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Knowledge Discovery from Data
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Knowledge discovery from data

The gap between data generation and data comprehension grows up

Knowledge Discovery techniques try to bridge this gap

Knowledge discovery is an inductive process aiming at identification of:

true, 

non-trivial, 

useful,

directly comprehensible

patterns in data

Pattern = rule, trend, phenomenon, regularity, anomaly, hypothesis,

function etc.

The patterns are useful for explanation of situations described by data,

for prediction of future situations and for buiding a strategy of 

intervention
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What form of a pattern:  real-valued function ?

Description of complex phenomena by recursive estimation techniques

applied on historical data  (Int. J. Environment and Pollution, vol.12, no.2/3, 1999)

The pattern shows the dependence of the size of the mouth of a river

in month k, represented by the relative tidal energy (RTEk), from RTEk-1, 

the river flow (Fk-1), the onshore wind (Wk-1) and the crude monthly

count of storm events (Sk) (Elford et al. 1999; Murray Mouth, Australia):

where the exponent 2.4 was tuned by „trial and error”, coefficients
A1, A2, A3, A4 were computed using a recursive least squares (RLS) 

approach, and εk is the model error

The pattern is used to produce a strategy for the opening of barrages

that will control the river flow, and thus, the size of the mouth
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What form of a pattern:  logical statements, rules ?

Description of complex phenomena by recursive estimation techniques

applied on historical data (Int. J. Environment and Pollution, vol.12, no.2/3, 1999)

The pattern shows the impact of urban stormwater on the quality of 
the receiving water (Rossi, Słowiński, Susmaga 1999; Lausanne and Genève).

Polluants: solid particles, organic matter, nitrogen and phosphorus, 
bacteria, viruses, lead and hydrocarbons, petroleum residues, 
pesticides etc.

Example of rule induced from empirical observation of some sites:

If the site is of type 2 (residential), and total rainfall is low (up to 8 
mm), and max intensity of rain is between 2.7 and 11.2 mm/h, then
total mass of suspended solids is < 2.2 kg/ha

The pattern involves heterogeneous data: nominal, qualitative and
quantitative
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Example of technical diagnostics

176 buses (objects)

8 symptoms (attributes)

Decision = technical state:

3 – good state (in use)

2 – minor repair

1 – major repair (out of use)

Discover patterns = find

relationships between

symptoms and the technical

state

Patterns explain expert’s

decisions and support

diagnosis of new buses
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Inconsistencies in Data – Rough Set Theory
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Inconsistencies in data – Rough Set Theory

Zdzisław Pawlak (1926 – 2006)

badmediumbadbadS8

badmediumbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediummediummediumS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiteraturePhysicsMathematicsStudent
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Inconsistencies in data – Rough Set Theory

Objects with the same description are indiscernible and create blocks
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Inconsistencies in data – Rough Set Theory

Objects with the same description are indiscernible and create granules
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Inconsistencies in data – Rough Set Theory

Another information assigns objects to some classes (sets, concepts)
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Inconsistencies in data – Rough Set Theory

Another information assigns objects to some classes (sets, concepts)
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Inconsistencies in data – Rough Set Theory

Another information assigns objects to some classes (sets, concepts)
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Inconsistencies in data – Rough Set Theory

The granules of indiscernible objects are used to approximate classes
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Inconsistencies in data – Rough Set Theory

Lower approximation of class „good”
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Inconsistencies in data – Rough Set Theory

Lower and upper approximation of class „good”
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CRSA – decision rules induced from rough approximations

Certain decision rule supported by objects from lower approximation
of class „good” (discriminant rule)

If Lit=good,  then Student is certainly good
{S5,S6}

Possible decision rule supported by objects from upper approximation
of class „good” (partly discriminant rule)

If Phys=medium & Lit=medium,  then Student is possibly good
{S3,S4}

Approximate decision rule supported by objects from the boundary
of class „medium” and „good”

