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ABSTRACT
We describe how to color every 3-colorable graph with
O(n0.2111) colors, thus improving an algorithm of Blum and
Karger from almost a decade ago. Our analysis uses new
geometric ideas inspired by the recent work of Arora, Rao,
and Vazirani on SPARSEST CUT, and these ideas show
promise of leading to further improvements.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms, Theory.

Keywords: graph coloring, chromatic number, semidefinite
programming, approximation algorithms.

1. INTRODUCTION
In the graph k-coloring problem we wish to assign each

vertex one of k colors such that every pair of vertices con-
nected with an edge are assigned different colors. This prob-
lem arises in a host of applications, and was one of the 22
NP-complete problems on Karp’s list in 1972. Subsequently,
much effort was spent on trying to design efficient approxi-
mation algorithms, namely, given a k-colorable graph to try
to color it with as few colors as possible. Unfortunately,
probabilistically checkable proofs (PCPs) have been used to
show that if certain reasonable complexity conjectures are
true then in general we may need as many as n1−εk colors[9].
But the case of small k, including k = 3 is still wide open,
and this is the problem we consider. It is conceivable that
a polynomial-time algorithm could color every 3-colorable
graph with say 6 colors. (Recently Dinur et. al. [6] gave
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some evidence that such an algorithm may require an un-
bounded number of colors, but they still do not rule out the
possibility that log log n colors may suffice.)

Wigderson [17] showed how to color 3-colorable graphs

with Õ(
√

n) colors. (Throughout the paper, Õ(·) notation
is used to suppress polylogarithmic factors.) Blum [2] im-

proved this to Õ(n3/8). After Goemans and Williamson [8]
used semidefinite programming (SDP) to design approxima-
tion algorithms for MAX-CUT and MAX-SAT [8], Karger,
Motwani, and Sudan [11] used SDP to improve Blum’s guar-

antee to Õ(n1/4). Blum and Karger [3] then noticed that
the ideas of KMS and Blum could be combined to further
improve this guarantee to Õ(n3/14), which is where things
have stood for a decade. Our paper improves this bound to
O(n0.2133) using a new analysis of the SDPs introduced by
Karger, Motwani, Sudan. Using stronger SDPs we further
improve the bound to O(n0.2111).

The most important contribution of this paper is not so
much the improvement in the exponent, but a demonstra-
tion that sophisticated geometric reasoning can allow further
progress on this problem. A priori this was not clear. For
example, given the simplicity of the Goemans-Williamson
analyses of SDPs, one might conjecture that it does not
give the best possible algorithms for most problems. There-
fore it has been a surprise to discover that the algorithms
obtained for MAX-CUT (namely, 0.878..-approximation [8])
and MAX-3SAT (7/8-approximation [12]) are actually best
possible assuming certain plausible complexity assumptions
[10, 13]. On the other hand, for EXPANSION and SPARS-
EST CUT problems, the longstanding approximation ratio
of O(log n) [15] turned out to be not tight. Arora, Rao and
Vazirani [1] recently improved the ratio to O(

√
log n) by a

more sophisticated analysis of SDPs with triangle inequal-
ity constraints. Though this algorithmic breakthrough was
quickly followed by new hardness results [14, 5], a large gap
remains and the exact status of the problems is still open.

Our new algorithm for graph coloring and its analysis is
directly inspired by techniques of Arora, Rao and Vazirani.
In particular, our analysis is nonlocal and uses their “walk”
argument (also called “chaining” argument). We recall that
the analysis of Karger, Motwani, Sudan (which was inspired
by the Goemans-Williamson analysis of MAX-CUT) is local
in the sense that it analyses the effect of rounding on each
edge and then just uses linearity of expectations to estimate
the effect on the entire graph. By contrast, our nonlocal
analysis shows that the local analysis of KMS cannot be
simultaneously tight for many edges. (See Section 3.) To
state our improvement, we need the following definition.



Definition 1. For a graph G = (V, E) with vertex set V =
{1, 2, . . . , n}, a vector θ-coloring is an assignment of unit
vectors v1, . . . , vn ∈ Rn to the vertices, such that:

∀(i, j) ∈ E : (vi, vj) ≤ − 1

θ − 1
. (1)

The vector θ-coloring is strict when equality holds in condi-
tion (1).

As is shown in [11], for any k ≥ 2, every k-colorable graph
is also vector k-colorable, and moreover a vector k-coloring
can be found in polynomial time using semidefinite program-
ming. Their main new result was that given a graph of max-
imum degree ∆ and a vector 3-coloring, their rounding algo-
rithm (see algorithm KMS in Section 2) can be used to pro-

duce an Õ(∆1/3)-coloring. They derive their n1/4-coloring
algorithm by applying the above algorithm for graphs where
∆ < n3/4 and applying Wigderson’s algorithm on the other
graphs. Blum and Karger achieved a better performance by
applying the above algorithms for graphs where ∆ < n9/14

and switching to Blum’s algorithm for other graphs.
Feige, Langberg, and Schechtman [7] subsequently showed

that the KMS bound of Õ(∆1/3) cannot be improved, but
they could only show this for values of ∆ far smaller than
n9/14, the value used in Blum-Karger’s algorithm. This left
open the question whether the KMS bound is tight for all
∆. We answer this in the negative: we show that the KMS
bound can be improved to ∆0.3308 for ∆ ≥ n0.6446. To
do this we need to slightly change the rounding algorithm
(compare algorithms KMS and KMS′ in Section 2), and ap-
ply our nonlocal analysis; see Section 4. Plugging into Blum
and Karger’s scheme, this already gives a slightly better col-
oring.

Then we observe that our analysis can be strengthened if
we make more fundamental changes to the SDP and round-
ing algorithm. This improved algorithm and its analysis are
described in Section 6.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the KMS approach and state our first
improvement. In Section 3 we give a high-level description
of our nonlocal analysis; this description is not precise. In
Section 4 we give the simplest attempt to formalize our intu-
ition, which already gives some improvement to KMS. This
analysis is first done for the case of strict vector 3-coloring,
which is then generalized in Section 5 to cover the case of
nonstrict vector θ-coloring for any θ ≤ 3. In Section 6 we
describe a rounding scheme for a stronger SDP and its anal-
ysis. Finally, in Appendix B we state a geometric conjecture,
which, if true, would imply an O(n0.1991) coloring algorithm.

We use Blum’s standard terminology to discuss coloring
algorithms, specifically, the idea that it is sufficient for the
algorithm to make one of three types of progress, as de-
scribed in Appendix A. As an aside, we note that we had to
slightly modify Blum’s ideas to get our best algorithms, and
our improved (and somewhat simplified) version of Blum’s
technique is summarized in Theorem 12.

2. KMS ROUNDING AND OUR RESULTS
Recall that the standard normal distribution has density

function 1√
2π

e−x2/2. A random vector ζ = (ζ1, . . . , ζn) is

said to have the n-dimensional standard normal distribu-
tion if the components ζi are independent and each have

the standard normal distribution. Note that this distribu-
tion is invariant under rotation. In particular, for any unit
vector x ∈ <n, the projection (ζ, x) has the standard nor-
mal distribution. Moreover, for any orthogonal subspaces
U, W ⊂ <n, the projections of ζ onto U , W , respectively,
are independent.

