n) · log(n)

)
FR(G)

8

We extend every Ii, for i = 1 . . . , s− 1, to include the vertex immediately following it

(left(Ii+1)), and call the new interval Ji. We define Js = Is, and for the sake of uniformity

of notation, we’ll denote by J0 the degenerate interval {1}. We will also denote w(Ji) = wi,

and call it the weight of Ji.

In the analysis that follows, we make the natural assumption that the maximum

cover time approximation, C∗(·), is monotonic with respect to set inclusion. Specifically,

we assume for every i, C∗(Ii) ≤ C∗(Ji). However, there is no way to guarantee this,

therefore, when this property is not guaranteed, we can change the algorithm to use

(w(Ji) =)wi
def
= min {C∗(Ii), C

∗(Ji)} + maxv∈Ii
H(v, left(Ii+1)) for i = 1, . . . , s − 1. This

does not detract from the upper bound, and is sufficient to make the lower bound analysis

rigorous without additional assumptions.

Note the following important observations, which also provide some intuition regarding

the choice of Ii.

Claim 2.3. For every i = 1, . . . , s− 1, we have D(Ji) ≥ wi/(4c(n)).

Proof. By definition of Ii, we have

D(Ji) >
1

2
C∗(Ji) ≥ C∗(Ji)

2c(n)

≥ Cmax(Ji)

2c(n)
≥ H(v, left(Ii+1))

2c(n)

for all v ∈ Ii.

Now, if C∗(Ji) ≥ C∗(Ii), then we are done (since D(Ji) ≥ C∗(Ji)/(2c(n))). Otherwise

we could make the proof rigorous by using the alternative definition of wi discussed

above.

Claim 2.4. For every i = 1, . . . , s, we have Cmin(Ii) ≥ Cmax(Ii)/4.

Proof. Recall our notation H(I)
def
= maxi,j∈I H(i, j). Obviously H(I) ≤ Cmax(I). Con-

sider two cases.

Case 1: H(I) ≤ 3
4
Cmax(I)

Let w, v ∈ I be such that Cw(I) = Cmin(I) and Cv(I) = Cmax(I). Then we have

Cmax(I) ≤ H(v, w) + Cmin(I) ≤ Cmin(I) + H(I)

Hence we have

Cmin(I) ≥ Cmax(I)−H(I) ≥ 1

4
Cmax(I)

Case 2: H(I) > 3
4
Cmax(I)

9

Let i, j ∈ I be such that H(I) = H(j, i) (w.l.o.g. j > i). By definition of I we have

H(I) >
3

4
Cmax(I) ≥ 3

4
C∗(I) ≥ 3

2
D(I) ≥ 3

2
D(j, i)

This gives H(i, j) > 1
3
H(j, i)

(≥ 1
4
Cmax(I)

)
. But this is enough, since Cmin(I) ≥ H(i, j)

for any i < j ∈ I (indeed, to cover all of I we must at some point walk from i to j, or

vice-versa, and so Cmin(I) ≥ min{H(i, j), H(j, i)} = H(i, j)).

Claim 2.5. For every i = 1, . . . , s, and for all u ∈ Ji, we have Cu(Ji) ≥ wi/(5c(n)).

Proof. As we mentioned, for any v, w ∈ Ji, v < w, we have Cu(Ji) ≥ min{H(v, w), H(w, v)} =

H(v, w). In particular, Cu(Ji) ≥ maxv∈Ii
H(v, left(Ii+1)). The claim follows directly from

this fact together with the following:

Cu(Ji) ≥ Cmin(Ji) ≥ Cmin(Ii) ≥ 1

4
Cmax(Ii) ≥ 1

4
C∗(Ii) ≥ C∗(Ii)

4c(n)

For i = 0, . . . , s we define the random variable Ci as the time it takes a random walk

starting at 1 to cover all the vertices 1, . . . , right(Ji). In the upper bound analysis we

considered a walk that covered the intervals in order from left to right. This analysis is

tight if once any given interval is reached, all the intervals to its left have been covered

with high probability. In such a case we could use linearity of expectation, summing over

E[Ci − Ci−1] ≥ Ω (Cmin(Ji)), together with Claim 2.5, to get the corresponding lower

bound.

However, the random walk does not necessarily cover the intervals one at a time. It

may be, for a given interval Ji, that when Ji is first reached, some vertex to the left of Ji

is still uncovered. Let u be the leftmost such vertex, and w the first vertex reached in Ji.