If Phys=medium & Lit=medium,  then Student is medium or good
{S3,S4}
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Classical Rough Set Approach (CRSA)

Let U be a finite universe of discourse composed of objects (actions) 

described by a finite set of attributes

Sets of objects indiscernible w.r.t. attributes create granules of 

knowledge (elementary sets)

Any subset X⊆U may be expressed in terms of these granules:

either precisely – as a union of the granules

or roughly – by two ordinary sets, called lower and upper 

approximations 

The lower approximation of X consists of all the granules included in X

The upper approximation of X consists of all the granules having

non-empty intersection with X
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Classical Rough Set Approach (CRSA)

Example

Classification of basic traffic signs 

There exist three main classes of traffic signs corresponding to:

warning (W),

interdiction (I),

order (O).

These classes may be distinguished by such attributes as the 

shape (S) and the principal color (PC) of the sign 

Finally, we give few examples of traffic signs
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CRSA – example of traffic signs
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CRSA – example of traffic signs

Granules of knowledge:

W={a}Class, I={b,c}Class, O={d}Class

{a}S,PC, {b}S,PC, {c,d}S,PC

Explanation of classification in terms of granules generated by S and PC

class W includes sign a certainly and no other sign possibly

class I includes sign b certainly and signs b, c and d possibly

class O includes no sign certainly and signs c and d possibly

Lower and upper approximation of the classes by attributes S and PC:

lower_appx.S,PC(W)={a}, upper_appx.S,PC(W)={a}

lower_appx.S,PC(I)={b}, upper_appx.S,PC(I)={b,c,d}

lower_appx.S,PC(O)=∅, upper_appx.S,PC(O)={c,d}

boundaryS,PC(I)=upper_appx.S,PC(I) – lower_appx.S,PC(I)={c,d}

boundaryS,PC(O)=upper_appx.S,PC(O) – lower_appx.S,PC(O)={c,d}

The quality of approximation: 2/4
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CRSA – example of traffic signs

To increase the quality of approximation (decrease the ambiguity) 
we add a new attribute – secondary color (SC)

The granules: {a}S,PC,SC, {b}S,PC,SC, {c}S,PC,SC, {d}S,PC,SC

Quality of approximation: 4/4=1
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CRSA – example of traffic signs

Are all three attributes necessary to characterize precisely the classes W, I, O ?

The granules: {a}PC,SC, {b}PC,SC, {c}PC,SC, {d}PC,SC

Quality of approximation: 4/4=1
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CRSA – example of traffic signs

The granules: {a}S,SC, {b,c}S,SC, {d}S,SC

Reducts of the set of attributes: {PC, SC} and {S, SC} 

Intersection of reducts is the core: {SC}
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CRSA – example of traffic signs

The minimal representation of knowledge contained in the Table – decision rules

Decision rules are classification patterns discovered from data contained

in the table 
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CRSA – example of traffic signs

Alternative set of decision rules
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CRSA – example of traffic signs

Rules #1” & #2” – certain rules induced from lower approximations of W and I

Rule #3” – approximate rule induced from the boundary of I and O

Decision rules induced from the original table
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CRSA – example of traffic signs

Useful results:

a characterization of decision classes (even in case of 

inconsistency) in terms of chosen attributes by lower and upper 

approximation,

a measure of the quality of approximation indicating how good 

the chosen set of attributes is for approximation of the 

classification,

reduction of knowledge contained in the table to the description 

by relevant attributes belonging to reducts,

the core of attributes indicating indispensable attributes,

decision rules induced from lower and upper approximations of 

decision classes show classification patterns existing in data.
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CRSA – formal definitions

Approximation space

U = finite set of objects (universe) 