We use the following notation for the tail bound of the
standard normal distribution.

N(x)
def
=

∫ ∞

x

1√
2π

e−
t2
2 dt (2)

The following property of the normal distribution will be
crucial.

Lemma 1. For ε > 0, and for fixed constant κ > 1, we
have

N(κ · ε) = Θ(polylog(1/N(ε)) ·N(ε)κ2
).

For the remainder of this paper we will concern ourselves
with vector coloring of 3-colorable graphs, but the results
for vector k coloring can be easily generalized for any fixed
k > 3. For k = 3 we will also consider stronger SDPs that
incorporate the strict vector 3-coloring constraints as well
as the following odd cycle constraints:

∀i : odd cycle C,
∑
j∈C

(vi, vj) ≤ |C| − 3

4
(3)

These constraints are valid since in the intended (3-coloring)
solution, every odd cycle must have three consecutive ver-
tices with three different colors, and of the |C| − 3 vertices
in the remaining path, at most half can have the same color
as vi.

In this section we recall the KMS rounding algorithm and
its analysis. As is standard, we assume that in order to find
colorings with Õ(s(n)) colors, it suffices to find independent
sets of size n/s(n)). Furthermore, we only concentrate on
the case where there is a bound ∆ on the maximum degree;
see Section A in the appendix for how to turn such a guaran-
tee into an algorithm whose performance is stated in terms
of n. From now on {vi}i∈V will denote a vector coloring of
graph G, and ∆ denotes the maximum degree. For simplic-
ity, vi will stand both for the vector and the corresponding
graph vertex.

The KMS rounding algorithm is as follows:

KMS(G, {vi}, ε)
• Choose ζ ∈ Rn from the n-dimensional standard

normal distribution.

• Vζ(ε)
def
= {i|(ζ, vi) ≥ ε}. Return all v ∈ Vζ(ε) with

no neighbors in Vζ(ε).

Theorem 1 (KMS). There exists some ε = ε(n, ∆) >
0 such that the expected size of the independent set returned
by algorithm KMS (G, {vi}, ε) is Ω̃(∆−1/3 · n).

We consider the following slight variation of the KMS
rounding algorithm:



KMS′(G, {vi})
• For “all” ε ∈ R, do the following, and return the

largest independent set found:

– Choose ζ ∈ Rn from the n-dimensional stan-
dard normal distribution.

– Pick any edge < vi, vj > with both endpoints
in Vζ(ε), and eliminate both vi and vj . Repeat
until no such edges are left.

– Return all remaining vertices in Vζ(ε).

Remark 1. Equivalently, we can first choose ζ, and then
enumerate over all relevant values of ε (that is, over εi =
(ζ, vi)). However, for the purposes of the analysis, we will
consider the first formulation.

Note that the set returned by KMS′ contains the set re-
turned by KMS, so Theorem 1 holds also for KMS′. The
crucial difference is that in KMS′, the vertices removed from
Vζ(ε) form a matching, and this will be used in the simple
“pruning” argument of Lemma 3.

Crucially, when {vi} is a (possibly non-strict) vector 3-
coloring, and the maximum degree is bounded by ∆ =
n0.6446, KMS′(G, {vi}) returns an independent set of size
Ω(∆0.3308) (by Theorem 4). Combining this result with the
Blum coloring tools (see Theorem 12), immediately yields
the following result:

Theorem 2. For 3-colorable graphs, one can find an
O(n0.2133) coloring in polynomial time.

Finally, using the odd-cycle constraints (3), we give a bet-
ter rounding algorithm as described in Section 6. Setting
∆ = n0.6481, we combine the analysis of this final algorithm,
summarized in Theorem 11, with the Blum coloring tools to
obtain the following:

Theorem 3. For 3-colorable graphs, one can find an
O(n0.2111) coloring in polynomial time.

As in [1], our analysis involves the analysis of certain well
spread-out sets of vectors called (η, δ)-covers (defined in Sec-
tion 4) and the use of measure concentration. We are inter-
ested in the structure of efficient covers, i.e. those where
the number of vectors is close to the minimum possible. In
contrast to [1] however, we believe that new geometric theo-
rems related to measure concentration of such covers would
improve the current analysis of our rounding algorithms.
In Appendix B, we state such a conjecture, which, if true,
would yield an improvement to our bounds.

3. KMS ANALYSIS AND HIGH-LEVEL
DESCRIPTION OF OURS

Now we recall the proof of Theorem 1 from [11] —but
rephrased in our terminology. Then we outline our improved
analysis. Details of our analysis appear in later sections.

Note that, for any choice of ε (in either KMS or KMS′),
for any v in the vector coloring, Pr[v ∈ Vζ(ε)] = N(ε). Say
a vertex/vector is good for a certain value of ε if in the KMS
algorithm,

Pr[v is eliminated | v ∈ Vζ(ε)] ≤ 1/2, (4)

and otherwise call the vertex bad. If v is good, then the
probability it ends up in the final independent set is at least
1
2

Pr[v ∈ Vζ(ε)] = N(ε)/2.
Now we analyze what makes a vertex good. For any v ∈

V , let {ui} be its neighbors in G. Then

Pr[v is eliminated | v ∈ Vζ(ε)] = Pr[∃i(ζ, ui) ≥ ε|(ζ, v) ≥ ε].
(5)

Since v and ui are neighbors in a strict vector 3-coloring,

we can write ui = − 1
2
v +

√
3

2
u′i where u′i is a unit vector

orthogonal to v. Writing u′i = 2√
3
(ui + 1

2
v), we see that for

any vector ζ:

(ζ, v) ≥ ε and (ζ, ui) ≥ ε =⇒ (ζ, u′i) ≥
√

3ε.

Hence the right hand side of (5) is bounded above by

Pr[∃i(ζ, ui) ≥ ε|(ζ, v) ≥ ε] ≤ Pr[∃i : (ζ, u′i) ≥
√

3ε|(ζ, v) ≥ ε)]

= Pr[∃i : (ζ, u′i) ≥
√

3ε]

≤
∑

i

Pr[(ζ, u′i) ≥
√

3ε]

≤ ∆ ·N(
√

3ε)

= Õ(∆ ·N(ε)3)

Choose ε so that N(
√

3ε) = Θ̃(N(ε)3) is less than 1/2∆

(equivalently, ∆ is less than Θ̃(N(ε))−3), in which case every
vertex is good. Therefore the output independent set has
expected size at least N(ε)n/2 = Ω̃(∆−1/3n).

Before proceeding, we state one corollary of the above
proof that will be useful in our analysis of KMS′.

Lemma 2. Let {ui} be the neighbors of v in a strict 3-

vector coloring. Then writing ui = − 1
2
v +

√
3

2
u′i for each i,

we have

Pr[∃j : (ζ, ui) ≥ ε|(ζ, v) ≥ ε] ≤ Pr[∃j : (ζ, u′i) ≥
√

3ε].

