New Approximation Guarantee for Chromatic Number

Sanjeev Arora*
arora@cs.princeton.edu

Eden Chlamtac†
chlamtac@cs.princeton.edu

Moses Charikar‡
moses@cs.princeton.edu

Department of Computer Science
Princeton University
Princeton, NJ 08540

ABSTRACT

We describe how to color every 3-colorable graph with $O(n^{0.2111})$ colors, thus improving an algorithm of Blum and Karger from almost a decade ago. Our analysis uses new geometric ideas inspired by the recent work of Arora, Rao, and Vazirani on SPARSEST CUT, and these ideas show promise of leading to further improvements.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms: Algorithms, Theory.

Keywords: graph coloring, chromatic number, semidefinite programming, approximation algorithms.

1. INTRODUCTION

In the graph k-coloring problem we wish to assign each vertex one of k colors such that every pair of vertices connected by an edge have distinct colors. This problem arises in a host of applications, and was one of the 22 NP-complete problems on Karp’s list in 1972. Subsequently, much effort was spent on trying to design efficient approximation algorithms, namely, given a k-colorable graph to try to color it with as few colors as possible. Unfortunately, probabilistically checkable proofs (PCPs) have been used to show that if certain reasonable complexity conjectures are true then in general we may need as many as $n^{1−o(1)}k$ colors[9]. But the case of small k, including $k = 3$ is still wide open, and this is the problem we consider. It is conceivable that a polynomial-time algorithm could color every 3-colorable graph with just 6 colors. (Recently Dinur et. al. [6] gave a polynomial-time algorithm could color every 3-colorable graph with $O(n^{0.2111})$ colors, thus improving an algorithm of Blum and Karger which used semidefinite programming (SDP) to design approximation algorithms for MAX-CUT and MAX-SAT [8], Karger, Motwani, and Sudan [11] used SDP to improve Blum’s guarantee to $O(n^{1/4})$. Blum and Karger [3] then noticed that the ideas of KMS and Blum could be combined to further improve this guarantee to $O(n^{3/14})$, which is where things have stood for a decade. Our paper improves this bound to $O(n^{0.2111})$ by a new analysis of the SDPs introduced by Karger, Motwani, Sudan. Using stronger SDPs we further improve the bound to $O(n^{0.2113})$.

The most important contribution of this paper is not so much the improvement in the exponent, but a demonstration that sophisticated geometric reasoning can allow further progress on this problem. A priori this was not clear. For example, given the simplicity of the Goemans-Williamson analysis of SDPs, one might conjecture that it does not give the best possible algorithms for most problems. Therefore it has been a surprise to discover that the algorithms obtained for MAX-CUT (namely, 0.878-approximation [8]) and MAX-3SAT (7/8-approximation [12]) are actually best possible assuming certain plausible complexity assumptions [10, 13]. On the other hand, for EXPANSION and SPARSEST CUT problems, the longstanding approximation ratio of $O(\log n)$ [15] turned out to be not tight. Arora, Rao and Vazirani [1] recently improved the ratio to $O(\log \log n)$ by a more sophisticated analysis of SDPs with triangle inequality constraints. Though this algorithmic breakthrough was quickly followed by new hardness results [14, 5], a large gap remains and the exact status of the problems is still open.

Our new algorithm for graph coloring and its analysis is directly inspired by techniques of Arora, Rao and Vazirani. In particular, our analysis is nonlocal and uses their “walk” argument (also called “chaining” argument). We recall that the analysis of Karger, Motwani, Sudan (which was inspired by the Goemans-Williamson analysis of MAX-CUT) is local in the sense that it analyses the effect of rounding on each edge and then just uses linearity of expectations to estimate the effect on the entire graph. By contrast, our nonlocal analysis shows that the local analysis of KMS cannot be simultaneously tight for many edges. (See Section 3.) To state our improvement, we need the following definition.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.
As is shown in [11], for any $k \geq 2$, every k-colorable graph is also vector k-colorable, and moreover a vector k-coloring can be found in polynomial time using semidefinite programming. Their main new result was that given a graph of maximum degree Δ and a vector 3-coloring, their rounding algorithm can be used to produce an $O(\Delta^{1/3})$-coloring. They derive their $n^{1/4}$-coloring algorithm by applying the above algorithm for graphs where $\Delta < n^{3/4}$ and switching to Blum’s algorithm for other graphs.

Feige, Langberg, and Schechtman [7] subsequently showed that the KMS bound of $O(\Delta^{1/3})$ cannot be improved, but they could only show this for values of Δ far smaller than $n^{9/14}$, the value used in Blum-Karger’s algorithm. This left open the question whether the KMS bound is tight for all Δ. We answer this in the negative: we show that the KMS bound can be improved to $O(n^{3308}/\Delta^3)$ for $\Delta \geq n^{0.6446}$. To do this we need to slightly change the rounding algorithm (compare algorithms KMS and KMS’ in Section 2), and apply our nonlocal analysis; see Section 4. Plugging into Blum and Karger’s scheme, this already gives a slightly better coloring.

Then we observe that our analysis can be strengthened if we make more fundamental changes to the SDP and rounding algorithm. This improved algorithm and the analysis are described in Section 6.

The rest of the paper is organized as follows. In Section 2 we describe the KMS approach and state our first improvement. In Section 3 we give a high-level description of our nonlocal analysis; this description is not precise. In Section 4 we give the simplest attempt to formalize our intuition, which already gives some improvement to KMS. This analysis is first done for the case of strict vector 3-coloring, which is then generalized in Section 5 to the case of nonstrict vector θ-coloring for any $\theta \leq 3$. In Section 6 we describe a rounding scheme for a stronger SDP and its analysis. Finally, in Appendix B we state a geometric conjecture, which, if true, would imply an $O(n^{0.1995})$ coloring algorithm.

We use Blum’s standard terminology to discuss coloring algorithms, specifically, the idea that it is sufficient for the algorithm to make one of three types of progress, as described in Appendix A. As an aside, we note that we had to slightly modify Blum’s ideas to get our best algorithms, and our improved (and somewhat simplified) version of Blum’s technique is summarized in Theorem 12.

2. KMS Rounding and Our Results

Recall that the standard normal distribution has density function \(\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \). A random vector $\xi \sim (\xi_1, \ldots, \xi_n)$ is said to have the n-dimensional standard normal distribution if the components ξ_i are independent and each have the standard normal distribution. Note that this distribution is invariant under rotation. In particular, for any unit vector $x \in \mathbb{R}^n$, the projection (ξ, x) has the standard normal distribution. Moreover, for any orthogonal subspaces $U, W \subset \mathbb{R}^n$, the projections of ξ onto U, W, respectively, are independent.

We use the following notation for the tail bound of the standard normal distribution.

\[
N(x) \overset{\text{def}}{=} \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt
\]

The following property of the normal distribution will be crucial.

Lemma 1. For $\varepsilon > 0$, and for fixed constant $\kappa > 1$, we have

\[
N(\kappa \cdot \varepsilon) = \Theta(\text{polylog}(1/N(\varepsilon)) \cdot N(\varepsilon)^{\varepsilon^2}).
\]

For the remainder of this paper we will concern ourselves with vector coloring of 3-colorable graphs, but the results for vector k coloring can be easily generalized for any fixed $k > 3$. For $k = 3$ we will also consider stronger SDPs that incorporate the strict vector 3-coloring constraints as well as the following odd cycle constraints:

\[
\forall i : \text{odd cycle } C, \quad \sum_{j \in C} (v_i, v_j) \leq \frac{|C| - 3}{4}
\]

These constraints are valid since in the intended (3-coloring) solution, every odd cycle must have three consecutive vertices with three different colors, and of the $|C| - 3$ vertices in the remaining path, at most half can have the same color as v_i.