C = set of condition attributes

D = set of decision attributes

C∩D=∅

XC= – condition attribute space

XD= – decision attribute space

∏
=

C

q
qX

1

∏
=

D

q
qX

1
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CRSA – formal definitions

Indiscernibility relation in the approximation space

x is indiscernible with y by P⊆C in XP iff xq=yq for all q∈P

x is indiscernible with y by R⊆D in XD iff xq=yq for all q∈R

IP(x), IR(x) – equivalence classes including x

ID makes a partition of U into decision classes Cl={Clt, t=1,...,m}

Granules of knowledge are bounded sets: 

IP(x) in XP and IR(x) in XR (P⊆C and R⊆D)

Classification patterns to be discovered are functions representing 

granules IR(x) by granules IP(x)
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CRSA – illustration of formal definitions

Example

Objects = firms

Low135

High3531

Medium25.510.5

Low517.5

Low910

High17,840

Medium9.521

Medium179.75

Low211

Medium12.518

Medium2527

Medium1930.8

High2022.5

High17.524

High17.527.5

High3932.5

High3035

EffectivenessSalesInvestments
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CRSA – illustration of formal definitions

Objects in condition attribute space
attribute 1
(Investment)

attribute 2 (Sales)

0 40

40

20

20
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CRSA – illustration of formal definitions

a1

a2
0 40

40

20

20

Indiscernibility sets

Quantitative attributes are discretized according to perception of the user
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CRSA – illustration of formal definitions

Granules of knowlegde are bounded sets IP(x)

a2
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CRSA – illustration of formal definitions

Lower approximation of class High

a2
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a1
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CRSA – illustration of formal definitions
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CRSA – illustration of formal definitions
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CRSA – illustration of formal definitions

a1

a2
0 40

40

20

20

Upper approximation of class Medium



44

Boundary set of classes High      and Medium

CRSA – illustration of formal definitions

a1
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a1

0 40
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CRSA – illustration of formal definitions

Lower = Upper approximation of class Low

a2
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CRSA – formal definitions

Basic properies of rough approximations

Accuracy measures

Accuracy and quality of approximation of X⊂U by attributes P⊆C

Quality of approximation of classification Cl={Clt, t=1,...m} by attributes

P⊆C

Rough membership of x∈U to X⊂U, given P⊆C

( ) ( )XPXXP ⊆⊆

( )
( )( )

( )Ucard

ClPcardm
t t

P
∑γ == 1Cl

( ) ( )( )
( )( )xIcard

xIXcard
xμ

P

PP
X

∩
=

( ) ( )( ) ( )( )XPcardXPcardXP =α

( ) ( )XUPUXP −−=

( ) ( )( ) ( )XcardXPcardXP =γ
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CRSA – formal definitions

Cl-reduct of P⊆C, denoted by REDCl(P), is a minimal subset P' of P

which keeps the quality of classification Cl unchanged, i.e. 

Cl-core is the intersection of all the Cl-reducts of P: 

( ) ( )ClCl P'P γγ =

( ) ( )I PREDPCORE ClCl =

R.Słowiński, D.Vanderpooten: A generalized definition of rough approximations based on similarity. 

IEEE Transactions on Data and Knowledge Engineering, 12 (2000) no. 2, 331-336
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CRSA – decision rules induced from rough approximations

Certain decision rule supported by objects from lower approximation of Clt
(discriminant rule)

Possible decision rule supported by objects from upper approximation of Clt
(partly discriminant rule)

Approximate decision rule supported by objects from the boundary of Clt

where

Clt,Cls,...,Clu are classes to which belong inconsistent objects supporting this rule

{ } ( )
pp qqqqqqp V...VVr,...,r,r,Cq,...,q,q ×××∈⊆

2121
   21

tqqqqqq Clxthenrxandrxandrxif
pp

∈===     , ...         
2211

tqqqqqq Clxthenrxandrxandrxif
pp

∈===     , ...         
2211

ustqqqqqq ClorClorClxthenrxandrxandrxif
pp

 ...        , ...         
2211

∈===
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Dominance-based Rough Set Approach (DRSA)
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Classical Rough Set Theory