Under what conditions is the above analysis tight? The
analysis of when a vertex is good is locally tight, even though
it uses the union bound. Our main contribution is a nonlo-
cal argument that shows that the local analysis cannot be
simultaneously tight for all vertices for this value of ε. Thus
the KMS′ algorithm can use a smaller ε than the KMS paper
did, which increases Ω(nN(ε)), the size of the final indepen-
dent set. If less than n/2 vertices are bad, the expected size
of the independent set is at least nN(ε)/4. We show be-

low that there is such an ε satisfying ∆ > N(
√

3ε)−(1+c)

for some c > 0. Thus the size of the independent set
N(ε)n = Ω̃(∆−1/3(1+c)n), an improvement over KMS.

Our nonlocal argument is directly inspired by the “walk”
argument of Arora, Rao, and Vazirani. However, our walks
are only of length O(1) whereas theirs were longer. To illus-
trate our idea, let us first assume that the vectors in the SDP
solution are “nondegenerate,” by which we mean that their
pairwise inner products do not exhibit any statistically sig-
nificant patterns apart from those implied by the SDP con-
straints. To give an example, if v is any vertex/vector, then
the constraints of strict vector coloring require the vectors
u′i defined above to be orthogonal to v. In a nondegenerate
solution, we also expect that for any arbitrary unit vector
v0, most of the vectors u′i should only have negligible projec-
tion on v0. In fact, if we assume the KMS analysis is tight,
we know this is the case (see Lemma 5).



We give a heuristic argument why the KMS′ algorithm
should return an independent set of size Ω̃(n8/9) in a non-
degenerate solution1. Specifically, let ε be the smallest value
such that for at least 1/2 the vertices v:

Pr
ζ

[v gets eliminated|v ∈ Vζ(ε)] ≥ 1/2. (6)

We show that N(ε) ≥ Ω̃(n−1/9).
First, a simple pruning argument (see Lemma 3; the only

place where we use the difference between KMS and KMS′))
allows us to assume that condition (6) holds for all vertices
in the graph rather than just half the vertices (with the prob-
ability 1/2 replaced by a smaller constant). Hence Lemma 2
implies that for every vertex v, its neighbors {ui} satisfy

Pr[∃i : (ζ, u′i) ≥
√

3ε] = Ω(1). (7)

Sets of vectors of the above form are called (
√

3ε, Ω(1))-
covers in [1] (see Definition 3 later). For a 1− o(1) fraction
of gaussian vectors ζ, (ζ, v) is negligible compared to ε (since
v is a fixed vector) so we conclude that (ζ, ui) ≥ 3

2
ε(1−o(1))

with high probability.
Now consider all the neighbors of such a ui, say {wij}, and

write each of them as wij = − 1
2
ui +

√
3

2
w′ij . By our assump-

tion, the vectors w′ij satisfy the condition in (7). Symmetry
implies that for most gaussians ζ, there is some w′ij such

that (ζ, w′ij) ≤ −√3ε. Such a wij satisfies:

(ζ, wij) = −1

2
(ζ, ui) +

√
3

2
(ζ, w′ij) (8)

= −3ε(1− o(1))

4
− 3ε

2
= −2.25ε(1− o(1)). (9)

Note that here we are using nondegeneracy strongly, since
we are assuming that the union of the events “[(ζ, u′i) ≥√

3ε]∧ [∃j : (ζ, w′ij) ≤ −√3ε]” happens with good probabil-
ity when the individual events have large probability. This
would be true if the events “(ζ, u′i) ≥

√
3ε” were disjoint. It

turns out (see Theorem 6) that the nondegeneracy assump-
tion is enough to make a slightly weaker claim of the same
form.

One can continue this argument with neighbors of wij and
so on, ultimately deducing that for Ω(1) fraction of gaussians
ζ, there is some vector y such that (ζ, y) ≥ 3ε(1− o(1)). (In
general, given that some vector has a projection s on ζ, this
argument shows the existence of a neighbor whose projection
is ≥ (s/2+3ε/2)(1− o(1)), which is larger than s so long as
s < 3ε.)

Since the number of vertices in the graph is only n, the
union bound implies that for a standard normal vector ζ
the expected number of y such that (ζ, y) ≥ 3ε is at most
nN(3ε). We conclude that nN(3ε) = Ω(1), and hence

nN(ε)9 = Ω̃(1).
Of course, the above analysis ignores all conditioning be-

tween the probability calculations in successive steps of the
argument, which is justifiable only when the vectors are non-
degenerate. In the correct argument such conditioning can-
not be ignored, though intuition suggests that if the vectors
are not degenerate the KMS algorithm does better anyway.

1The integrality gaps of [7] rule out the possibility of find-
ing independent sets of size Ω(n0.843) in vector 3-colorable
graphs in general. Thus, there must be an inherent loss in
going from this heuristic argument to a rigorous proof.

Formalizing this intuition seems to require difficult geomet-
ric arguments in general, but a simpler analysis is possible
in the regime where all parameters are close to tight, which
happens to be the case in the KMS analysis as noted ear-
lier. Specifically, the (

√
3ε, δ)-covers are almost “efficient,”

in the sense that the number of vectors in them, namely, ∆,
is almost as low as it could be, which is N(

√
3ε)−1. This

fact allows some handle on the conditioning.
We believe that it should be possible to improve our anal-

ysis, although doing so seems to call for some new geometric
theorems.

4. DETAILS OF OUR SIMPLER ANALYSIS
In this section we prove Theorem 2 using a two-step walk

analysis of KMS′, which will also serve as the basis for a more
elaborate analysis in later sections. For simplicity, we will
assume strict vector 3-coloring here, a condition which we
relax later. We will use the following definition to quantify
the improvement.

Definition 2. Given a graph G with vector 3-coloring {vi}
and maximum degree ≤ ∆, the parameter ε > 0 is c-
inefficient for (G, {vi}) if N(

√
3ε) = (8∆)−1/(1+c).

Using this terminology, we can give the following guar-
antee on the performance of KMS′, which in turn implies
Theorem 2.

Theorem 4. For every τ > 5
9

there exists c1(τ) > 0 such
that for all c < c1(τ)−o(1), and any graph G with maximum
degree ≤ nτ , if the parameter ε is (at most) c-inefficient for
(G, {vi}), then KMS ′(G, {vi}) returns an independent set of
expected size Ω(N(ε)n). Furthermore, c1(τ) satisfies

c1(τ)
def
= sup

{
c

∣∣∣∣∣ min
|α|≤

√
c/(1+c)

λc(α) >

√
1 + c

τ

}

,

(10)

where

λc(α)
def
=

(
3− α− 2

√
1− α2

√
c
)

/
√

5− 2α− 3α2. (11)

The rest of this section is devoted to proving Theorem 4.
The proof is by contradiction: if ∆ < N(

√
3ε)1/(1+c) then,

as in Section 3, we use a chaining argument to exhibit a
high-probability event that is actually very unlikely.

We will simplify things by first arguing that if at least half
the vertices v ∈ V are bad (i.e., their probability of being
eliminated from Vζ(ε) is more than 1/2), then we can focus
on a subgraph in which all vertices are almost-bad.

Lemma 3. In KMS′(G, {v}, ε), if

Pr[v is eliminated | v ∈ Vζ(ε)] ≥ 1/2

for at least n/2 vertices v ∈ V , then there is a non-empty
induced subgraph G′ = (V ′, E′) of G such that for all v ∈ V ′

we have

Pr[v is eliminated with a neighbor in G′| v ∈ Vζ(ε)] ≥ 1/8.