In this section we recall the KMS rounding algorithm and its analysis. As is standard, we assume that in order to find colorings with $O(s(n))$ colors, it suffices to find independent sets of size $n/s(n))$. Furthermore, we only concentrate on the case where there is a bound Δ on the maximum degree; see Section A in the appendix for how to turn such a guarantee into an algorithm whose performance is stated in terms of n. From now on $\{v_i\}_{i \in V}$ will denote a vector coloring of graph G, and Δ denotes the maximum degree. For simplicity, v_i will stand both for the vector and the corresponding graph vertex.

The KMS rounding algorithm is as follows:

KMS ($G, \{v_i\}, \varepsilon$)

- Choose $\xi \in \mathbb{R}^n$ from the n-dimensional standard normal distribution.
- $V_\xi(\varepsilon) \overset{\text{def}}{=} \{i | \xi(v_i, v_j) \geq \varepsilon \}$. Return all $v_i \in V_\xi(\varepsilon)$ with no neighbors in $V_\xi(\varepsilon)$.

Theorem 1 (KMS). There exists some $\varepsilon = \varepsilon(n, \Delta) > 0$ such that the expected size of the independent set returned by algorithm KMS ($G, \{v_i\}, \varepsilon$) is $\Omega(\Delta^{-1/3} \cdot n)$.

We consider the following slight variation of the KMS rounding algorithm:
KMS' \((G, \{v_i\})\)

- For all \(\varepsilon \in \mathbb{R}\), do the following, and return the largest independent set found:
 - Choose \(\zeta \in \mathbb{R}^n\) from the \(n\)-dimensional standard normal distribution.
 - Pick any edge \(< v_i, v_j \rangle\) with both endpoints in \(V_\varepsilon\), and eliminate both \(v_i\) and \(v_j\). Repeat until no such edges are left.
 - Return all remaining vertices in \(V_\zeta\).

Remark 1. Equivalently, we can first choose \(\zeta\), and then enumerate over all relevant values of \(\varepsilon\) (that is, over \(\varepsilon_i = (\zeta, v_i)\)). However, for the purposes of the analysis, we will consider the first formulation.

Note that the set returned by KMS' contains the set returned by KMS, so Theorem 1 holds also for KMS'. The crucial difference is that in KMS', the vertices removed from \(V_\zeta\) form a matching, and this will be used in the simple “pruning” argument of Lemma 3.

Crucially, \(\{v_i\}\) is a (possibly non-strict) vector 3-coloring, and the maximum degree is bounded by \(\Delta = \sqrt{n} \cdot 0.6446\), KMS' \((G, \{v_i\})\) returns an independent set of size \(\Omega(\Delta^{3/4})\) (by Theorem 4). Combining this result with the Blum coloring tools (see Theorem 12), immediately yields the following result:

Theorem 2. For 3-colorable graphs, one can find an \(O(n^{0.2111})\) coloring in polynomial time.

Finally, using the odd-cycle constraints (3), we give a better rounding algorithm as described in Section 6. Setting \(\Delta = n^{0.6481}\), we combine the analysis of this final algorithm, summarized in Theorem 11, with the Blum coloring tools to obtain the following:

Theorem 3. For 3-colorable graphs, one can find an \(O(n^{0.2111})\) coloring in polynomial time.

As in [1], our analysis involves the analysis of certain well spread-out sets of vectors called \((\eta, \delta)\)-covers (defined in Section 4) and the use of measure concentration. We are interested in the structure of efficient covers, i.e., those where the number of vectors is close to the minimum possible. In contrast to [1] however, we believe that new geometric theorems related to measure concentration of such covers would improve the current analysis of our rounding algorithms. In Appendix B, we state such a conjecture, which, if true, would yield an improvement to our bounds.

3. KMS Analysis and High-Level Description of Ours

Now we recall the proof of Theorem 1 from [11] — but rephrased in our terminology. Then we outline our improved analysis. Details of our analysis appear in later sections.

Note that, for any choice of \(\varepsilon\) (in either KMS or KMS'), for any \(v\) in the vector coloring, \(\Pr[v \in V_\varepsilon(v)] = N(\varepsilon)\). Say a vertex/vector is good for a certain value of \(\varepsilon\) if in the KMS algorithm,

\[
\Pr[v \text{ is eliminated } | \ v \in V_\varepsilon(v)] \leq 1/2,
\]

and otherwise call the vertex bad. If \(v\) is good, then the probability it ends up in the final independent set is at least \(\frac{1}{2} \Pr[v \in V_\varepsilon(v)] = N(\varepsilon)/2\).

Now we analyze what makes a vertex good. For any \(v \in V\), let \(\{u_i\}\) be its neighbors in \(G\). Then

\[
\Pr[v \text{ is eliminated } | \ v \in V_\varepsilon(v)] = \Pr[\exists (\zeta, u_i) \geq \varepsilon(\zeta, v) \geq \varepsilon].
\]

Since \(v\) and \(u_i\) are neighbors in a strict vector 3-coloring, we can write \(u_i = -\frac{1}{\sqrt{2}}v + \sqrt{2}u_i^\prime\) where \(u_i^\prime\) is a unit vector orthogonal to \(v\). Writing \(u_i^\prime = \frac{1}{\sqrt{2}}(u_i + \frac{1}{\sqrt{2}}v)\), we see that for any vector \(\zeta\):

\[
(\zeta, v) \geq \varepsilon \quad \text{and} \quad (\zeta, u_i) \geq \varepsilon \quad \implies \quad (\zeta, u_i^\prime) \geq \sqrt{3}\varepsilon.
\]

Hence the right hand side of (5) is bounded above by

\[
\Pr[\exists (\zeta, u_i) \geq \varepsilon(\zeta, v) \geq \varepsilon] \leq \Pr[\exists i : (\zeta, u_i^\prime) \geq \sqrt{3}\varepsilon(\zeta, v) \geq \varepsilon] = \Pr[\exists i : (\zeta, u_i^\prime) \geq \sqrt{3}\varepsilon] \leq \sum_i \Pr[(\zeta, u_i^\prime) \geq \sqrt{3}\varepsilon] \leq \Delta : N(\sqrt{3}\varepsilon) = \tilde{O}(\Delta : N(\varepsilon)^3).
\]

Choose \(\varepsilon\) so that \(N(\sqrt{3}\varepsilon) = \tilde{O}(N(\varepsilon)^3)\) is less than \(1/2\Delta\) (equivalently, \(\Delta\) is less than \(\tilde{O}(N(\varepsilon)^{-3})\), in which case every vertex is good. Therefore the output independent set has expected size at least \(N(\varepsilon)n/2 = \tilde{O}(\Delta^{-1/3}n)\).

Before proceeding, we state one corollary of the above proof that will be useful in our analysis of KMS'.

Lemma 2. Let \(\{u_i\}\) be the neighbors of \(v\) in a strict 3-vector coloring. Then writing \(u_i = -\frac{1}{\sqrt{2}}v + \sqrt{2}u_i^\prime\) for each \(i\), we have

\[
\Pr[\exists j : (\zeta, u_i) \geq \varepsilon(\zeta, v) \geq \varepsilon] \leq \Pr[\exists j : (\zeta, u_i) \geq \sqrt{3}\varepsilon].
\]

Under what conditions is the above analysis tight? The analysis of when a vertex is good is locally tight, even though it uses the union bound. Our main contribution is a nonlocal argument that shows that the local analysis cannot be simultaneously tight for all vertices for this value of \(\varepsilon\). Thus the KMS’ algorithm can use a smaller \(\varepsilon\) than the KMS paper did, which increases \(\tilde{O}(nN(\varepsilon))\), the size of the final independent set. If less than \(n/2\) vertices are bad, the expected size of the independent set is at least \(nN(\varepsilon)/4\). We show below that there is such an \(\varepsilon\) satisfying \(\Delta > N(\sqrt{3}\varepsilon)^{1/2}\) for some \(\varepsilon > 0\). Thus the size of the independent set \(N(\varepsilon)n = \tilde{O}(\Delta^{-1/3}n)\), an improvement over KMS.