⇓

Indiscernibility principle

If x and y are indiscernible with respect to all relevant attributes, 

then x should classified to the same class as y

Dominace-based Rough Set Theory

⇓

Dominance principle

If x is at least as good as y with respect to all relevant criteria,

then x should be classified at least as good as y

S.Greco, B.Matarazzo, R.Słowiński: Rough sets theory for multicriteria decision analysis. 
European J. of Operational Research, 129 (2001) no.1, 1-47

Classical Rough Set Theory vs. Dominance-based Rough Set Theory
from indiscernibility principle to dominance principle
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What is a criterion ?

Criterion is a real-valued function gi defined on U, reflecting a value

of each action from a particular point of view, such that in order to 

compare any two actions a,b∈U from this point of view it is sufficient

to compare two values: gi(a) and gi(b)

Scales of criteria:

Ordinal scale – only the order of values matters; a distance in ordinal

scale has no meaning of intensity, so one cannot compare differences of 

evaluations (e.g. school marks, customer satisfaction, earthquake scales)

Cardinal scales – a distance in ordinal scale has a meaning of intensity:

• Interval scale – „zero” in this scale has no absolute meaning, but one 

can compare differences of evaluations (e.g. Fahrenheit scale)

• Ratio scale – „zero” in this scale has an absolute meaning, so a ratio

of evaluations has a meaning (e.g. weight, Kelvin scale)
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Dominance principle as monotonicity principle

Interpretation of the dominance principle

The better the evaluation of x with respect to considered criteria,

the better its comprehensive evaluation

Many other relationships of this type, e.g.:

The faster the car, the more expensive it is

The higher the inflation, the higher the interest rate

The larger the mass and the smaller the distance, the larger the gravity

The colder the weather, the greater the energy consumption

The Dominance-based Rough Set Approach does not only permit

representation and analysis of decision problems but, more generally,

representation and analysis of all phenomena involving monotonicity
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Monotonicity: general idea

Monotonicity concerns relationship between different aspects 

of a phenomenon described by data

Whenever we discover a relationship between different aspects 

of a phenomenon, this relationship can be represented by 

monotonicity with respect to some specific measures or perceptions

of the considered aspects

E.g. „the more a tomato is red, the more it is ripe”

R.Słowiński, S.Greco, B.Matarazzo: Rough set based decision support. Chapter 16 [in]: E.K.Burke
and G.Kendall (eds.), Search Methodologies: Introductory Tutorials in Optimization 
and Decision Support Techniques, Springer-Verlag, New York, 2005, pp. 475-527
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Why Classical Rough Set Approach has to be adapted to MCDM?

Ordinal classification with monotonicity constraints: inconsistency

w.r.t. dominance principle (Pareto principle) 
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Why Classical Rough Set Approach has to be adapted to MCDM?

Classical rough set approach does not detect inconsistency w.r.t. 

dominance (Pareto principle) 

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediummediummediumS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student
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Monotonicity, induction and data analysis: between Wittgenstein and Mill

„The process of induction is the process of assuming the simplest law 

that can be made to harmonize with our experience” (Wittgenstein 1922)

This simplest law is just monotonicity and, therefore, data analysis

can be seen as a specific way of dealing with monotonicity

Considering monotonicity in data mining means to search for positive or 

negative relations between magnitudes of considered variables and this 

is concordant with  the method of concomitant variation (Mill 1843)
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Monotonicity, induction and data analysis: between Wittgenstein and Mill

„Whatever phenomenon varies in any manner whenever another 

phenomenon varies in some particular manner, is either a cause or 

an effect of that phenomenon, or it is connected with it through some 

causation” (Mill 1843)