Proof. The proof uses a pruning argument from [1]. Con-
sider the graph of all matching edges (for all choices of ζ),
with edges weighted by probability of elimination. Denote
by γ(v) the total weight of edges incident to v. Eliminate,
one after the other, vertices with γ(v) < N(ε)/8. Since
the initial total edge weight in the graph is 1

2

∑
v γ(v) ≥



1
2
· n

2
·N(ε)/2 = n ·N(ε)/8, and the total edge weight elim-

inated is < n · N(ε)/8, there must be positive edge weight
left. The remaining graph is therefore non-empty and has
the desired property.

We adapt the following definition from [1], to use normal
distributions rather than unit vectors.

Definition 3. A set of vectors {x1, . . . , xk} is said to be a
(η, δ)-cover, if for ζ ∈ <n chosen from the standard normal
distribution,

Pr[∃i : (ζ, xi) ≥ η] ≥ δ.

The cover is uniform if the {xi} are all unit vectors.

Definition 4. A uniform (η, δ)-cover {x1, . . . , xk} is said

to be (at most) c-inefficient, if k
δ
≤ N(η)−(1+c).

Note that any uniform (η, δ)-cover must contain at least
δ·N(η)−1 vectors, by union bound. Hence, a cover is efficient
when the number of vectors is only slightly larger than the
minimum required. Thus we have the following corollary of
Lemma 3 (using Lemma 2 and its notation).

Lemma 4. If the input to KMS ′ has degree of inefficiency
c, and at least half the vertices are bad, then there is a non-
empty subgraph in which the neighbors {ui} of any vertex v
are such that {u′i} form a c-inefficient (

√
3ε, 1

8
)-cover.

Efficient covers have the property that their vectors are
not concentrated near any single vector, as the following
lemma shows.

Lemma 5. Let {xi} be a uniform (η, δ)-cover which is at
most c-inefficient, where N(η) is small relative to δ (specifi-

cally N(η) ≤ δf(η) where f is a superconstant function), and
let v0 be any unit vector. Then the subset {xi : |(xi, v0)| ≤√

c/1 + c + o(1)} is a (η, δ − o(δ))-cover.

Proof. For every i, let αi = (xi, v0), and write xi =

αiv0 +
√

1− α2
i x
′
i, where x′i ⊥ v0. Let X be the subset of

{xi} in the lemma statement, and consider the set of indices
not participating in the cover in X, that is, Ic = {i : |αi| ≥√

c/(1 + c) + o(1)}. We will show that the set {xi : i ∈ Ic}
is at most a (η, o(δ))-cover. For any ρ ≥ 0 we have

Pr[∃i ∈ Ic : (ζ, xi) ≥ η] ≤ 2Pr[(ζ, v0) ≥ ρη]

+ Pr[|(ζ, v0)| ≤ ρη ∧ ∃i : (ζ, xi) ≥ η]

≤ 2N(ρη)

+ Pr

[
∃i : (ζ, x′i) ≥ (1− |ρ|)η√

1− α2
i

]

≤ 2N(ρη)

+ δN(η)1+c max
i∈Ic

N

(
(1− |ρ|)η√

1− α2
i

)

where the last inequality follows from efficiency of {xi}.
Now, let ρ = (log(1/δ))1/4

√
η

. Since we have assumed that

δ = N(η)o(1), we have ρ = o(1) and N(ρη) = o(δ). Also
by the lower bound on |αi| for i ∈ Ic, and by Lemma 1,

it follows that maxi∈Ic N

(
(1−|ρ|)η√

1−α2
i

)
= o(N(η)1+c), which

completes the proof.

The above lemma directly implies the following structural
theorem.

Theorem 5. Let v, u be unit vectors with (v, u) = − 1
2
,

and u = − 1
2
v +

√
3

2
u′, u′ ⊥ v, and let {tj} be a c-inefficient

(η, δ)-cover, for some δ ≥ η−o(1), and tj ⊥ u for all j. Then

rewriting each tj as tj = αj(
√

3
2

v + 1
2
u′) +

√
1− α2

j t
′
j for

some α ∈ [−1, 1] and unit vector t′j orthogonal to both v and
u′, we have

Pr


∃j : (ζ, t′j) ≥ (1− o(1))η√

1− α2
j


 ≥ (1− o(1))δ.

This bound holds even when the probability is restricted to j

s.t. |αj | ≤
√

c
1+c

+ o(1).

Proof. The decomposition of tj follows immediately from

the observation that 0 = (tj , u) = − 1
2
(tj , v) +

√
3

2
(tj , u

′).
Lemma 5 implies that {tj} is a (η, (1 − o(1))δ)-cover even

when restricted to indices J = {j : |αj | ≤
√

c
1+c

+ o(1)}.
Now let v′ =

√
3

2
v + 1

2
u′, and choose ρ = (log η)3/4. Then

we have

δ ≤ Pr[∃j ∈ J : (ζ, tj) ≥ η]

≤ 2Pr[(ζ, v′) ≥ ρ] + Pr


∃j ∈ J : (ζ, t′j) ≥ η − |αj | ρ√

1− α2
j




≤ 2N(ρ) + Pr


∃j ∈ J : (ζ, t′j) ≥ η − |αj | ρ√

1− α2
j




≤ o(δ) + Pr


∃j ∈ J : (ζ, t′j) ≥ (1− o(1))η√

1− α2
j


 .

Consider v ∈ V with neighbors {ui} and 2-neighborhood

{wj} (all neighbors of various ui). Write ui = 1
2
v +

√
3

2
u′i

and, for ui and wj neighbors, wj = 1
2
ui +

√
3

2
w′ij . Applying

Theorem 5 for fixed ui and tj = w′ij gives

wj = −1

2
ui +

√
3

2
w′ij

=
1

4
v −

√
3

4
u′i +

√
3

2
w′ij

=
1

4
v −

√
3

4
u′i +

√
3

2

(
αj

(√
3

2
v +

1

2
u′i

)
+

√
1− α2

jw
′′
ij

)

=

(
1

4
+

3

4
αj

)
v −

√
3

4
(1− αj)u

′
i +

√
3

2

√
1− α2

jw
′′
ij

(12)

for some unit vectors {w′′ij} all orthogonal to v and u′i. Note
that by this decomposition (wj , v) = 1

4
+ 3

4
αj , so αj de-

pends only on v and wj , justifying the notation αj instead
of αij . Theorem 5 also tells us that, for any fixed ui, if
the vectors {w′ij} constitute a uniform (

√
3ε, 1

8
)-cover, then

{
√

1− α2
jw

′′
ij} form a (non-uniform) (

√
3ε− o(ε), 1

8
− o(1))-

cover. We now use measure concentration, and the efficiency
of the cover of {u′i}, to compose the {u′i} cover with the



{w′′ij} covers as in the last section. We start by showing
how covers can be “boosted” using measure concentration.

Lemma 6 (measure concentration). Let {yj} be a
non-uniform (η, N(θ))-cover. Then for any ζ ∈ <n having
standard normal distribution, and ρ ≥ 0,

Pr[∃j : (ζ, yj) ≥ η − ‖yj‖ ρ] ≥ N(θ − ρ).