Our nonlocal argument is directly inspired by the “walk” argument of Arora, Rao, and Vazirani. However, our walks are only of length \(O(1)\) whereas theirs were longer. To illustrate our idea, let us first assume that the vectors in the SDP solution are “nondegenerate,” by which we mean that their pairwise inner products do not exhibit any statistically significant patterns apart from those implied by the SDP constraints. To give an example, if \(v\) is any vertex/vector, then the constraints of strict vector coloring require the vectors \(u_i^\prime\) defined above to be orthogonal to \(v\). In a nondegenerate solution, we also expect that for any arbitrary unit vector \(v_0\), most of the vectors \(u_i^\prime\) should only have negligible projection on \(v_0\). In fact, if we assume the KMS analysis is tight, we know this is the case (see Lemma 5).
We give a heuristic argument why the KMS' algorithm should return an independent set of size $\Omega((n/\varepsilon)^3)$ in a non-degenerate solution\(^7\). Specifically, let ε be the smallest value such that for at least $1/2$ the vertices v:

$$\Pr[\exists \ell : (\zeta, u_\ell) \geq \sqrt{3\varepsilon}] = \Omega(1).$$

We show that $N(\varepsilon) \geq \Omega(n^{-1/3})$.

First, a simple pruning argument (see Lemma 3; the only place where we use the difference between KMS and KMS') allows us to assume that condition (6) holds for all vertices in the graph rather than just half the vertices (with the probability $1/2$ replaced by a smaller constant). Hence Lemma 2 implies that for every vertex v, its neighbors $\{u_\ell\}$ satisfy

$$\Pr[v \text{ gets eliminated} | v \in V(\varepsilon)] \geq 1/2. \quad (6)$$

We show that $N(\varepsilon) \geq \Omega(n^{-1/3})$.

First, a simple pruning argument (see Lemma 3; the only place where we use the difference between KMS and KMS') allows us to assume that condition (6) holds for all vertices in the graph rather than just half the vertices (with the probability $1/2$ replaced by a smaller constant). Hence Lemma 2 implies that for every vertex v, its neighbors $\{u_\ell\}$ satisfy

$$\Pr[v \text{ gets eliminated} | v \in V(\varepsilon)] \geq 1/2. \quad (6)$$

We show that $N(\varepsilon) \geq \Omega(n^{-1/3})$.

Formalizing this intuition seems to require difficult geometric arguments in general, but a simpler analysis is possible in the regime where all parameters are close to tight, which happens to be the case in the KMS analysis as noted earlier. Specifically, the $\left(\sqrt{3\varepsilon}, \delta\right)$-covers are almost “efficient” in the sense that the number of vectors in them, namely, Δ, is almost as low as it could be, which is $N(\sqrt{3\varepsilon})^{1/2}$. This fact allows some handle on the conditioning.

We believe that it should be possible to improve our analysis, although doing so seems to call for some new geometric theorems.

4. DETAILS OF OUR SIMPLER ANALYSIS

In this section we prove Theorem 2 using a two-step walk analysis of KMS', which will also serve as the basis for a more elaborate analysis in later sections. For simplicity, we will assume strict vector 3-coloring here, a condition which we relax later. We will use the following definition to quantify the improvement.

Definition 2. Given a graph G with vector 3-coloring $\{v_i\}$ and maximum degree Δ, the parameter $\varepsilon > 0$ is c-inefficient for $(G, \{v_i\})$ if $N(\sqrt{3\varepsilon})^{1/2} = (\Delta\varepsilon)^{-1/(1+c)}$.

Using this terminology, we can give the following guarantee on the performance of KMS', which in turn implies Theorem 2.

Theorem 4. For every $\tau > 2/3$ there exists $c_1(\tau) > 0$ such that for all $c < c_1(\tau) - \delta(1)$, and any graph G with maximum degree Δ, if the parameter ε is (at most) c-inefficient for $(G, \{v_i\})$, then KMS$'$($G, \{v_i\}$ returns an independent set of expected size $\Omega(N(\varepsilon)n)$. Furthermore, $c_1(\tau)$ satisfies

$$c_1(\tau) = \sup \left\{ c : \min_{|a| \leq \sqrt{1-\varepsilon}} \lambda_a(\alpha) > \sqrt{1 \pm \frac{c}{\tau}} \right\}, \quad (10)$$

where

$$\lambda_a(\alpha) \text{ def } = \left(3 - 2 - 2\sqrt{1 - 3\alpha^2} \sqrt{\varepsilon}\right) / \sqrt{5 - 2\alpha - 3\alpha^2}. \quad (11)$$

The rest of this section is devoted to proving Theorem 4. The proof is by contradiction: if $\Delta < N(\sqrt{3\varepsilon})^{1/(1+c)}$ then, as in Section 3, we use a chaining argument to exhibit a high-probability event that is actually very unlikely.

We will simplify things by first arguing that if at least half the vertices $v \in V$ are bad (i.e., their probability of being eliminated from $V(\varepsilon)$ is more than $1/2$), then we can focus on a subgraph in which all vertices are almost-bad.

Lemma 3. In KMS$'$($G, \{v_i\}, \varepsilon$),

$$\Pr[v \text{ is eliminated} | v \in V(\varepsilon)] \geq 1/2$$

for at least $n/2$ vertices $v \in V$, then there is a non-empty induced subgraph $G' = (V', E')$ of G such that for all $v \in V'$ we have

$$\Pr[v \text{ is eliminated with a neighbor in } G'] = 1/2.$$
The above lemma directly implies the following structural theorem.

Theorem 5. Let \(v, u \) be unit vectors with \((v, u) = \frac{1}{2} \), and \(u = \frac{1}{2} v + \sqrt{\frac{3}{2}} u' \), \(u' \perp v \), and let \(\{t_j\} \) be a \((\eta, \delta)-\)cover, for some \(\delta \geq \eta^{-1}(1) \), and \(t_j \perp u \) for all \(j \). Then rewriting each \(t_j \) as \(t_j = \alpha_j \left(\frac{\sqrt{3}}{2} v + \frac{\sqrt{3}}{2} u' \right) + \sqrt{1 - \alpha_j^2} t_j' \) for some \(\alpha \in [-1, 1] \) and unit vector \(t_j' \), orthogonal to both \(v \) and \(u' \), we have

\[
\Pr[\exists j : (\zeta, t_j') \geq \frac{(1 - o(1)) \eta}{\sqrt{1 - \alpha_j^2}}] \geq (1 - o(1)) \delta.
\]

This bound holds even when the probability is restricted to \(j \) s.t. \(|\alpha_j| \leq \frac{1}{\sqrt{1 + o(1)}} \).