„The one canon, which receives the least attention [in data mining] 

is that of concomitant variation, and it is this which is believed to have 

the greatest potential for the discovery of knowledge, in such areas as 

biology and biomedicine, as it addresses parameters which are forever 

present and inseparable, but do change” (Cornish & Elliman 1995)
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Sets of condition (C) and decision (D) criteria are monotonically

dependent

fq – weak preference relation (outranking) on U w.r.t. criterion q∈{C∪D}

(complete preorder)

xq fq yq :  “xq is at least as good as yq on criterion q”

xDPy : x dominates y with respect to P⊆C in condition space XP

if xq fq yq for all criteria q∈P

is a partial preorder

Analogically, we define xDRy in decision space XR, R⊆D

Dominance-based Rough Set Approach (DRSA)

I f
Pq qPD

∈
=
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Dominance-based Rough Set Approach (DRSA)

For simplicity :  D={d}

Id makes a partition of U into decision classes Cl={Clt, t=1,...,m}

[x∈Clr, y∈Cls, r>s] ⇒ xfy (xfy and not yfx)

In order to handle monotonic dependency between condition and

decision criteria:

– upward union of classes, t=2,...,m („at least” class Clt)

– downward union of classes, t=1,...,m-1 („at most” class Clt)

are positive and negative dominance cones in XD, 

with D reduced to single dimension d

≤≥
tt ClCl   and  

U
ts

st ClCl
≥

≥ =

U
ts

st ClCl
≤

≤ =
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Granular computing with dominance cones

Granules of knowledge are dominance cones in condition space XP (P⊆C)

(x)= {y∈U: yDPx} : P-dominating set

(x) = {y∈U: xDPy} :  P-dominated set

P-dominating and P-dominated sets are positive and negative

dominance cones in XP

Classification patterns (preference model) to be discovered are functions 

representing granules             , by granules

−
PD

( ) ( )xDxD PP
−+   ,

+
PD

≤≥
tt ClCl   ,
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DRSA – illustration of formal definitions

Example

f f
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criterion 1
(Investment)

criterion 2
(Sales)
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DRSA – illustration of formal definitions

Objects in condition criteria space
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DRSA – illustration of formal definitions

Granular computing with dominance cones
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DRSA – illustration of formal definitions

Granular computing with dominance cones
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c1
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DRSA – illustration of formal definitions

Lower approximation of upward union of class High

c2

( ) ( ){ }≥+≥ ⊆∈= tPt ClxDUxClP  :
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DRSA – illustration of formal definitions

Upper approximation and the boundary of upward union of class High
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DRSA – illustration of formal definitions

Lower = Upper approximation of upward union of class Medium
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DRSA – illustration of formal definitions

Lower = upper approximation of downward union of class Low
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DRSA – illustration of formal definitions

Lower approximation of downward union of class Medium
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DRSA – illustration of formal definitions

Upper approximation and the boundary of downward union of class Medium

c1

0 40

40

20

20

c2

( ) ( ){ } ( )U
≤∈

−≤+≤ =∅≠∩∈=
tClx

PtPt xDClxDUxClP   :

( ) ( ) ( )ClPClPClBn tttP
≤≤≤ −=



71

40

20

Dominance-based Rough Set Approach vs. Classical RSA

Comparison of CRSA and DRSA

( ) ( ){ }≥+≥ ⊆∈= tPt ClxDUxClP  :

c1

c20 4020

a1

a20 40

40
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20

( ) ( )U
≥∈

+≥ =
tClx

Pt xDClP  

( ) ( ){ }XxIUxXP P ⊆∈=  :

( ) ( )U
Xx

P xIXP
∈

= 

f fClasses:
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Rough Set approach to multiple-criteria sorting

Example of preference information about students:

Examples of classification of S1 and S2 are inconsistent

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodgoodS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student

S.Greco, B.Matarazzo, R.Słowiński: Decision rule approach. Chapter 13 [in]: J.Figueira, S.Greco
and M.Ehrgott (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, 
Springer-Verlag, New York, 2005, pp. 507-562
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Rough Set approach to multiple-criteria sorting

If we eliminate Literature, then more inconsistencies appear:

Examples of classification of S1, S2, S3 and S5 are inconsistent

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodgoodS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student
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Rough Set approach to multiple-criteria sorting

Elimination of Mathematics does not increase inconsistencies:

Subset of criteria {Ph,L} is a reduct of {M,Ph,L}

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodgoodS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student
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Rough Set approach to multiple-criteria sorting

Elimination of Physics also does not increase inconsistencies:

Subset of criteria {M,L} is a reduct of {M,Ph,L}

Intersection of reducts {M,L} and {Ph,L} gives the core {L}

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodgoodS4

mediummediummediummediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student



76

Rough Set approach to multiple-criteria sorting

Let us represent the students in condition space {M,L} :

f f

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Rough Set approach to multiple-criteria sorting

Dominance cones in condition space {M,L} :

f f

P={M,L}

( ) { }3S 3S PP xD:UxD ∈=+

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) { }xD:UxD PP S3 3S ∈=−
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Dominance cones in condition space {M,L} :

f f

P={M,L}

( ) { }4S 4S PP xD:UxD ∈=+

( ) { }xD:UxD PP S4 4S ∈=−

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

Rough Set approach to multiple-criteria sorting
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Dominance cones in condition space {M,L} :

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) { }2S 2S PP xD:UxD ∈=+

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) { }xD:UxD PP S2 2S ∈=−
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Lower approximation of at least good students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ){ }≥+≥ ⊆∈= goodPgood ClxDUxClP :

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Upper approximation of at least good students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ) ( ){ }∅≠∩∈== ≥−

∈

+≥

≥
goodP

Clx
Pgood ClxDUxxDClP

good

:U

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Lower approximation of at least medium students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ){ }≥+≥ ⊆∈= mediumPmedium ClxDUxClP :

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Upper approximation of at least medium students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ) ( ){ }∅≠∩∈== ≥−

∈

+≥

≥
mediumP

Clx
Pmedium ClxDUxxDClP

medium

:U

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Boundary region of at least medium students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ) ( )≥≥≥ −= mediummediummediumP ClPClPClBn

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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Lower approximation of at most medium students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) ( ){ }≤−≤ ⊆∈= mediumPmedium ClxDUxClP :
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Upper approximation of at most medium students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) ( ) ( ){ }∅≠∩∈== ≤+

∈

−≤

≤
mediumP

Clx
Pmedium ClxDUxxDClP

medium

:U
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Lower approximation of at most bad students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) ( ){ }≤−≤ ⊆∈= badPbad ClxDUxClP :
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Upper approximation of at most bad students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

( ) ( ) ( ){ }∅≠∩∈== ≤+

∈

−≤

≤
badP

Clx
Pbad ClxDUxxDClP

bad

:U
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Boundary region of at most bad students:

f f

P={M,L}

Rough Set approach to multiple-criteria sorting

( ) ( ) ( ) ( )≥≤≤≤ =−= mediumPbadbadbadP ClBnClPClPClBn

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8
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DRSA – formal definitions

Basic properies of rough approximations

,  for t=2,…,m

Identity of boundaries , for t=2,…,m

Quality of approximation of sorting Cl={Clt, t=1,...m} by criteria P⊆C

Cl-reducts and Cl-core of P⊆C

( ) ( )ClPClClP ttt
≥≥≥ ⊆⊆

( ) ( )I PREDPCORE ClCl =

( ) ( )ClPClClP ttt
≤≤≤ ⊆⊆

( ) ( )ClPUClP tt
≤
−

≥ −= 1

( ) ( )ClBnClBn tPtP
≤
−

≥ = 1

( )
( ){ }( )

( )Ucard

ClBnUcard
m,...,t tP

P
U 2∈

≥−
=Clγ
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DRSA – induction of decision rules from rough approximations