Proof. Let γn(·) denote the normalized Gaussian mea-
sure on Rn. The theorem of measure concentration for
Gauss space ([4], [16]) states that for any measurable set
A ⊆ <n, if γn(A) = N(θ) for θ ∈ R, then for any ρ ≥ 0
the set Aρ = {ζ|∃z ∈ A : ‖ζ − z‖ ≤ ρ} has measure at least
N(θ − ρ).

Let A = {ζ|∃i : (ζ, yj/ ‖yj‖) ≥ η/ ‖yj‖}. By our assump-
tion, this set has measure at least N(θ). Since {yj/ ‖yj‖}
are unit vectors, one can readily verify that in this case
Aρ = {ζ|∃i : (ζ, yj/ ‖yj‖) ≥ η/ ‖yj‖− ρ}. Applying measure
concentration, the claim follows immediately.

We now use this lemma to prove a cover composition the-
orem.

Theorem 6 (Cover composition). Let {xi} be a (uni-
form) c-inefficient (η1, δ1)-cover, and for each i, let {yij}j

be a (non-uniform) (η2, δ2)-cover such that yij ⊥ xi. Then

Pr [∃i, j : ((ζ, xi) ≥ η1)∧(
(ζ, yij) ≥ η2 − ‖yij‖ ·

(
N−1(δ2) + (

√
c + o(1)) · η1

))]

≥ δ1 − o(δ1).

Proof. If we associate with every vector xi the halfspace
{ζ|(ζ, xi) ≥ η1}, then the set corresponding to the cover is
just the union of halfspaces. The idea is to upper-bound
the measure of points in each halfspace not participating in
the relevant set. Formally, let ρ = ρ(c, η1) to be determined
later. Then for each i we define

• Hi = {ζ|(ζ, xi) ≥ η1}
• Zi = {ζ|∀j : (ζ, yij) ≤ η2 − ‖yij‖ ·

(
N−1(δ2) + ρη1

)}
Note that the theorem concerns a lower bound on the prob-
ability of the event ζ ∈ ∪i(Hi \Zi). First, we have to bound
the measure of each Zi. For any fixed i, applying Lemma 6
to the cover of {yij}j , we get that γn(Zi) ≤ N(ρη1).

Using this bound, the independence of orthogonal com-
ponents of a gaussian vector, and the efficiency of {xi}, we
get

Pr [∃i, j : ((ζ, xi) ≥ η1)∧(
(ζ, yij) ≥ η2 − ‖yij‖ ·

(
N−1(δ2) + ρη1

))]

= γn (∪i(Hi \ Zi))

≥ γn (∪iHi)− γn (∪i (Hi ∩ Zi))

≥ δ1 −
∑

i

γn (Hi ∩ Zi)

= δ1 −
∑

i

N(η1) · γn (Zi)

≥ δ1 − δ1 ·N(η1)
−(1+c) ·N(η1) ·max

i
γn (Zi)

≥ δ1 − δ1 ·N(η1)
−c ·N(ρη1)

From Lemma 1 we have that N(ρη1) = o(N(η1)
c) for

ρ =
√

c + Θ
(
log η1/η 2

1

)
, and the theorem follows.

Remark 2. It is worth mentioning at this point that we
think a much stronger version of Theorem 6 may be true.
Specifically, the analysis in the proof may be tight, however,
we believe, not when the {yij} covers are themselves effi-
cient. In that case, we believe that the

√
c factor could be

replaced by O(c), which would be a much smaller price to
pay for small constant c. The improvement relies on a con-
jecture regarding measure concentration of efficient covers
which would replace Lemma 6. We discuss this conjecture
later.

We can use the composition theorem to obtain a result
reminiscent of the chaining argument in [1]: it shows that
whenever KMS′ fails (in expectation), for some large η we
can find a (η, Ω(1))-cover containing few vectors.

Theorem 7. Let G = (V, E) be an n-vertex graph with
maximum degree ∆, and identify the vertices V with a strict
vector 3-coloring. Then if at least half the vertices v are bad
for KMS ′(G, V, ε) with degree of inefficiency c, then there is
some v ∈ V and some subset of its 2-neighborhood {wj} ⊆
Γ(Γ(v)) such that

1. Each wj can be written wj = ( 1
4

+ 3
4
αj)v + tj for some

vector tj ⊥ v, and αj satisfying |αj | ≤
√

c/(1 + c) +
o(1).

2. With probability at least 1
8
− o(1), there is some j for

which

(ζ, tj) ≥ (3− αj − 2
√

1− α2
j

√
c− o(1))

√
3ε.

Proof. Take any v ∈ V , and let {ui} and {wj} be its
neighbors, and neighbors of neighbors, respectively. Write

ui = 1
2
v +

√
3

2
u′i and, for ui and wj neighbors, wj = 1

2
+√

3
2

w′ij . Then we may assume, by Lemma 4, that {u′i} and

the sets {w′ij}j for every i are all uniform (
√

3ε, 1
8
)-covers

which are at most c-inefficient.
For each i, we now apply Theorem 5 for the cover {w′ij}j ,

to obtain the vectors {
√

1− α2
jw

′′
ij}j which are orthogonal

to v and ui, and form a non-uniform ((1−o(1))
√

3ε, 1
8
−o(1))-

cover when restricted to j for which |αj | ≤
√

c/(1 + c)+o(1).

Applying Theorem 6 for xi = −u′i and yij =
√

1− α2
jw

′′
ij ,

and incorporating low order terms, we get

Pr
[
∃i, j : ((ζ, u′i) ≤ −

√
3ε)∧

(
(ζ, w′′ij) ≥

(
1/

√
1− α2

j −
√

c− o(1)
)√

3ε
)]

≥ 1

8
− o(1)

Using the decomposition in equation 12, for any wj in the
2-neighborhood of v we can write wj =

(
1
4

+ 3
4
αj

)
v + tj ,

where tj = −
√

3
4

(1−αj)u
′
i+

√
3

2

√
1− α2

jw
′′
ij for any ui which

is a neighbor of both v and wj , and the theorem then follows.

Now we prove Theorem 4 for the case of strict vector 3-
coloring.

Proof of Theorem 4 (for strict coloring). Let c be
the degree of inefficiency of the input, and suppose, for the



sake of contradiction, that at least half the vertices v are
bad. Applying Theorem 7, we obtain a set of at most n
vectors {tj} so that with constant probability, some tj has

projection at least
√

3
4

(3−αj − 2
√

1− α2
j

√
c− o(1))

√
3ε for

some αj s.t. |αj | ≤
√

c/(1 + c) + o(1).

Let t̂j = tj/ ‖tj‖. Noting that ‖tj‖ =
√

3
4

√
5− 2αj − 3α2

j ,

we have

Ω(1) ≤ Pr[∃j : (ζ, t̂j) ≥ (λc(αj)− o(1))
√

3ε]

≤
∑

j

N((λc(αj)− o(1))
√

3ε)

≤ n ·max
j

N((λc(αj)− o(1))
√

3ε)

≤ n ·N
(

min
|α|≤

√
c/(1+c)

(λc(α)− o(1)) ·
√

3ε

)

Define t(c) = min|α|≤
√

c/(1+c)
λc(α), and note that

lim
c→0

t(c) = 3√
5
. Therefore, for τ > 5

9
, there is some solution

c1 > 0 to equation (10). Moreover, for c which is at most
c1(τ) − o(1), we have t(c)2 ≥ 1+c

τ
+ o(1). Thus, using the

degree of inefficiency of the input, the above inequality gives

Ω(1) ≤ n ·N
(√

3ε
)t(c)2−o(1)

≤ n ·∆− t(c)2−o(1)
1+c

≤ n ·∆−1/τ · o(1) = o(1)

which is a contradiction.