Then before time Ci, the walk must double back and continue until u is reached, which

takes at least H(w, u) ≥ D(w, u) ≥ D(left(Ji), u) steps. Of course, u is not a fixed vertex,

but if we can guarantee that there is some interval Ij (j < i) such that u ∈ Ij with high

probability, then we have E[Ci − Cj−1] ≥ Ω (D(left(Ji), right(Jj))). Using the linearity of

difference times, and Claim 2.3, we can regain the weight of all intervals between Jj+1 and

Ji, discarding at most that of Jj. Then it would only be a matter of choosing intervals Ji

cleverly so that we do not discard intervals with large total weight.

The problem is that u does not necessarily fall in any one interval with large probabil-

ity. We have to split up the vertices left of Ji into larger segments in order to guarantee

that at least one of them contains u with high probability. We do this by setting a se-

quence of milestones at vertices with exponentially increasing difference distance from

10

left(Ji). This gives not only a logarithmic number of segments, but also yields the useful

property that the distances from left(Ji) to adjacent milestones are only a constant fac-

tor apart, so that we do not pay too heavy a penalty for “rounding” up to these larger

segments. We now formalize this intuition.

For every (extended) interval J , we define a non-empty, decreasing (by the difference

order) sequence {vJ
i }i as follows. First, for the sake of legibility, let us denote dJ =

max{0, blog2 D(left(J), 1)c}. Let vJ
0

def
= left(J), and if dJ > 0, then for i = 1, . . . , dJ define

vJ
i = max{v | D(left(J), v) ≥ 2i}. Finally, if vJ

d
J

> 1, define vJ
d

J
+1

def
= 1. Note that indeed

the sequence is decreasing, that is, the larger i is, the further away (to the left) vJ
i is from

J (and the closer it is to vertex 1).

Now define for each interval J a random variable ρ(J) as follows: Start a random walk

at 1, and walk until J is hit, then let ρ(J)
def
= min{i | vertices 1, . . . , vJ

i were all covered}.
That is, vJ

ρ(J) is the rightmost vertex in the sequence {vJ
i }i which, along with all the

vertices to its left, is covered by the time J is first reached. Note that ρ(J) is well defined,

since 1 = mini{vJ
i } is always covered at the very beginning of the walk. Let r(J) be the

most probable value of ρ(J). Since ρ(J) may assume at most 2 + log2 D(n, 1) = O(log n)

values, ρ(J) = r(J) with probability Ω(1/ log n). (Note here that this only holds for

random walks, where hitting times – and hence difference times – are bounded by O(n3).

We’ll deal with arbitrary reversible Markov chains in Appendix A.)

Also, for every interval J = J1, . . . , Js let λ(J) be the index corresponding to the right-

most interval containing vJ
r(J). That is, Jλ(J) is the unique interval for which left(Jλ(J)) ≤

vJ
r(J) < right(Jλ(J)). For brevity, we’ll write λ(Ji) = λ(i). Note that 1 ≤ λ(i) ≤ i. The

following observations follow directly from the definitions:

• For any j > 0, and any w > vJi
j , we have

– D(left(Ji), w) < 2j

– D(left(Ji), v
Ji
j−1) ≥ 2j−1

• If ρ(Ji) = r(Ji) then at time TJi
(when Ji is first hit), we have

– J0, . . . , Jλ(i)−1 have been covered (i.e. TJi
≥ Cλ(i)−1).

– If r(Ji) > 0, some u ≤ vJi

r(Ji)−1 has not been covered.

• Pr(ρ(Ji) = r(Ji)) = Ω(1/ log n)

We can now show a lower bound on E[Ci]−E[Cλ(i)−1] = E[Ci−Cλ(i)−1]. Note that by

definition of λ(i), right(Jλ(i)−1) ≤ vJi

r(Ji)
. Hence, in the event that ρ(Ji) = r(Ji), we know

that all the vertices 1, . . . , right(Jλ(i)−1) were covered by the time Ji is first reached. Also

11

note that even though the first vertex v ∈ Ji reached may depend on ρ(Ji), the rest of the

walk (after v is reached) is independent of ρ(Ji) (except for the choice of initial vertex).