Clt
≥

Clt
≥

Clt
≥

Clt
≥

Induction of decision rules from rough approximations

certain D≥-decision rules, supported by objects ∈ without 

ambiguity:  

if xq1fq1rq1 and xq2fq2rq2 and … xqpfqprqp, then x∈

possible D≥-decision rules, supported by objects ∈ with or 

without any ambiguity:  

if xq1fq1rq1 and xq2fq2rq2 and … xqpfqprqp, then x possibly ∈
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DRSA – induction of decision rules from rough approximations

Clt
≤

Clt
≤

Clt
≤

Clt
≤

Induction of decision rules from rough approximations

certain D≤-decision rules, supported by objects ∈ without 

ambiguity:  

if xq1pq1rq1 and xq2pq2rq2 and … xqppqprqp, then x∈

possible D≤-decision rules, supported by objects ∈ with or 

without any ambiguity:  

if xq1pq1rq1 and xq2pq2rq2 and … xqppqprqp, then x possibly ∈

approximate D≥≤-decision rules, supported by objects 

∈ Cls∪Cls+1∪…∪Clt without possibility of discerning to which class:  

if xq1fq1rq1 and... xqkfqkrqk and xqk+1pqk+1rqk+1 and ... xqppqprqp, then

x∈Cls∪Cls+1∪…∪Clt.
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DRSA – decision rules

Certain D≥-decision rules for the class High

c1

0 40

40

20

20
-base object

c2

If f(x,c1)≥35, then x belongs to class „High”
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DRSA – decision rules

Possible D≥-decision rules for the class High

-base object

c1

0 40

40

20

20

c2

If f(x,c1)≥22.5, then x possibly belongs to class „High”
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DRSA – decision rules

Approximate D≥≤-decision rules for the class Medium      or High

- base objects

If f(x,c1)∈[22.5, 27] & f(x,c2)∈[20, 25],  
then x belongs to class „Medium” or „High”

c1

0 40

40

20

20

c2
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Rough Set approach to multiple-criteria sorting

Decision rules in terms of  {M,L} :

f f

D> - certain rule

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If M f good & L f medium, then student f good
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Decision rules in terms of  {M,L} :

f f

D> - certain rule

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If M f medium & L f medium, then student f medium
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Decision rules in terms of  {M,L} :

f f

D>< - approximate rule

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If M f medium & L p bad, then student is bad or medium
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Decision rules in terms of  {M,L} :

f f

D< - certain rule

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If M p medium, then student p medium



100

Decision rules in terms of  {M,L} :

f f

D< - certain rule

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If L p bad, then student p medium
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Decision rules in terms of  {M,L} :

f f

D< - certain rule

Rough Set approach to multiple-criteria sorting

bad

bad

medium

good

goodmedium
Mathematics

Literature good f medium f bad
S5,S6

S7 S2 S1

S4S3S8

If M p bad, then student p bad
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Set of decision rules in terms of  {M, L} representing preferences:

If M f good & L f medium, then student f good {S4,S5,S6}

If M f medium & L f medium, then student f medium {S3,S4,S5,S6}

If M f medium & L p bad, then student is bad or medium {S1,S2}

If M p medium, then student p medium {S2,S3,S7,S8}

If L p bad, then student p medium {S1,S2,S7}

If M p bad, then student p bad {S7,S8}

Rough Set approach to multiple-criteria sorting
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Set of decision rules in terms of  {M,Ph,L} representing preferences:

If M f good & L f medium, then student f good {S4,S5,S6}

If M f medium & L f medium, then student f medium {S3,S4,S5,S6}

If M f medium & L p bad, then student is bad or medium {S1,S2}

If Ph p medium & L p medium then student p medium {S1,S2,S3,S7,S8}

If M p bad, then student p bad {S7,S8}

The preference model involving all three criteria is more concise

Rough Set approach to multiple-criteria sorting
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Rough Set approach to multiple-criteria sorting