Proof. The decomposition of \(t_j \) follows immediately from the observation that \(0 = (t_j, u) = -\frac{1}{2} (t_j, v) + \sqrt{\frac{3}{2}} (t_j, u') \). Lemma 5 implies that \(\{t_j\} \) is a \((\eta, (1 - o(1)) \delta)-\)cover even when restricted to indices \(J = \{j : |\alpha_j| \leq \frac{1}{\sqrt{1 + o(1)}} \} \). Now let \(v' = \frac{\sqrt{3}}{2} v + \frac{1}{2} u' \), and choose \(\rho = (\log \eta)^{3/4} \). Then we have

\[
\delta \leq 2 \Pr[\exists j \in J : (\zeta, t_j') \geq \eta] = 2 \Pr[|\zeta, v' \geq \rho|] + \Pr[|\zeta, v' \geq \rho|] \eta \leq 2N(\rho) + \Pr[|\zeta, v' \geq \rho|] \eta(1 - o(1)) \eta \leq 2N(\rho) + \Pr[|\zeta, v' \geq \rho|] \eta(1 - o(1)) \eta \leq 2N(\rho) + \Pr[|\zeta, v' \geq \rho|] \eta(1 - o(1)) \eta.
\]

Consider \(v \in V \) with neighbors \(\{u_i\} \) and 2-neighborhood \(\{w_i\} \) (all neighbors of various \(u_i \)). Write \(u_i = \frac{1}{2} v + \frac{\sqrt{3}}{2} u'_i \) and, for \(u_i \) and \(w_j \) neighbors, \(w_j = \frac{1}{2} u_i + \frac{\sqrt{3}}{2} w_i' \). Applying Theorem 5 for fixed \(u_i \) and \(t_j = w_i' \) gives

\[
w_j = -\frac{1}{2} u_i + \frac{\sqrt{3}}{2} w_i'
\]

\[
= \frac{1}{4} v - \frac{\sqrt{3}}{4} u_i + \frac{\sqrt{3}}{2} w_i'
\]

\[
= \frac{1}{4} v - \frac{\sqrt{3}}{4} u_i + \frac{\sqrt{3}}{2} (\alpha_j \left(\frac{\sqrt{3}}{2} v + \frac{1}{2} u_i \right) + \sqrt{1 - \alpha_j^2} w_i')
\]

\[
= \frac{1}{4} v + 3 \alpha_j v - \frac{\sqrt{3}}{4} (1 - \alpha_j^2) u_i + \frac{\sqrt{3}}{2} \sqrt{1 - \alpha_j^2} w_i'
\]

(12)
Lemma 6 (Measure Concentration). Let \(\{ y_j \} \) be a non-uniform \((\eta, N(\theta))\)-cover. Then for any \(\zeta \in \mathbb{R}^n \) having standard normal distribution, and \(\rho \geq 0 \),

\[
\Pr[\exists \zeta : (\zeta, y_j) \geq \eta - \| y_j \| \rho \geq N(\theta - \rho)].
\]

Proof. Let \(\gamma_n(\cdot) \) denote the normalized Gaussian measure on \(\mathbb{R}^n \). The theorem of measure concentration for Gaussian space \((\mathbb{R}^n, \gamma_n)\) states that for any measurable set \(A \subseteq \mathbb{R}^n \), if \(\gamma_n(A) = N(\theta) \), then for any \(\rho \geq 0 \) the set \(A_\rho = \{ \zeta \in A : \| \zeta - z \| \leq \rho \} \) has measure at least \(N(\theta - \rho) \).

Let \(A = \{ \zeta : \| \zeta \| \geq \eta / \| y_j \| \} \). By our assumption, this set has measure at least \(N(\theta) \). Since \(\{ y_j / \| y_j \| \} \) are unit vectors, one can readily verify that in this case \(A_\rho = \{ \zeta : \| \zeta - y_j \| / \| y_j \| \geq \eta \} \). Applying measure concentration, the claim follows immediately. \(\square \)

We now use this lemma to prove a cover composition theorem.

Theorem 6 (Cover Composition). Let \(\{ x_i \} \) be a (uniform) \(c \)-inefficient \((\eta_1, \delta_1)\)-cover, and for each \(i \), let \(\{ y_{ij} \} \) be a (non-uniform) \((\eta_2, \delta_2)\)-cover such that \(y_{ij} \perp x_i \). Then

\[
\Pr[\exists i, j : (\zeta, x_i) \geq \eta_1 \land (\zeta, y_{ij}) \geq \eta_2 - \| y_{ij} \| \cdot \left(N^{-1}(\delta_2) + (\sqrt{c} + o(1)) \cdot \eta_1 \right)] \geq \delta_1 - o(\delta_1).
\]

Proof. If we associate with every vector \(x_i \) the halfspace \(\{ \zeta : (\zeta, x_i) \geq \eta_1 \} \), then the set corresponding to the cover is just the union of halfspaces. The idea is to upper-bound the measure of points in each halfspace not participating in the relevant set. Formally, let \(\rho = \rho(c, \eta_1) \) to be determined later. Then for each \(i \) we define

\[
\begin{align*}
H_i &= \{ \zeta : (\zeta, x_i) \geq \eta_1 \} \\
Z_i &= \{ \zeta \in H_i : \| \zeta \| \leq \eta_2 - \| y_{ij} \| \cdot \left(N^{-1}(\delta_2) + (\sqrt{c} + o(1)) \cdot \eta_1 \right) \}
\end{align*}
\]

Note that the theorem concerns a lower bound on the probability of the event \(\zeta \in H_i \cap Z_i \). First, we have to bound the measure of each \(Z_i \). For any fixed \(i \), applying Lemma 6 to the cover of \(\{ y_{ij} \} \), we get that \(\gamma_n(Z_i) \leq N(\rho \eta_i) \).

Using this bound, the independence of orthogonal components of a Gaussian vector, and the efficiency of \(x_i \), we get

\[
\Pr[\exists i, j : ((\zeta, x_i) \geq \eta_1) \land ((\zeta, y_{ij}) \geq \eta_2 - \| y_{ij} \| \cdot \left(N^{-1}(\delta_2) + \rho \eta_i \right))] = \gamma_n(H_i \cap Z_i) \geq \delta_1 - \sum_i \gamma_n(H_i \cap Z_i) \geq \delta_1 - \sum_i N(\eta_i) \cdot \gamma_n(Z_i) \geq \delta_1 - \delta_1 \cdot N(\eta_i)^{-(1+c)} \cdot \eta_i \cdot \max \gamma_n(Z_i) \geq \delta_1 - \delta_1 \cdot N(\eta_i)^{-(1+c)} \cdot N(\rho \eta_i),
\]

From Lemma 1 we have that \(N(\rho \eta_i) = o(N(\eta_i)^c) \) for \(\rho = \sqrt{c} + \Theta(\log \eta_i / \eta_i^2) \), and the theorem follows. \(\square \)

Remark 2. It is worth mentioning at this point that we think a much stronger version of Theorem 6 may be true. Specifically, the analysis in the proof may be tight, however, we believe, not when the \(\{ y_{ij} \} \) covers are themselves efficient. In that case, we believe that the \(\sqrt{c} \) factor could be replaced by \(O(c) \), which would be a much smaller price to pay for small constant \(c \). The improvement relies on a conjecture regarding measure concentration of efficient covers which would replace Lemma 6. We discuss this conjecture later.

We can use the composition theorem to obtain a result reminiscent of the chaining argument in [1]: it shows that whenever KMS fails (in expectation), for some large \(\eta \) we can find a \((\eta, \Omega(1))\)-cover containing few vectors.

Theorem 7. Let \(G = (V, E) \) be an \(n \)-vertex graph with maximum degree \(\Delta \), and identify the vertices \(V \) with a strict vector 3-coloring. Then if at least half the vertices \(v \) are bad for KMS', \((G, V, \varepsilon) \) with degree of inefficiency \(\varepsilon \), then there is some \(v \in V \) and some subset of its 2-neighborhood \(\{ w_j \} \subseteq \Gamma(V(v)) \) such that

1. Each \(w_j \) can be written \(w_j = (1 / 2 + \alpha_1) u_j + t_j \) for some vector \(t_j \perp v \), and \(\alpha_j \) satisfying \(|\alpha_j| \leq \sqrt{c/(1+c)} + o(1) \).