Hence, by Claim 2.5, we have

E[Ci − Cλ(i)−1] ≥ Ω

(
1

log n

)
·min

v∈Ji

Cv(Ji) = Ω

(
1

c(n) · log n

)
· wi (1)

Now, assume r = r(Ji) > 0 (hence λ(i) < i). Recall that if ρ(Ji) = r, then when Ji is

reached for the first time (which is after time Cλ(i)−1), there is still some vertex u ≤ vJ
r−1

uncovered. Since u ∈ {1 . . . , right(Ji)}, we will have to walk back to vertex u before

time Ci. This regression will take expected time at least 2r−1. For r > 1 this is because

for any v ∈ Ji, H(v, u) ≥ D(v, u) ≥ D(left(Ji), v
Ji
r−1) ≥ 2r−1. For r = 1, this is trivial

(2r−1 = 1, and any non-degenerate walk takes at least one step). On the other hand, note

that vJi
r < right(Jλ(i)), and hence, D

(
left(Ji), right(Jλ(i))

)
< 2r. Combining these facts,

and Claim 2.3, we get

E[Ci − Cλ(i)−1] ≥ Pr (ρ(Ji) = r(Ji)) · 2r−1 = Ω

(
1

log n

)
· 2r−1

> Ω

(
1

log n

)
· 1

2
D

(
left(Ji), right(Jλ(i))

)

= Ω

(
1

log n

) i−1∑

j=λ(i)+1

D(Jj)

= Ω

(
1

c(n) · log n

) i−1∑

j=λ(i)+1

wj

(2)

To summarize, for every i = 1, . . . , s, either r(Ji) = 0 (and so λ(i) = i), in which case

E[Ci]−E[Ci−1] = Ω
(

1
c(n)·log n

)
·wi (equation (1)), or λ(i) < i, in which case, incorporating

equations (1) and (2), we get E[Ci] − E[Cλ(i)−1] = Ω
(

1
c(n)·log n

) ∑i
j=λ(i)+1 wj. Hence, for

any sequence 0 = i0 < i1 < . . . < it ≤ s such that ij < λ(ij+1) for all 0 ≤ j < t, we have

C1(G) = E[Cs] ≥ E[Cit] =
t∑

j=1

(
E[Cij]− E[Cij−1

]
)

≥
t∑

j=1

(
E[Cij]− E[Cλ(ij)−1]

)

≥ Ω

(
1

c(n) · log n

) 
 ∑

j:λ(ij)=ij

wij +
∑

j:λ(ij)<ij




ij∑

k=λ(ij)+1

wk







If we can find such a sequence for which
∑

j:λ(ij)=ij
wij +

∑
j:λ(ij)<ij

(∑ij
k=λ(ij)+1 wk

)
=

Ω(1) ·∑s
k=1 wk, then the proof of Theorem 2.1 would be done. Hence it remains to solve

12

a problem of a purely combinatorial nature. We are given a sequence of positive weights

w1, . . . , ws, and we want to find a maximum weight subsequence which obeys the following

constraints. Certain elements can be included in the subsequence without any constraints.

For other values of index i, we are given some value λ(i) < i such that including wi in the

subsequence precludes the inclusion of wλ(i). For such values of i we define the tail of wi

to be the subsequence wλ(i)+1, . . . , wi−1. All elements in the tail can be included without

additional constraints when wi is chosen (however their own tails can not necessarily

be added). The following lemma shows that there is always a legal subsequence which

consists of at least 1
4

of the total weight.

Lemma 2.6. Given a sequence of weights w1, . . . , ws with constraints as described above,

there is a greedy algorithm which finds a subsequence of weight ≥ 1
4

∑s
i=1 wi which obeys

these constraints.

Proof. The algorithm is as follows:

• Start at i = s and work from right to left. Halt when i = 0.

• Case 1: λ(i) = i (no constraints). Add wi to subset and repeat with i ← i− 1.

• Case 2: wλ(i) < 2 ·∑i
j=λ(i)+1 wj. Add wi (along with its “tail”) to subset, skip wλ(i),

and repeat with i ← λ(i)− 1.

• Case 3: wλ(i) ≥ 2 ·∑i
j=λ(i)+1 wj. Skip wi (add nothing to subset) and repeat with

i ← λ(i).

We’ll inductively partition w1, . . . , ws into disjoint segments, following the run of the

algorithm, and show that we retain 1
4

of the weight of each segment. For case 1, there is

nothing to show. We consider one element as our segment, retain that element, and move

on to the next.

For case 2, our segment is wλ(i), . . . , wi, and we retain all the elements except for wλ(i).