3-step walks.The above technique can be generalized to a
three step argument as follows: Consider Theorem 7 as one
step (ignoring the existence of intermediate vertices {ui}),
and use a variant of the two step walk argument above where
the second step is as in Theorem 7. This approach yields
the following result when combined with Theorem 12:

Theorem 8. For 3-colorable graphs, one can find an
O(n0.212299..) coloring in polynomial time.

5. NON-STRICT VECTOR COLORING AND
VECTOR CHROMATIC NUMBER < 3

We sketch a generalization of our analysis (specifically, the
analysis in section 4) which applies to KMS′ when the vector
3-coloring in the input is not necessarily strict. The result
is the same as given in Section 4 for strict vector 3 coloring.
When the input graph has vector chromatic number strictly
< 3, this generalization yields a further improvement.

First, we adapt the notion of inefficiency of input of algo-
rithm KMS′ to the present setting:

Definition 5. Given a graph G with vector (1+ 1
a
)-coloring

{vi} and maximum degree ≤ ∆, the parameter ε > 0 is c-

inefficient for (G, {vi}) if N(
√

1+a
1−a

ε) = (8∆)−1/(1+c).

Theorem 9. Let a ≥ 1
2
. For every τ > 1+a2

(1+a)2
there

exists c1(τ) > 0 such that for all c < ca
1(τ) − o(1), and

any graph G with maximum degree ≤ nτ , if the parameter ε
is (at most) c-inefficient for (G, {vi}), then KMS ′(G, {vi})
returns an independent set of expected size Ω(N(ε)n). Fur-
thermore, ca

1(τ) satisfies

ca
1(τ)

def
= sup

{
c

∣∣∣∣∣ min
|α|≤

√
c/(1+c)

λa
c (α) >

√
1 + c

τ

}

,

(13)

where

λa
c (α)

def
=

1 + a(1− α)−√1− α2
√

c√
(1− α)(a2(1− α) + 1 + α) .

For a “one-step analysis” (e.g. the original KMS result),
it is clear if the inner product between neighbors is < − 1

2
then the analysis only improves. The difficult case in the
two step walk argument seems to occur when we walk from
v to u to w, where (v, u) < (u, w). This case can be avoided
using a simple binning argument.

Proof of Theorem 9. As before, we may assume, by
Lemma 3, that every vertex can be eliminated with proba-
bility Ω(1). Consider a partition of the edges into log n bins
{Ek} by inner product of endpoints, i.e. Ek = {vu ∈ E :
−(v, u) ∈ [ 1

2
+ k

log n
, 1

2
+ k+1

log n
)}. For every v there is one bin

Ek such that

Pr[v is eliminated with u ∈ ΓEk (v) | v ∈ Vζ(ε)] = Ω

(
1

log n

)

.

Let us concentrate on the (directed) subgraph of these edges.
To simplify the argument, assume that for each v there

is a fixed value av ∈ [a, 1) such that (v, u) = −av for all
neighbors u of v in the relevant subgraph. We can do this
because the resulting error terms (projections along vectors
of norm O( 1

log n
)) are negligible. Now, let v be the vector

for which this av is smallest (w.l.o.g. av = a), let {ui} be
its neighbors, and {wj} the neighbors of {ui}, where wj =

−biui +
√

1− b2
i w

′
ij (for wj neighbors of ui). Arguing as

before, one can show

wj =

(
abi + αij

√
(1− a2)(1− b2

i )

)
v−

(
bi

√
1− a2 − αija

√
1− b2

i

)
u′i +

√
(1− α2

ij)(1− b2
i )w

′′
ij

where w.l.o.g. |αij | ≤
√

c/(1 + c). Moreover, the above de-
composition satisfies

Pr

[
∃i, j :

(
(ζ, u′i) ≤ −

√
1 + a

1− a
ε

)
∧

(
(ζ, w′′ij) ≥ ρij

√
1 + bi

1− bi
ε

)]
= Ω̃(1)

for some

ρij = 1/
√

1− α2
ij −

√
c− o(1).

Now, letting tj be the component of wj orthogonal to
v, it suffices to show that the above probability implies a
projection of at least mini,j λc(αij) for tj/ ‖tj‖. For brevity,
write tj = −θiju

′
i +κijw

′′
ij . Since the individual components

−u′i and w′′ij have projection at least
√

(1 + a)/(1− a)ε and

ρij

√
(1 + a)/(1− a)ε, respectively, and noting that ρij < 1,



we only need to show that

θij

κij
≥ a

√
1− αij

1− α2
ij

(the corresponding ratio for strict vector (1 + 1
a
)-coloring).

But this follows easily from the assumption that a ≤ bi.

6. A BETTER ROUNDING ALGORITHM
In this section we present a rounding algorithm for strict

vector 3-coloring with odd-cycle constraints, for which we
are able to prove a better guarantee, namely, Theorem 3.

Let us first introduce some notation. Let {vi} be a strict
vector 3-coloring of graph G. For any set of vertices S, we
define Γ(S) = ∪v∈SΓ(v). For every vi and θ > 0, define

V θ
i

def
= {vj ∈ Γ(Γ(vi)) \ {vi} : (vi, vj) ≥ θ}.

We will denote by Gθ
i the subgraph of G induced on V θ

i . For
all vi 6= vj , we define the components normal to vi as

ti
j =

vj − (vi, vj)vi

‖vj − (vi, vj)vi‖ .

Observation 1. Let θ > 0 and vectors {vi} be a vector
3-coloring. Then for any vector vi, the set {ti

j |vj ∈ V θ
i } is a

(non-strict) vector 3/(1 + 2θ2)-coloring of V θ
i .

Observation 2. Let α ∈ R and vectors {vi} be a vector
3-coloring satisfying the odd cycle constraints, and let θ =
1
4

+ 3
4
α. Then we have the following:

1. If α > 0 then V θ
i is an independent set.

2. For any odd positive integer k ≥ 3, if α > −1/k then
V θ

i contains no odd cycles of length ≤ k.

Proof. In case (1), an edge w1w2 (where w1 and w2 are
neighbors of u1, u2 ∈ Γ(vi), respectively) would violate the
5-cycle constraint with respect to cycle {v, u1, w1, w2, u2}
and vector vi. Case (2) is an immediate application of the
odd cycle constraints to potential odd cycles in V θ

i and vec-
tor vi.

So far, our analysis has relied on constructing (η, Ω(1))-
covers for large η, in order to contradict the assumption
that KMS′ fails on certain inputs. We have always made
the pessimistic assumption that these covers may contain
up to Ω(n) vectors. Clearly the analysis is improved if the
number of these vectors is much less. Otherwise, assuming
some such cover has many vectors, we use the fact that these
covers are associated with original vectors (from the vector

coloring) {wj} of the form wj = θjv+
√

1− θ2
j w′j for θj ≈ 1

4
.