2. With probability at least \(\frac{1}{2} - o(1) \), there is some \(j \) for which

\[
(\alpha_j, v_j) \geq (3 - \alpha_j - 2(\sqrt{1 - \alpha_j^2 \sqrt{c}} - o(1)) \sqrt{\delta_e}).
\]

Proof. Take any \(v \in V \), and let \(\{ u_i \} \) and \(\{ w_j \} \) be its neighbors, and neighbors of neighbors, respectively. Write \(u_i = \frac{1}{\sqrt{2}} v + \sqrt{\delta_e} u_i' \) and, for \(u_i \) and \(w_j \) neighbors, \(w_j = \frac{1}{2} v + \sqrt{\delta_e} w_j' \). Then we may assume, by Lemma 4, that \(\{ u_i' \} \) and the sets \(\{ w_j' \} \), for every \(i \) are all uniform \((\sqrt{\delta_e}, \frac{1}{8})\)-covers which are at most \(c \)-inefficient.

For each \(i \), we now apply Theorem 5 for the cover \(\{ w_j' \} \), to obtain the vectors \((1 - \alpha_j^2) w_j' \), which are orthogonal to \(v \) and \(u_i' \), and form a non-uniform \((\lceil 1 - o(1) \rceil \sqrt{\delta_e}, \frac{1}{8} - o(1))\)-cover when restricted to \(j \) for which \(|\alpha_j| \leq \sqrt{c/(1+c)} + o(1) \).

Applying Theorem 6 for \(x_i = -u_i' \) and \(y_j = 1 - \alpha_j^2 w_j' \), and incorporating low order terms, we get

\[
\Pr[\exists i, j : ((\zeta, u_i') \leq -\sqrt{\delta_e}) \land ((\zeta, w_j') \geq \left(\sqrt{1 - \alpha_j^2 \sqrt{c}} - o(1) \right) \sqrt{\delta_e})] \geq \frac{1}{8} - o(1)
\]

Using the decomposition in equation 12, for any \(w_j \) in the 2-neighborhood of \(v \) we can write \(w_j = (1 / 2 + \frac{1}{2} \alpha_1) v + t_j \), where \(t_j = -\sqrt{\delta_e}(1 - \alpha_1) u_1 + \sqrt{\delta_e} \sqrt{1 - \alpha_1^2 w_j' \max \alpha_j} \) for any \(u_1 \) which is a neighbor of both \(v \) and \(w_j \), and the theorem then follows. \(\square \)

Now we prove Theorem 4 for the case of strict vector 3-coloring.

Proof of Theorem 4 (for strict coloring). Let \(c \) be the degree of inefficiency of the input, and suppose, for the
sake of contradiction, that at least half the vertices \(v \) are bad. Applying Theorem 7, we obtain a set of at most \(n \) vectors \(\{t_j\} \) so that with constant probability, some \(t_j \) has projection at least \(\frac{\alpha_i}{\sqrt{\Delta}} \) for some \(\alpha_i \). Noting that \(\|t_j\| = \frac{\alpha_i}{\sqrt{\Delta}} \sqrt{3} \) for some \(\alpha_i \), we have:

\[
\Omega(1) \leq \Pr[|\epsilon_j| : \langle \epsilon_j, t_j \rangle \geq (\lambda_c(\alpha_i) - \epsilon(1))\sqrt{\Delta}]
\]

\[
\leq \sum_j N((\lambda_c(\alpha_i) - \epsilon(1))\sqrt{\Delta})
\]

\[
\leq n \cdot \max N((\lambda_c(\alpha_i) - \epsilon(1))\sqrt{\Delta})
\]

\[
\leq n \cdot N\left(\min_{|\alpha| \leq \sqrt{\epsilon/(1 + \epsilon)}} (\lambda_c(\alpha) - \epsilon(1)) \cdot \sqrt{\Delta} \right)
\]

Define \(t(\alpha) = \min_{|\alpha| \leq \sqrt{\epsilon/(1 + \epsilon)}} \lambda_c(\alpha) \), and note that

\[
\lim_{\epsilon \to 0} t(\alpha) = \frac{\alpha_i}{\sqrt{\Delta}}.
\]

Therefore, for \(\tau > \frac{\alpha_i}{\sqrt{\Delta}} \), there is some solution \(c_i(\tau) \geq \frac{\alpha_i}{\sqrt{\Delta}} + o(1) \). Thus, using the degree of inefficiency of the input, the above inequality gives

\[
\Omega(1) \leq n \cdot N\left(\sqrt{\Delta} t(\alpha)^2 - o(1) \right)
\]

\[
\leq n \cdot \Delta^{1 - o(1)}
\]

\[
\leq n \cdot \Delta^{1 - \tau} \cdot o(1) = o(1)
\]

which is a contradiction. \(\square \)

3-step walks. The above technique can be generalized to a three step argument as follows: Consider Theorem 7 as one step (ignoring the existence of intermediate vertices \(\{u_i\} \)), and use a variant of the two step walk argument above where the second step is as in Theorem 7. This approach yields the following result when combined with Theorem 12:

Theorem 8. For 3-colorable graphs, one can find an \(O(n^{0.212299\ldots}) \) coloring in polynomial time.

5. NON-strict vector coloring and vector chromatic number < 3

We sketch a generalization of our analysis (specifically, the analysis in section 4) which applies to KMS’ when the vector 3-coloring in the input is not necessarily strict. The result is the same as given in Section 4 for strict vector 3 coloring. When the input graph has vector chromatic number strictly < 3, this generalization yields a further improvement.

First, we adapt the notion of inefficiency of input of algorithm KMS’ to the present setting:

Definition 5. Given a graph \(G \) with vector \((1 + \frac{1}{2})\)-coloring \(\{v_i\} \) and maximum degree \(\Delta \), the parameter \(\tau > 0 \) is c-inefficient for \((G, \{v_i\})\) if \(N(\sqrt{\frac{1 + a}{1 - a^2}}) = (8\Delta)^{-1/(1 + \epsilon)} \).

Theorem 9. Let \(a \geq \frac{1}{2} \). For every \(\tau > \frac{1 + a}{1 - a^2} \) there exists \(c_1(\tau) > 0 \) such that for all \(c < c_1(\tau) - o(1) \), and any graph \(G \) with maximum degree \(\leq n^\epsilon \), if the parameter \(\tau \) is (at most) c-inefficient for \((G, \{v_i\})\), then KMS’ \((G, \{v_i\})\) returns an independent set of expected size \(\Omega(N(c)n) \). Furthermore, \(c_1(\tau) \) satisfies

\[
c_1(\tau) \equiv \sup \left\{ c \geq c_1(\tau) \right\}
\]

where

\[
\lambda_c(\alpha) \equiv 1 + a(1 - \alpha) - \sqrt{1 - a^2} \frac{\alpha}{\sqrt{1 - (1 - a^2)}}
\]

For a “one-step analysis” (e.g. the original KMS result), it is clear if the inner product between neighbors is \(< \frac{1}{2} \), then the analysis only improves. The difficult case in the two step walk argument seems to occur when we walk from \(v \) to \(u \) to \(w \), where \((u, w) < (u, v) \). This case can be avoided using a simple binning argument.