By our assumption for case 2, we have

i∑

j=λ(i)+1

wj =
1

3




i∑

j=λ(i)+1

wj + 2 ·
i∑

j=λ(i)+1

wj


 >

1

3




i∑

j=λ(i)+1

wj + wλ(i)




In case 3, consider as our segment all the elements skipped up until the first time we

return to case 1 or 2. To be explicit, consider the sequence l0 < l1 < . . . < lL where lL is

the current index i, lk = λ(lk+1) for k = 1, . . . , L − 1, and l1 is the first index for which

we find ourselves in case 1 or 2 (we consider l0 = λ(l1) if l1 is in case 2). The segment we

consider is wl1 , . . . , wi if the sequence ends in case 1, and wl0 , . . . , wi if it ends in case 2.

13

Inductively (by our assumption for case 3), we see that for all k = 1, . . . , L − 1 we have

wlk >
∑i

j=lk+1 wj. Indeed,

wlL−1
= wλ(i) ≥ 2 ·

i∑

j=λ(i)+1

wj >

i∑

j=λ(i)+1

wj

and if (we assume inductively) wlk+1
>

∑i
j=lk+1+1 wj, then

wlk ≥ 2 ·
lk+1∑

j=lk+1

wj ≥
lk+1∑

j=lk+1

wj + wlk+1
>

lk+1∑

j=lk+1

wj +
i∑

j=lk+1+1

wj

In particular, we have

wl1 >

i∑

j=l1+1

wj

If l1 is in case 1, then we are done, as wl1 has over half the weight of the entire segment.

Otherwise, by our assumption for case 2, we have

l1∑

l0+1

wj =
1

4
· 2 ·

l1∑

j=l0+1

wj +
1

2
·

l1∑

j=l0+1

wj >
1

4
wl0 +

1

2
·

l1∑

j=l0+1

wj

≥ 1

4
wl0 +

1

4
·

l1∑

j=l0+1

wj +
1

4
wl1

>
1

4
·
(

wl0 +

l1∑

j=l0+1

wj +
i∑

j=l1+1

wj

)

Note that this analysis is tight for the above algorithm. Consider the sequence
1
2
− ε, 1

4
, 1

8
, 1

16
, . . . , 2−s, where λ(i) = i− 1 for all i > 1. The algorithm will choose w1 = 1

4
,

whereas the total weight is 1− (ε + 2−s).

2.5 Cover times on subgraphs

Let us return to the technical point discussed earlier regarding the use of cover time

approximation algorithms to approximate the cover time of a subset of vertices in a

random walk or Markov chain. Consider a reversible Markov chain G with states V =

{1, . . . , n} and transition matrix P = (pij) (recall that the reversibility condition states

that π(i) · pij = π(j) · pji for all i, j ∈ V). Suppose we want to approximate the expected

time to cover some subset of states S ⊂ V maximized over all possible initial states in S.

Some methods, such as the Matthews bound, generalize without any modification

to subsets S ⊂ V . However, if our only tool is an algorithm which approximates the

14

maximum cover time of (all the states of) a reversible Markov chain, then we need some

reduction which will allow us to approximate Cmax(S) using such an algorithm. A natural

approach is to find some reversible Markov chain M = (S, Q) such that for any v ∈ S we

have CG
v (S) = CM

v (S)(= Cv(M)). That is, for any initial state in S, the expected time

to cover all of S in a random walk in G is simply the cover time of M .

First, let us show how to define and compute such a chain. For all i ∈ S, define

h(i)
def
= H+(i, S) = E[min{t > 0 | Xt ∈ S}]

where {Xt}t are the states of a random walk in G starting at i (X0 = i). For all i, j ∈ S,

define

p∗ij
def
= Pr

(
T+

S = T+
j | X0 = i

)

= Pr (j is first state in S reached after starting from state i)

The hitting times h(i) can be computed by solving an appropriate system of linear

equations, as discussed in the introduction. The probabilities p∗ij can be computed using

the same method. To be explicit, for some fixed j, consider the function

fj(k)
def
= Pr(TS = Tj | X0 = k)

This function obeys the following harmonic system of equations:

fj(k) =





∑n
l=1 pkl · fj(l) k 6∈ S

0 k ∈ S \ {j}
1 k = j

We know that there exists a unique solution, hence solving for {fj(k)}k we find p∗ij =∑n
k=1 pik · fj(k) (for all i ∈ S). Now we can define the transition matrix Q = (qij) for our

Markov chain. For all i, j ∈ S, let

qij
def
=





(
1− 1

h(i)

)
+

p∗ii
h(i)

i = j
p∗ij
h(i)

i 6= j

Note that this transition matrix defines a reversible Markov chain (provided the orig-

inal Markov chain was also reversible). Recall that to show reversibility (say, of Q) it

suffices to demonstrate that we can give every (undirected) edge (i, j) ∈ S × S some

nonnegative weight wij such that qij = wij/
∑

k wik. In fact, in this case it suffices to

show that for all i, j ∈ S, i 6= j, we have π(i) · p∗ij = π(j) · p∗ji (where π(·) is the stationary

distribution of G = (V, P)). Once this is established, it is easy to see that edge-weights

wii = π(i) · (h(i)− 1 + p∗ii), wij = π(i) · p∗ij yield the transition matrix Q.