This is a kind of non-degeneracy, namely, the vectors {wj}
have a large projection in a common direction. In this case
Gθ

i has no short odd cycles and a vector 3 − δ-coloring (for
some δ = Ω(1)) and we exploit that.

Now, we present the following rounding algorithm, which
gives a better guarantee than KMS′ when the graph contains
no short cycles of odd length. Here, G denotes an n-vertex
graph.

KMS-Aux(G, {vi})
• If G is an independent set, output all vertices. Oth-

erwise, let V ′ = {vi}, and construct set I as follows:

• For every vi, let

ki = max{k|vi, Γ(vi), . . . , Γ
k(vi) are all ind. sets}.

• Let vi and l ∈ {0, . . . , ki} be such that the ratio∣∣Γl+1(vi)
∣∣ /

∣∣Γl(vi)
∣∣ is minimized. Add Γl(vi) to I.

If at most n/2 vertices remain in V ′ after removing
Γl(vi) and Γl+1(vi), remove only Γl(vi). Otherwise,
remove both sets and repeat.

• Let G′ be the subgraph of G induced on V ′. Return
the larger of I and KMS′(G′, V ′).

The following result describes the performance guarantee
of algorithm KMS-Aux.

Theorem 10. Let a ≥ 1
2
, and let k ≥ 2 be an integer.

Then for any graph G with no odd cycles of length ≤ 2k + 1
we have the following:

1. The set I produced by KMS-Aux(G, {vi}) has size

Ω(n1−1/(k+1)).

2. For every τ >
(

1+a2

(1+a)2
+ (k − 1) · 1−a

1+a

)−1

there ex-

ists ca
k(τ) > 0 such that for all c < c1(τ) if graph

G has non-strict 1 + 1
a
-coloring {vi}, maximum de-

gree ≤ nτ , then KMS-Aux produces an independent
set of size Ω(N(ε)n), for ε which is c-inefficienct for
(G, {vi}).

Furthermore, ca
k(τ) satisfies

ca
k

def
= sup

{
c

∣∣∣∣ min
α2≤c/(1+c)

λa
c (α)2 >

1 + c

τ
− (k − 1) · 1− a

1 + a

}

.

Proof. To prove (1), note that for any vector v, the sets
{v}, Γ(v),. . . ,Γk(v) are all independent sets (otherwise, an
edge between vertices of Γj(v) together with paths to v con-
stitute an odd cycle of length 2j + 1). Moreover one of the

k + 1 ratios |Γ(v)|
|{v}| , . . . ,

|Γk+1(v)|
|Γk(v)| must be at most n1/(k+1).

Hence all the sets added to I are a O(n−1/k)-fraction of the
sets removed from V ′. Since

∣∣∪(Γl(vi) ∪ Γl+1(vi))
∣∣ ≥ n/2,

it must be the case that I = Ω(n1−1/(k+1)).
To prove (2), assume first that while constructing I, there

is always some vector v with 2-neighborhood of size |Γ(Γ(v))| ≥
N(ε)k−1 · n. This implies that for such a vector v, one of

the k − 1 ratios
|Γ3(v)|
|Γ2(v)| , . . . ,

|Γk+1(v)|
|Γk(v)| is at most 1/N(ε). As

above, this implies that |I| = Ω(N(ε)n).
Otherwise, after I is constructed, all 2-neighborhoods in

G′ have size at most N(ε)k−1 · n. We may assume that
|V ′| ≥ n/4, since otherwise |I| = Ω(n). Assume for the
sake of contradiction that KMS′(G′, V ′) does not produce
an independent set of expected size Ω(N(ε)n). Then, fol-
lowing the analysis in Section 5, there exists a set {ti} of
unit vectors associated with a 2-neighborhood in G′, such

that Pr
[
∃i : (ζ, i) ≥ λa

c (αi) ·
√

1+a
1−a

]
= Ω(1) for some |αi| ≤√

c/(1 + c). By our choice of c, we have that λa
c (α) >√

1+c
τ
− (k − 1) · 1−a

1+a
+ ρ for some constant ρ > 0. Hence,



we have |{ti}| ·N(ε)
1+c

τ
−(k−1)· 1−a

1+a
+ρ = Ω̃(1). But this con-

tradicts our assumptions regarding the inefficiency of ε and
size of 2-neighborhoods in G′.

Using the earlier observations, we have the following corol-
lary of Theorem 10.

Corollary 1. Let α > − 1
3
, and define θα

def
= 1

4
+ 3

4
α,

aα
def
=

3 + 2α + 3α2

5− 2α− 3α2
, and kα

def
=

⌈−3− 1/α

2

⌉
.

Let G be a graph with vector 3-coloring {vi} which satisfies
odd cycle constraints. Then for any vi, if the maximum
degree in G is bounded by |V θα

i |τα
i , KMS-Aux(Gθα

i , {ti
j |vj ∈

V θα
i }) returns an independent set of size Ω

(
|V θα

i |ϕ(α,τα
i )

)
,

where

1. for α ≥ 0, ϕ(α, τ) = 1, and

2. for − 1
3

< α < 0,

ϕ(α, τ) = 1−min

{
1

kα
,

1− aα

1 + aα
· τ

1 + caα
kα

(τ)
− o(1)

}
.

(Here we set ca
k(τ) = 0 when otherwise undefined.)

Now, we present our final rounding algorithm for strict
vector 3-coloring.

KMS′′(G, {vi})
• Run KMS′(G, {vi}), and for every vi and θ > 0, run

KMS-Aux(Gθ
i , {ti

j |vj ∈ V θ
i }). Return the largest of

these independent sets.

Using the notation from Corollary 1, we state the main
result regarding the performance of KMS”.

Theorem 11. For every τ > 15
32

there exists c′1(τ) > 0

such that for all c < min{ 1
8
, c′1(τ)}, if the input to KMS ′′

has degree of inefficiency ≤ c and maximum degree nτ , then
more than half the vertices must be good. Moreover, c′1 is
defined as follows:

c′1(τ)
def
= sup

{
c

∣∣∣∣∀α ∈
[
−

√
c

1 + c
,

√
c

1 + c

]

λc(α)2 · ϕ
(

α,
1 + c

λc(α)2

)
>

1 + c

τ
− 1

3

}

.