Proof of Theorem 9. As before, we may assume, by Lemma 3, that every vertex can be eliminated with probability \(\Omega(1) \). Consider a partition of the edges into \(n \) bins \(\{E_k\} \) by inner product of endpoints, i.e. \(E_k = \{ v, w \} : E : \langle v, w \rangle \in \left[\frac{1}{2} + \frac{a}{\log n}, \frac{1}{2} + \frac{a + 1}{\log n} \right] \}. For every \(v \) there is one bin \(E_k \) such that

\[
\Pr[v \text{ is eliminated with } \Gamma_{E_k}(v) \in V(\varepsilon)] = \Omega(\frac{1}{\log n}).
\]

Let us concentrate on the (directed) subgraph of these edges. To simplify the argument, assume that for each \(v \) there is a fixed value \(a_v \in [1, \epsilon] \) such that \((v, u) = -a_v \) for all neighbors \(u \) of \(v \) in the relevant subgraph. We can do this because the resulting error terms (projections along vectors of norm \(O(\frac{1}{\log n}) \)) are negligible. Note, let \(u \) be the vector for which this \(a_v \) is smallest (w.l.o.g. \(a_v = a \)), let \(\{u_i\} \) be its neighbors, and \(\{w_j\} \) the neighbors of \(\{u_i\} \), where \(w_j = -b_j u_i + \sqrt{1 - b_j^2} w_j' \) (for \(w_i \) neighbors of \(u_i \)). Arguing as before, one can show

\[
w_j = \left(a_{u_i} + \alpha_j \sqrt{1 - a^2} \right) v - \left(b_j \sqrt{1 - a^2} - \alpha_j a \sqrt{1 - b_j^2} \right) u_i + \left(1 - \alpha_j^2 \right) \left(1 - b_j^2 \right) w_j'
\]

where w.l.o.g. \(|\alpha_j| \leq \frac{\sqrt{\epsilon}}{1 + \epsilon} \). Moreover, the above decomposition satisfies

\[
\Pr \left[\exists i, j : \langle \epsilon_j, u_i \rangle \leq \sqrt{\frac{1 + a}{1 - a} \varepsilon} \right] \wedge \left(\langle \epsilon_j, w_j' \rangle \geq \rho_{ij} \sqrt{\frac{1 + b_j}{1 - b_j} \varepsilon} \right) = \Omega(1)
\]

for some

\[
\rho_{ij} = 1 - \sqrt{1 - \alpha_j^2 - \sqrt{\epsilon} - o(1)}
\]

Now, letting \(t_j \) be the component of \(w_j \) orthogonal to \(v \), it suffices to show that the above probability implies a projection of at least \(\min \lambda_c(\alpha_j) \) for \(t_j/\|t_j\| \). For brevity, write \(t_j = -\theta_j u_i' + \alpha_j w_j' \). Since the individual components \(u_i' \) and \(w_j' \) have projection at least \(\frac{1 + a}{1 - a} \varepsilon \) and \(\rho_{ij} \sqrt{1 + a}/(1 - a) \varepsilon \), respectively, and noting that \(\rho_{ij} < 1 \),
we only need to show that

$$\frac{\theta_{ij}}{\kappa_{ij}} \geq a \sqrt{\frac{1 - \alpha_{ij}}{1 - \alpha_{ij}^2}}$$

(the corresponding ratio for strict vector \((1 + \frac{1}{a})\)-coloring). But this follows easily from the assumption that \(a \leq b_i\). □

6. A BETTER Rounding ALGORITHM

In this section we present a rounding algorithm for strict vector 3-coloring with odd-cycle constraints, for which we are able to prove a better guarantee, namely, Theorem 3.

Let us first introduce some notation. Let \(\{v_i\}\) be a strict vector 3-coloring of graph \(G\). For any set of vertices \(S\), we define \(\Gamma(S) = \cup_{v \in S} \Gamma(v)\). For every \(v_i\) and \(\theta > 0\), define

$$V^{\theta}_{i} = \{v_j \in \Gamma(\Gamma(v_i)) \setminus \{v_i\} : \langle v_i, v_j \rangle \geq \theta\}.$$

We will denote by \(G_i^\theta\) the subgraph of \(G\) induced on \(V^{\theta}_{i}\). For all \(v_i \neq v_j\), we define the components normal to \(v_i\) as

$$t^\theta_{ij} = \frac{v_j - \langle v_i, v_j \rangle v_i}{\|v_j - \langle v_i, v_j \rangle v_i\|}.$$

Observation 1. Let \(\theta > 0\) and vectors \(\{v_i\}\) be a vector 3-coloring. Then for any vector \(v_i\), the set \(\{t^\theta_{ij} \mid v_j \in V^{\theta}_{i}\}\) is a (non-strict) vector \(3/(1 + 2\theta^2)\)-coloring of \(V^\theta_i\).

Observation 2. Let \(\alpha \in \mathbb{R}\) and vectors \(\{v_i\}\) be a vector 3-coloring satisfying the odd cycle constraints, and let \(\theta = \frac{\alpha}{2} + \frac{1}{2}\). Then we have the following:

1. If \(\alpha > 0\) then \(V^{\theta}_{i}\) is an independent set.
2. For any odd positive integer \(k \geq 3\), if \(\alpha > -1/k\) then \(V^{\theta}_{i}\) contains no odd cycles of length \(\leq k\).

Proof. In case (1), an edge \((v_1, v_2)\) (where \(v_1 \neq v_2\)) violates the 5-cycle constraint if \(v_1, v_2, v_1, v_2, v_2, v_1\) are a 2-neighborhood of \(v_1\) and \(v_2\). Case (2) is an immediate application of the odd cycle constraints to potential odd cycles in \(V^{\theta}_{i}\) and vector \(v_i\). □

So far, our analysis has relied on constructing \((\eta, \Omega(1))\)-covers for large \(\eta\) in order to contradict the assumption that \(KMS^*\) fails on certain inputs. We have always made the pessimistic assumption that these covers may contain up to \(\Omega(n)\) vectors. Clearly the analysis is improved if the number of these vectors is much less. Otherwise, assuming some such cover has many vectors, we use the fact that these covers are associated with original vectors (from the vector coloring) \(\{v_j\}\) of the form \(v_i = \theta_j v + \sqrt{1 - \theta_j^2} w_j\) for \(\theta_j \approx \frac{1}{2}\).

This is a kind of non-degeneracy, namely, the vectors \(\{w_j\}\) have a large projection in a common direction. In this case \(G^\theta_i\) has no short odd cycles and a vector 3 - \(\delta\)-coloring (for some \(\delta = \Omega(1)\)) and we exploit that.

Now, we present the following rounding algorithm, which gives a better guarantee than \(KMS^*\) when the graph contains no short cycles of odd length. Here, \(G\) denotes an \(n\)-vertex graph.

KMS-Aux(G, \(\{v_i\}\))

- If \(G\) is an independent set, output all vertices. Otherwise, let \(V' = \{v_i\}\) and construct set \(I\) as follows:
 - For every \(v_i\), let \(k_i = \max\{k \mid v_i, \Gamma(v_i), \ldots, \Gamma^k(v_i)\}\) are all ind. sets.
 - Let \(v_i\) and \(l \in \{0, \ldots, k_i\}\) be such that the ratio \(|\Gamma^{l+1}(v_i)/|\Gamma^l(v_i)|\) is minimized. Add \(\Gamma^l(v_i)\) to \(I\).
 - If most \(n/2\) vertices remain in \(V\) after removing \(\Gamma^l(v_i)\) and \(\Gamma^{l+1}(v_i)\), remove only \(\Gamma^l(v_i)\). Otherwise, remove both sets and repeat.
 - Let \(G'\) be the subgraph of \(G\) induced on \(V\). Return the larger of \(I\) and \(KMS(G', V')\).

The following result describes the performance guarantee of algorithm KMS-Aux.

Theorem 10. Let \(a \geq \frac{1}{2}\), and let \(k \geq 2\) be an integer. Then for any graph \(G\) with no odd cycles of length \(\leq 2k + 1\) we have the following:

1. The set \(I\) produced by KMS-Aux(G, \(\{v_i\}\)) has size \(\Omega(n^{1-1/(k+1)})\).
2. For every \(\tau > \left(\frac{1 + \frac{1}{a}}{1 + \frac{1}{a}} \cdot \frac{1}{k + 1} \right)^{-1}\) there exists \(c_\tau(\gamma) > 0\) such that for all \(c < c_\tau(\gamma)\) if graph \(G\) has non-strict \(1 + \frac{1}{a}\)-coloring \(\{v_i\}\), maximum degree \(\leq n^\gamma\), then KMS-Aux produces an independent set of size \(\Omega(N(\varepsilon)n)\), for \(\varepsilon\) which is \(c\)-inefficient for \((G, \{v_i\})\).