15

That π(i) ·p∗ij = π(j) ·p∗ji follows directly from the reversibility of P . If i = x0 → x1 →
. . . → xs = j is a path between i and j through V \ S, then the probability of this path

from i to j is
∏s−1

k=0 pxkxk+1
, whereas the probability of the path in the opposite direction

is
∏s

k=1 pxkxk−1
. Now simply observe that

π(i) ·
s−1∏

k=0

pxkxk+1
= π(x1) · px1x0 ·

s−1∏

k=1

pxkxk+1
= . . . = π(j) ·

s∏

k=1

pxkxk−1

It will be helpful to think of the transition from state i back to itself as composed of

two distinct self-loops; one delay (with probability 1− 1
h(i)

), and one step (with probability
p∗ii
h(i)

). Note that without the delays, the chain M = (S,Q) is simply a random walk in G,

observed only on S. With the delays, for every vertex i, the expected time to stop cycling

in i’s “delay” loop and make a step (either to i or to any other vertex in S) is h(i), which

is also the expected time for a walk in G to return to S after leaving i. So, in expectation,

M simulates a random walk on G as seen from S. Formalizing this intuition is a purely

syntactical matter.

Lemma 2.7. Let G = (V, P), M = (S, Q) be two Markov chains as described and defined

above. Then for any initial state x ∈ S, we have Cx(M) = CG
x (S).

Proof. For any i ∈ S, let

τM
x (i)

def
= EM [number of visits to i before covering S | X0 = x]

τG
x (i)

def
= EG[number of visits to i before covering S | X0 = x]

and

εx(i)
def
= EG[total length of excursions from i back to S before covering S | X0 = x]

We would like to show τM
x (i) = εx(i), since clearly Cx(M) =

∑
i∈S τM

x (i), and CG
x (S) =∑

i∈S εx(i).

Recalling what was said about M , we see that in fact τM
x (i) = τG

x (i) · h(i), since τG
x (i)

corresponds to the expected number of visits to i in M not counting “delays”. We can

also extend our notation for any i, j ∈ S as follows:

τx(i, j)
def
= EM [number of steps from i to j before covering S | X0 = x]

= EG[number of walks from i to j through V \ S before covering S | X0 = x]

εx(i, j)
def
= EG[total length of walks from i to j through V \ S before covering S | X0 = x]

h(i, j)
def
= EG[T+

j | T+
S = T+

j , X0 = i]

= EG[time to reach j from i | j is first state reached in S]

16

We now claim that τx(i, j) = p∗ij · τG
x (i). In other words, the probability of hitting

j first after i is not altered by sampling only excursions in a walk which stops at the

cover time. Though this may not be completely intuitive, it is a direct consequence of

the Markov property. Let {Xt}t be the Markov chain corresponding to a random walk

on G observed only on S (i.e. M without the delays), where X0 = x, and let C be the

(random) cover time. Then we have

τx(i, j) =
∞∑

t=0

Pr (Xt = i, Xt+1 = j, t < C)

=
∞∑

t=0

p∗ij · Pr (Xt = i, t < C)

= p∗ij ·
∞∑

t=0

Pr (Xt = i, t < C)

= p∗ij · τG
x (i)

Having already observed that τM
x (i) = τG

x (i)·h(i), it remains to show εx(i) = τG
x (i)·h(i).

This is now immediate, as

εx(i) =
∑
j∈S

εx(i, j)

=
∑
j∈S

τx(i, j) · h(i, j)

= τG
x (i) ·

∑
j∈S

p∗ij · h(i, j)

= τG
x (i) · h(i)

References

[AF] D. Aldous, J.A. Fill: Reversible Markov chains and random walks on graphs, Draft,

1999, Available from

http://www-stat.berkley.edu/users/aldous/RWG/book.html.

[AKLLR] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász, C. Rackoff: Random walks,

universal traversal sequences, and the complexity of maze traversal, FOCS 20, 218-

233, 1979.