Proof. By our choice of c, there is some fixed constant
ρ = ρ(c) such that for any α satisfying α2 ≤ c/(1 + c) we
have

λc(α)2 · ϕ
(

α,
1 + c

λc(α)2

)
>

1 + c

τ
− 1

3
+ ρ. (14)

Suppose, first, that |V θα
i | ≤ (N(ε)n)1/ϕ(α,τ1(c,α)) for every

α satisfying α2 ≤ c/(1 + c) and every vertex vi, where
τ1(c, α) = (1 + c)/λc(α)2. Assume, for the sake of con-
tradiction that KMS′(G, {vi}) does not return an indepen-
dent set of expected size Ω(N(ε)n). Then, let {wj}, {tj}
and {αj} be as in Theorem 7, and let t̂j = tj/ ‖tj‖. It
is easy to see that for some α the probability of some t̂j

having projection ≥ λc(αj)
√

3ε is still Ω(1/ log n) when re-
stricted to j for which |αj − α| ≤ 1

log n
. This implies that

|V θα
i |N(

√
3ε)λc(α)2−o(1) = Ω( 1

log n
). But, together with the

assumed bound on |V θα
i | and the inefficiency of ε, this con-

tradicts (14).
Now, suppose on the contrary that for vertex vi and some

α satisfying α2 ≤ c/(1+ c)+ o(1) (note that α > − 1
3

by our

choice of c), we have |V θα
i | > (N(ε)n)1/ϕ(α,τ1(c,α)). Then the

maximum degree in G is bounded by |V θα
i |τ2 , where τ2 =

ϕ(α, τ1(c, α)) · ( 1
τ
− 1

3+3c
− o(1))−1. Hence, by Corollary 1,

KMS-Aux(Gθα
i , {ti

j |vj ∈ V θα
i }) returns an independent set

of expected size

|V θα
i |ϕ(α,τ2) > (N(ε)n)ϕ(α,τ2)/ϕ(α,τ1(c,α))

.

Note that by (14) we have τ1(c, α) < τ2, which in turn im-
plies that ϕ(α, τ1(c, α)) ≤ ϕ(α, τ2), which gives the desired
bound above.

7. CONCLUSIONS
We have shown some improvement in the analysis of vec-

tor coloring. We strongly believe that there remains much
room for improvement. One starting point is detailed in the
conjecture of Appendix B.
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APPENDIX

A. A MODIFIED BLUM KARGER
ALGORITHM

In this section we give a summary of the technique of Blum
and Karger [3], which relies on the coloring tools of Blum [2].
This is in fact a slight strengthening of the technique, and
allows us to present the current result in the same framework
as those of [2], [3]. Our main result is the following, whose
proof we sketch later:

Theorem 12. Let A be a polynomial time algorithm that
takes an n-vertex 3-colorable graph with maximum degree at
most ∆ as input, and makes progress towards a f(n, ∆)-
coloring (where f is monotonically increasing in n and ∆).
Then there is a polynomial time algorithm which, for any n-
vertex 3-colorable graph, finds an Õ(min1≤∆≤n(f(n/2, ∆) +

(n/∆)3/5)) coloring.

Remark 3. As a corollary of the proof technique of [3], one
could show a variant of the above result, where the algorithm
A requires only that the input graph be orientable in such
a way that the maximum out-degree is at most ∆. Since our
requirement of A is weaker, the above theorem is a slight
strengthening of the approach in [3].

This immediately implies the following results of Blum [2]
and Blum and Karger [3], respectively.

Corollary 2. For 3-colorable graphs, using the greedy
∆ + 1-coloring approach, one can find an Õ(n3/8) coloring.

Corollary 3. For 3-colorable graphs, using the KMS guar-
antee of progress towards an Õ(∆1/3)-coloring in Theorem 1,

one can find an Õ(n3/14) coloring.

In order to explain the approach, we use the notion of
progress towards a coloring, as defined in [2].

Definition 6. For an n-vertex 3-colorable graph G, and
monotonically increasing function f : N → N, we define
progress towards a f(n)-coloring as finding any one of the
following objects:

Progress Type 1 An independent set of size Ω(n/f(n)).

Progress Type 2 An independent set S having a neigh-
borhood of size |∪v∈SΓ(v)| = O(|S| f(n)).

Progress Type 3 Two vertices that must have the same
color in any legal 3-coloring of G.

We will need the following (slightly simplified) lemma
from [2].

Lemma 7. Let f(n) be any monotonically increasing func-
tion, then for an n-vertex 3-colorable graph G. In order to
find an Õ(f(n))-coloring, it suffices to have an algorithm
which makes progress towards a f(n)-coloring.

The proof of Theorem 12 relies mainly on the following
result, a slightly weaker version of which follows from the
techniques outlined in [3]. We omit the proof from the cur-
rent version.

Theorem 13. For any 3-colorable graph G = (V, E), and

d̂ = davg there is a polynomial time algorithm to make progress

towards an Õ

((
n/d̂

)3/5
)

-coloring.

Using this theorem, we can now give a generalization of
[2] and [3]:

Proof of Theorem 12. By Lemma 7, it suffices to show
that we can make progress towards the desired coloring. Let
∆0 be the value of ∆ minimizing f(n, ∆) + (n/d̂)3/5 (if it is
not computable, we can try all values of ∆). If the average
degree is at least ∆0, then by Theorem 13, we can make
progress towards an Õ((n/∆0)

3/5)-coloring. Otherwise, re-
move one by one vertices of degree > ∆0 (this eliminates
at most n

2
vertices), obtaining a subgraph G′ with maxi-

mum degree at most ∆0. Apply algorithm A to G′ to make
progress towards an O(f(n/2, ∆0))-coloring.

B. A NEW GEOMETRIC CONJECTURE
AND IMPLICATIONS FOR
GRAPH COLORING

We present a geometric conjecture which, if true, would
yield the following result when used in the context of the
KMS′′ analysis:

Theorem 14. For 3-colorable graphs, one can find an
O(n0.1991) coloring in polynomial time.

Recall Lemma 6, which uses measure concentration to
show that an (η, δ) cover grows fast (in measure) as ε shrinks.
This lemma can be loosely rephrased as follows: if η is
tight for an (η, 1

2
) cover {vi} (i.e. Pr[maxi(ζ, vi) ≤ η] = 1

2
),

then with very high probability the maximum projection
maxi(ζ, vi) is very close to η. This phenomenon is known as
measure concentration.

While measure concentration was used to obtain a tight
analysis in [1], we believe that in our case it is suboptimal.
Specifically, the theorem of measure concentration states
that for any set A of measure 1

2
, the set of radius r around

A (that is, Ar = {ζ : ∃z ∈ A : ‖ζ − z‖ ≤ r}) has mea-
sure at least 1 − N(r). However, compare this to the case
of an (ε, 1

2
) cover of mutually orthogonal unit vectors {vi}

(this cover is at most o(1)-inefficient), and taking r = ρε,
we see that the set {ζ : ∃i : (ζ, vi) ≥ (1− ρ)ε} has measure

1− e−Ω(N(ε)−ρ(2−ρ)), which grows much faster.
Drawing on the intuition that measure is least concen-

trated around a set which is “closest” to a half-space, we
conjecture that the worst configuration is a regular simplex
of unit vectors, whose center is far from the origin.

Conjecture 1. For any uniform (ε, δ)-cover {ui}k
i=1, if

{vi}k
i=1 are mutually equidistant unit vectors which also form

an (ε, δ)-cover, then for any ρ ≥ 0

Pr[max
i

(ζ, ui) ≤ ε− ρ] ≤ Pr[max
i

(ζ, vi) ≤ ε− ρ]

For efficient covers this would give the following corollary:

Conjecture 2. For any constants c > 0 and 0 ≤ ρ < 1,
if {ui} is an (ε, 1

2
)-cover which is at most c-inefficient, then

it is also a ((1− ρ)ε, 1−N(ε)ρ2(1+1/c)−o(1))-cover.

Using this in place of Lemma 6 would yield the stated
improvement.