Furthermore, \(c_\tau(\gamma)\) satisfies

$$c_\tau(\gamma) = \sup \left\{ c \mid \min_{a^2 \leq c/(1 + \varepsilon)} \lambda^a(\alpha)^2 \geq \frac{1 + c}{\tau} - (k - 1) \cdot \frac{1 - a}{1 + a} \right\}.$$

Proof. To prove (1), note that for any vector \(v\), the sets \(\{v\}, \Gamma(v), \ldots, \Gamma^k(v)\) are all independent sets (otherwise, an edge between vertices of \(\Gamma^l(v)\) with paths to \(v\) constitute an odd cycle of length \(2l + 1\)). Moreover one of the \(k + 1\) ratios \(\frac{|\Gamma^l(v)|}{|\Gamma^{l+1}(v)|}, \ldots, \frac{|\Gamma^{k}(v)|}{|\Gamma^{k+1}(v)|}\) must be at most \(n/(1+k+1)\).

Hence all the sets added to \(I\) are a \(O(n^{-1/k})\)-fraction of the sets removed from \(V'\). Since \(\left|\left|\Gamma^l(v)\cup \Gamma^{l+1}(v)\right|\right| \geq n/2\), it must be the case that \(I = \Omega(n^{1-1/(k+1)})\).

To prove (2), assume first that while constructing \(I\), there is always some vector \(v\) with 2-neighborhood of size \(|\Gamma(\Gamma(v))| \geq N(\varepsilon)k^{-1} \cdot n\). This implies that for such a vector \(v\), one of the \(k - 1\) ratios \(\frac{|\Gamma^l(v)|}{|\Gamma^{l+1}(v)|}, \ldots, \frac{|\Gamma^k(v)|}{|\Gamma^{k+1}(v)|}\) is at most \(1/N(\varepsilon)\). Above, as this implies that \(| I | = \Omega(N(\varepsilon)n)\).

Otherwise, after \(I\) is constructed, all 2-neighborhoods in \(G\) have size at most \(N(\varepsilon)k^{-1} \cdot n\). We may assume that \(| V' | \geq n/4\), since otherwise \(| I | = \Omega(n)\). Assume for the sake of contradiction that KMS*(G', V') does not produce an independent set of expected size \(\Omega(N(\varepsilon)n)\). Then, following the analysis in Section 5, there exists a set \(\{t_i\}\) of unit vectors associated with a 2-neighborhood in \(G'\), such that \(Pr \left[\exists i : \langle \zeta, t_i \rangle \geq \lambda^c(\alpha) \cdot \sqrt{\frac{1 + c}{1 + a}} = \Omega(1) \right]\) for some \(|a| \leq \sqrt{c}(1 + \varepsilon)\). By our choice of \(c\), we have that \(\lambda^c(\alpha) > \sqrt{\frac{1 + c}{\tau} - (k - 1) \cdot \frac{1 - a}{1 + a}} + \rho\) for some constant \(\rho > 0\). Hence,
we have $|t_j| \cdot N(\varepsilon) \frac{1+\varepsilon-\varepsilon}{1+\varepsilon} > \tilde{\Omega}(1)$. But this contradicts our assumptions regarding the inefficiency of ε and size of 2-neighborhoods in G'. \qed

Using the earlier observations, we have the following corollary of Theorem 10.

Corollary 1. Let $\alpha > -\frac{1}{3}$, and define $\theta_\alpha \circ | = 1 + \frac{1}{3},
\alpha_\alpha = 3 + 2\alpha + 3\alpha^2
\frac{5 - 2\alpha - 3\alpha^2}{2}, \quad \text{and} \quad \kappa_\alpha = \frac{-3 - 1/\alpha}{2}.
\]

Let G be a graph with vector 3-coloring $\{v_i\}$ which satisfies odd cycle constraints. Then for any v_i, if the maximum degree in G is bounded by $|V_{\alpha}^{\theta_\alpha}|^{\tau^3}$, $\text{KMS-Aux}(G_\alpha, \{t_j|v_j \in V_{\alpha}^{\theta_\alpha}\})$ returns an independent set of size $\Omega(|V_{\alpha}^{\theta_\alpha}|^{\varphi(\alpha, \tau^3)})$, where

1. for $\alpha \geq 0$, $\varphi(\alpha, \tau) = 1$, and
2. for $-\frac{1}{3}, $ $\varphi(\alpha, \tau) = 1 - \min \left\{ \frac{1}{k}, \frac{1 - a_\alpha}{1 + a_\alpha}, \frac{1 + c_\alpha}{\kappa_\alpha} - o(1) \right\}.$

(Here we set $c_\alpha(\tau) = 0$ when otherwise undefined.)

Now, we present our final rounding algorithm for strict vector 3-coloring.

KMS”(G, \{v_i\})

- Run KMS"(G, \{v_i\}), and for every v_i and $\theta > 0$, run KMS-Aux($G_{\alpha}, \{t_j|v_j \in V_{\alpha}^{\theta}\}$) return the largest of these independent sets.

Using the notation from Corollary 1, we state the main result regarding the performance of KMS”.

Theorem 11. For every $\tau > \frac{1}{3}$, there exists $c_1(\tau) > 0$ such that for all $\epsilon < \min\{\frac{1}{2}, c_1(\tau)\}$, if the input to KMS” has degree of inefficiency $\leq c$ and maximum degree τ, then more than half the vertices must be good. Moreover, c_1 is defined as follows:

$$c_1(\tau) \equiv \sup \left\{ c \mid \forall \alpha \in \left[\sqrt{\frac{\epsilon}{1+c}}, \frac{\epsilon}{1+c} \right] \frac{\lambda_\alpha(\alpha)^2 \cdot \varphi(\alpha, 1 + c)}{\lambda_\alpha(\alpha)^2 \cdot \varphi(\alpha, 1 + c) - \frac{1 + c}{\tau} - \frac{1}{3} \cdot \rho} > 1 + c - \frac{1}{\tau} - \frac{1}{3} \cdot \rho \right\}.$$\]

Proof. By our choice of c, there is some fixed constant $\rho = \rho(c)$ such that for any α satisfying $\alpha^2 \leq 1/(1+c)$ we have

$$\lambda_\alpha(\alpha)^2 \cdot \varphi(\alpha, 1 + c) > 1 + \frac{1}{\tau} - \frac{1}{3} \cdot \rho. \quad (14)$$

Suppose, first, that $|V_{\alpha}^{\theta_\alpha}| \leq (N(\varepsilon)\varphi(\alpha, \tau^3))^{\frac{1}{\lambda_\alpha(\alpha)}}$ for every α satisfying $\alpha^2 \leq 1/(1+c)$ and every vertex v_i, where $\tau_i(\epsilon, \alpha) = \left(1 + \frac{1}{1+c}\right)(\lambda_\alpha(\alpha))^2$. Assume, for the sake of contradiction that KMS"($G, \{v_i\}$) does not return an independent set of expected size $\Omega(N(\varepsilon)\gamma^3)$. Then, let $\{w_j\}$, $\{t_j\}$ and $\{s_j\}$ be as in Theorem 7, and let $t_j = t_j / \|t_j\|$. It is easy to see that for some α the probability of some t_j having projection $\geq \lambda_\alpha(\alpha)^2 \sqrt{3\varepsilon}$ is still $\Omega(1/\log n)$ when restricted to j for which $|a_j - \alpha| \leq \frac{1}{\log n}$. This implies that $|V_{\alpha}^{\theta_\alpha}| N(\sqrt{3\varepsilon}) \lambda_\alpha(\alpha)^2 - o(1) = \Omega(1/\log n)$. But, together with the assumed bound on $|V_{\alpha}^{\theta_\alpha}|$ and the inefficiency of ε, this contradicts (14).

