# Logic-based Preference Modelling in Combinatorial Domains

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Yann Chevaleyre (Paris), Jérôme Lang (Toulouse) and Joel Uckelman (Amsterdam)

#### Talk Outline

- Why combinatorial domains?
- Logic-based preference representation with weighted formulas
- Results on expressive power, succinctness, complexity
- An application to combinatorial auctions
- Conclusion

#### **Preferences in Combinatorial Domains**

I'm interested in *collective decision making*: mapping the individual preference profiles of independent agents into a joint decision.

The alternatives often have a *combinatorial structure:* they are characterised by a tuple of variables ranging over a finite domain.

#### Examples:

- Allocate n indivisible goods to m agents:  $m^n$  alternatives
- Elect a committee of size k, from n candidates:  $\binom{n}{k}$  alternatives

## Weighted Propositional Formulas

Let PS be a set of propositional symbols (goods, candidates) and let  $\mathcal{L}_{PS}$  be the propositional language over PS.

A goal base is a set  $G = \{(\varphi_i, \alpha_i)\}_i$  of pairs, each consisting of a consistent propositional formula  $\varphi_i \in \mathcal{L}_{PS}$  and a real number  $\alpha_i$ .

The utility function  $u_G$  generated by G is defined by

$$u_G(M) = \sum \{\alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i\}$$

for all models  $M \in 2^{PS}$ . G is called the *generator* of  $u_G$ .

Example:  $\{(p \lor q \lor r, 5), (p \land q, 2)\}$ 

## Languages

Let  $H \subseteq \mathcal{L}_{PS}$  be a syntactical restriction on *formulas* and let  $H' \subseteq \mathbb{R}$  be a set of allowed weights *weights*.

Then  $\mathcal{L}(H, H')$  is the language given by the class of goal bases conforming to restriction H and H'. Examples:

- $\mathcal{L}(pcubes, pos)$ : the language of positive cubes (conjunctions of positive literals) with positive weights
- $\mathcal{L}(k\text{-}clauses, all)$ : clauses of length  $\leq k$  with arbitrary weights

Question: Are there simple restrictions on goal bases such that the utility functions they generate enjoy simple structural properties?

# **Some Expressivity Results**

| Formulas                     | Weights  |           | Utility Functions            |
|------------------------------|----------|-----------|------------------------------|
| cubes/clauses/all            | general  | =         | all                          |
| positive cubes/formulas      | general  | =         | all                          |
| positive clauses             | general  | =         | normalised                   |
| strictly positive formulas   | general  | =         | normalised                   |
| k-cubes/clauses/formulas     | general  | =         | k-additive                   |
| positive $k$ -cubes/formulas | general  | =         | k-additive                   |
| positive $k$ -clauses        | general  | =         | normalised $k$ -additive     |
| literals                     | general  | =         | modular                      |
| atoms                        | general  | =         | normalised modular           |
| cubes/formulas               | positive | =         | non-negative                 |
| clauses                      | positive | $\subset$ | non-negative                 |
| strictly positive formulas   | positive | =         | normalised monotonic         |
| positive formulas            | positive | =         | non-negative monotonic       |
| positive clauses             | positive | $\subset$ | normalised concave monotonic |

## **Comparative Succinctness**

Let L and L' be two languages (classes of goal bases).

L is no more succinct than L' ( $L \leq L'$ ) iff there exist a mapping  $f: L \to L'$  and a *polynomial* function p such that:

- $u_G \equiv u_{f(G)}$  for all  $G \in L$  (they generate the same functions); and
- $size(f(G)) \leq p(size(G))$  for all  $G \in L$  (polysize reduction).

#### Some Succinctness Results

```
\mathcal{L}(pcubes, all) \perp \mathcal{L}(complete\ cubes, all)
\mathcal{L}(pcubes, all) \prec \mathcal{L}(cubes, all)
\mathcal{L}(pcubes, all) \prec \mathcal{L}(positive, all)
\mathcal{L}(pclauses, all) \prec \mathcal{L}(clauses, all)
\mathcal{L}(pcubes, all) \perp \mathcal{L}(pclauses, all)
\mathcal{L}(cubes, all) \sim \mathcal{L}(clauses, all)
```

**Ulle Endriss** 

## **Computational Complexity**

Other interesting questions concern the complexity of reasoning about preferences. Consider the following decision problem:

Max-Utility(H, H')

**Given:** Goal base  $G \in \mathcal{L}(H, H')$  and  $K \in \mathbb{Z}$ 

**Question:** Is there an  $M \in 2^{PS}$  such that  $u_G(M) \geq K$ ?

Some basic results are straightforward:

- MAX-UTILITY(H, H') is in NP for any choice of H and H', because we can always check  $u_G(M) \geq K$  in polynomial time.
- MAX-UTILITY (all, all) is NP-complete (reduction from SAT).

More interesting questions would be whether there are either (1) "large" sublanguages for which MAX-UTILITY is still polynomial, or (2) "small" sublanguages for which it is already NP-hard.

## **Some Complexity Results**

- Max-Utility(*literals*, *all*) is in P.
- MAX-UTILITY(positive, positive) is in P.
- MAX-UTILITY (k-clauses, positive) is NP-complete for  $k \geq 2$ .
- MAX-UTILITY (k-cubes, positive) is NP-complete for  $k \geq 2$ .
- MAX-UTILITY (positive k-clauses, all) is NP-complete for  $k \geq 2$ .
- MAX-UTILITY (positive k-cubes, all) is NP-complete for  $k \geq 2$ .

### **Combinatorial Auctions**

In a *combinatorial auction*, the auctioneer puts several goods on sale and the other agents submit bids for entire bundles of goods.

Weighted formulas can be used as *bidding languages* in CAs. We are working on *winner determination algorithms* for this setting.

- Integer Programming.
- Heuristic-guided search using branch-and-bound algorithms.
  - Nodes in the search tree are partial allocations.
  - Moves: allocating one more item.
  - Use heuristic to get upper bound on expected social welfare for a given branch and prune hopeless branches.
  - Need to develop heuristic for each language.

## **Experiments:** $\mathcal{L}(pcubes, positive)$



Figure: 20 bidders (around 1400 goals for 70 bidders)

### **Conclusion**

Compact preference representation in combinatorial domains is relevant to a number of applications, and weighted goals are an interesting class of languages for doing this. Ongoing work:

- Fill in missing technical results on expressivity, succinctness and complexity to get global picture
- ullet Aggregation operators other than  $\sum$  (particularly  $\max$ )
- Applications: negotiation, auctions, voting
- Y. Chevaleyre, U. Endriss, and J. Lang. *Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling*. Proc. KR-2006.
- J. Uckelman and U. Endriss. *Preference Representation with Weighted Goals: Expressivity, Succinctness, Complexity.* Proc. AiPref-2007.
- J. Uckelman and U. Endriss. Winner Determination in Combinatorial Auctions with Logic-based Bidding Languages. Under review.