17

[CRRST] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolenski, P. Tiwari: The elec-

trical resistance of a graph, and its applications to random walks, Computational

Complexity 6(4):312-340, 1997.

[CTW] D. Coppersmith, P. Tetali, P. Winkler: Collisions among random walks on a

graph, SIAM J. on Discrete Mathematics, 6(3):363-374, 1993.

[DS] P.G. Doyle, J.L. Snell: Random walk and electrical networks, The Mathematical

Association of America, 1984.

[Fei] U. Feige: A tight upper bound on the cover time for random walks on graphs, Random

Structures and Algorithms, 6(1):51-54, 1995.

[FR] U. Feige, Y. Rabinovich: Deterministic approximation of the cover time, Random

Structures and Algorithms, 23(1):1-22, 2003.

[KKLV] J.D. Kahn, J.H. Kim, L. Lovász, V.H. Vu: The cover time, the blanket time, and

the Matthews bound, FOCS 41, 467-475, 2000.

[KLNS] J.D. Kahn, N. Linial, N. Nisan, M.E. Saks: On the cover time of random walks

on graphs, J. Theoretical Probab., 2:121-128, 1989.

[Mat] P.C. Matthews: Covering problems for Brownian motion on spheres, Ann. Proba-

bility, 16:1215-1228, 1988.

[Tet1] P. Tetali: Design of online algorithms using hitting times, SIAM Journal on Com-

puting 28(4):1232-1246, 1999.

[Tet2] P. Tetali: An extension of Foster’s network theorem, Combinatorics, Probability

and Computing, 3:421-427, 1994.

[Tet3] P. Tetali: Random walks and effective resistance of networks. J. Theoretical Prob-

ability 4(1):101-109, 1991.

[TW] P. Tetali, P. Winkler: Simultaneous reversible Markov chains, Combinatorics, Paul

Erdős is Eighty, Vol. 1 (ed. D. Miklós, V.T. Sós, T. Szőnyi), Janos Bolyai Mathe-

matics Institute, Budapest, 422-452, 1993.

18

Appendix A

Arbitrary reversible Markov chains

So far we’ve proven Theorem 2.1 for the case of random walks. This proof generalizes

easily to arbitrary reversible Markov chains, much as in [FR]. In fact, the only fine point

here is that ρ(J) may no longer be confined to a logarithmic number of values. To reduce

the possibilities, we cut off the sequence {vJ
i }i, leaving only the extreme points, and the

original points whose difference distance from left(J) is in the range (FR(G)/n2, FR(G)).

Strictly speaking, we take r(J) to be the most probable value of ρ̃(J), where

ρ̃(J)
def
=





0 ρ(J) < log(FR(G))− 2 log n,

FR(G) + 1 ρ(J) > log(FR(G)),

ρ(J) otherwise.

Now we partition the intervals Ji into three disjoint sets.

J1
def
= {J | r(J) = 0}

J2
def
= {J | log(FR(G))− 2 log n ≤ r(J) ≤ log(FR(G))}

J3
def
= {J | r(J) = FR(G) + 1}

As the total weight of these sets is FR(G), at least one of them must weigh at least
1
3
FR(G) (by the weight of a set J , we mean w(J) =

∑
J∈J w(J)).

If w(J1) ≥ 1
3
FR(G), then if we discard all the intervals in

J ′ def
= {J ′ | 0 < D(left(J), left(J ′)) ≤ FR(G)/n2 for some J ∈ J1}

then using equation (1), and the corresponding analysis, we get

C1(G) = Ω

(
1

c(n) · log n

)
w(J1 \ J ′)

So it suffices to show that w(J ′) is negligible (compared to FR(G)). But using claim 2.3,

19

we have

w(J ′) ≤
∑
J∈J1


 ∑

J ′:0<D(left(J),left(J ′))≤FR(G)/n2

w(J ′)




≤ O(c(n)) ·
∑
J∈J1


 ∑

J ′:0<D(left(J),left(J ′))≤FR(G)/n2

D(J ′)




≤ O(c(n)) ·
∑
J∈J1

FR(G)

n2

= O

(
c(n)

n

)
· FR(G)

If w(J2) ≥ 1
3
FR(G), then the analysis is identical to that of the previous section.

Finally, if w(J3) ≥ 1
3
FR(G) (in fact, as long as J3 6= ∅), then for any J ∈ J3, with proba-

bility Ω(1/ log n) there is a digression from J to some vertex u, for which D(left(J), u) >

FR(G), before G is entirely covered, hence C1(G) = Ω(1/ log n)FR(G).

20