Now, suppose on the contrary that for vertex v_i and some α satisfying $\alpha^2 \leq 1/(1+c) + o(1)$ (note that $\alpha > -\frac{1}{3}$ by our choice of c), we have $|V_{\alpha}^{\theta_\alpha}| > (N(\varepsilon))^{\varphi(\alpha, \tau^3)}$. Then the maximum degree in G is bounded by $|V_{\alpha}^{\theta_\alpha}|^{\tau^3}$, where $\tau_2 = \varphi(\alpha, \tau^3)$. Hence, by Corollary 1, KMS-Aux($G_{\alpha}, \{t_j|v_j \in V_{\alpha}^{\theta_\alpha}\}$) returns an independent set of expected size $|V_{\alpha}^{\theta_\alpha}|^{\varphi(\alpha, \tau^3)} \geq (N(\varepsilon))^{\varphi(\alpha, \tau^3)}$. Note that by (14) we have $\tau_1(\alpha, \alpha) \leq \tau_2$, which in turn implies that $\varphi(\alpha, \tau^3) \leq \varphi(\alpha, \tau^3)$. This gives the desired bound above. \qed

7. CONCLUSIONS

We have shown some improvement in the analysis of vector coloring. We strongly believe that there remains much room for improvement. One starting point is detailed in the conjecture of Appendix B.

8. REFERENCES

APPENDIX

A. A MODIFIED BLUM KARGER ALGORITHM

In this section we give a summary of the technique of Blum and Karger [3], which relies on the coloring tools of Blum [2]. This is in fact a slight strengthening of the technique, and allows us to present the current result in the same framework as those of [2], [3]. Our main result is the following, whose proof we sketch later:

Theorem 12. Let A be a polynomial time algorithm that takes an n-vertex 3-colorable graph with maximum degree at most Δ as input, and makes progress towards a $f(n, \Delta)$-coloring (where f is monotonically increasing in n and Δ). Then there is a polynomial time algorithm which, for any n-vertex 3-colorable graph, finds an $\tilde{O}(\min_{1 \leq \Delta \leq n}(f(n/2, \Delta) + (n/\Delta)^{3/5}))$ coloring.

Remark 3. As a corollary of the proof technique of [3], one could show a variant of the above result, where the algorithm A requires only that the input graph be orientable in such a way that the maximum out-degree is at most Δ. Since our requirement of A is weaker, the above theorem is a slight strengthening of the approach in [3].

This immediately implies the following results of Blum [2] and Blum and Karger [3], respectively.

Corollary 2. For 3-colorable graphs, using the greedy $\Delta + 1$-coloring approach, one can find an $\tilde{O}(n^{3/5})$ coloring.

Corollary 3. For 3-colorable graphs, using the KMS guarantee of progress towards an $O(\Delta^{1/3})$-coloring in Theorem 1, one can find an $\tilde{O}(n^{1/14})$ coloring.

In order to explain the approach, we use the notion of progress towards a coloring, as defined in [2].

Definition 6. For an n-vertex 3-colorable graph G, and monotonically increasing function $f : \mathbb{N} \rightarrow \mathbb{N}$, we define progress towards a $f(n)$-coloring as finding any one of the following objects:

- **Progress Type 1** An independent set of size $\Omega(n/f(n))$.
- **Progress Type 2** An independent set S having a neighborhood of size $|\{v \in \Gamma(u)\}| = O(|S| f(n))$.
- **Progress Type 3** Two vertices that must have the same color in any legal 3-coloring of G.

We will need the following (slightly simplified) lemma from [2].

Lemma 7. Let $f(n)$ be any monotonically increasing function, then for an n-vertex 3-colorable graph G. In order to find an $O(f(n))$-coloring, it suffices to have an algorithm which makes progress towards a $f(n)$-coloring.

The proof of Theorem 12 relies mainly on the following result, a slightly weaker version of which follows from the techniques outlined in [3]. We omit the proof from the current version.

Theorem 13. For any 3-colorable graph $G = (V, E)$, and $d = d_{avg}$ there is a polynomial time algorithm to make progress towards an $\tilde{O}\left(\left\lfloor \frac{n}{d} \right\rfloor^{3/5}\right)$-coloring.

Using this theorem, we can now give a generalization of [2] and [3]:

Proof of Theorem 12. By Lemma 7, it suffices to show that we can make progress towards the desired coloring. Let Δ_0 be the value of Δ minimizing $f(n, \Delta) + (n/\Delta)^{3/5}$ (if it is not computable, we can try all values of Δ). If the average degree is at least Δ_0, then by Theorem 13, we can make progress towards an $O((n/\Delta_0)^{3/5})$-coloring. Otherwise, remove one by one vertices of degree $> \Delta_0$ (this eliminates at most $\frac{2}{3}$ vertices), obtaining a subgraph G' with maximum degree at most Δ_0. Apply algorithm A to G' to make progress towards an $O(f(n/2, \Delta_0))$-coloring.

B. A NEW GEOMETRIC CONJECTURE AND IMPLICATIONS FOR GRAPH COLORING

We present a geometric conjecture which, if true, would yield the following result when used in the context of the KMS$^+$ analysis:

Theorem 14. For 3-colorable graphs, one can find an $O(n^{0.991})$ coloring in polynomial time.

Recall Lemma 6, which uses measure concentration to show that an (η, δ) cover grows fast (in measure) as ε shrinks. This lemma can be loosely rephrased as follows: if η is tight for an $(\eta, \frac{1}{2})$ cover $\{v_i\}$ (i.e. $Pr[\max_i(|\zeta_i|, v_i) \leq \eta] = \frac{1}{2}$), then with very high probability the maximum projection $\max_i(|\zeta_i|, v_i)$ is very close to η. This phenomenon is known as measure concentration.

While measure concentration was used to obtain a tight analysis in [1], we believe that in our case it is suboptimal. Specifically, the theorem of measure concentration states that for any set A of measure $\frac{1}{2}$, the set of radius r around A (that is, $A_r = \{z : \exists z \in A : |z - z| \leq r\}$) has measure at least $1 - N(r)$. However, compare this to the case of an $(\varepsilon, \frac{1}{2})$ cover of mutually orthogonal unit vectors $\{v_i\}$ (this cover is at most $O(1)$-inefficient), and taking $r = \varepsilon$, we see that the set $\{z : \exists z \in A_r : |z - z| \leq r\}$ has measure $1 - e^{-\tilde{O}((N(r) - \delta^2)^{3/2})}$, which grows much faster.

Drawing on the intuition that measure is least concentrated around a set which is “closest” to a half-space, we conjecture that the worst configuration is a regular simplex of unit vectors, whose center is far from the origin.

Conjecture 1. For any uniform (ε, δ)-cover $\{u_i\}_{i=1}^k$, if $\{v_i\}_{i=1}^k$ are mutually equidistant unit vectors which also form an (ε, δ)-cover, then for any $\rho \geq 0$

$$Pr[\max_i(|\zeta_i|, u_i) \leq \varepsilon - \rho] \leq Pr[\max_i(|\zeta_i|, v_i) \leq \varepsilon - \rho]$$

For efficient covers this would give the following corollary:

Conjecture 2. For any constants $c > 0$ and $0 \leq \delta < 1$, if $\{u_i\}$ is an $(\varepsilon, \frac{1}{2})$-cover which is at most c-inefficient, then it is also a $(1 - \delta)(1 - N(\varepsilon)c)\hat{e}^{2(1+c)-\delta^2(1)}$-cover.

Using this in place of Lemma 6 would yield the stated improvement.