Importance and interaction among criteria

Quality of approximation of sorting γP(Cl) (P⊆C) is a fuzzy measure

with the property of Choquet capacity

(γ∅(Cl)=0, γC(Cl)=r and γR(Cl)≤γP(Cl)≤r for any R⊆P⊆C)

Such measure can be used to calculate Shapley value or Benzhaf index, 

i.e. an average „contribution” of criterion q in all coalitions of criteria,

q∈{1,…,m}

Fuzzy measure theory permits, moreover, to calculate

interaction indices (Murofushi & Soneda, Grabisch or Roubens) for pairs

(or larger subsets) of criteria, 

i.e. an average „added value” resulting from putting together q and q’

in all coalitions of criteria,  q,q’∈{1,…,m}
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Rough Set approach to multiple-criteria sorting

Quality of approximation of sorting students

γC(Cl)= [8-card({S1,S2})]/8 = 0.75
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Preference modeling

Three families of preference models:

Function, e.g. utility (value) function

Relational system, e.g. outranking relation S or fuzzy relation

aSb = “a is at least as good as b”

Set of decision rules, 

e.g. “If gi(a)≥ri &  gj(a)≥rj & ... gh(a)≥rh,  then a → Class t or higher”

“If Δi(a,b)≥si & Δj(a,b)≥sj & ... Δh(a,b)≥sh,  then aSb”

The rule model is the most general of all three

Greco, S., Matarazzo, B., Słowiński, R.: Axiomatic characterization of a general utility function

and its particular cases in terms of conjoint measurement and rough-set decision rules. 

European J. of Operational Research, 158 (2004) no. 2, 271-292

( ) ( ),agkaU n
i ii∑ == 1 ( ) ( )[ ]∑ == n

i ii aguaU 1
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DRSA – preference modeling by decision rules

A set of (D≥ D≤ D≥≤)-rules induced from rough approximations

represents a preference model of a Decision Maker

Traditional preference models:

utility function (e.g. additive, multiplicative, associative, Choquet

integral, Sugeno integral),

binary relation (e.g. outranking relation, fuzzy relation)

Decision rule model is the most general model of preferences:

a general utility function, Sugeno or Choquet inegral, or outranking

relation exists if and only if there exists the decision rule model

Słowiński, R., Greco, S., Matarazzo, B.: “Axiomatization of utility, outranking and decision-rule 

preference models for multiple-criteria classification problems under partial inconsistency 

with the dominance principle”, Control and Cybernetics, 31 (2002) no.4, 1005-1035
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Representation axiom (cancellation property): for every dimension

i=1,…,n, for every evaluation xi,yi∈Xi and a-i,b-i∈X-i, and for every pair

of decision classes Clr,Cls∈{Cl1,…,Clm}:

{xia-i∈Clr and yib-i∈Cls} ⇒ {yia-i∈ or xib-i∈ }

The above axiom constitutes a minimal condition that makes

the weak preference relation fi a complete preorder

This axiom does not require pre-definition of criteria scales gi, nor the

dominance relation, in order to derive 3 preference models: general

utility function, outranking relation, set of decision rules D≥ or D≤

Greco, S., Matarazzo, B., Słowiński, R.: Conjoint measurement and rough set approach for 

multicriteria sorting problems in presence of ordinal criteria. [In]: A.Colorni, M.Paruccini, 

B.Roy (eds.), A-MCD-A: Aide Multi Critère à la Décision – Multiple Criteria Decision Aiding, 

European Commission Report EUR 19808 EN, Joint Research Centre, Ispra, 2001, 

pp. 117-144

DRSA – preference modeling by decision rules

Clr
≥ Cls

≥



109

Value-driven methods

The preference model is a utility function U and a set of thresholds zt,  

t=1,…,p-1, on U, separating the decision classes Clt,  t=0,1,…,p

A value of utility function U is calculated for each action a∈A

e.g. a→Cl2, d→Clp−1

Comparison of decision rule preference model and utility function

Uz1 zp-2 zp-1z2
…

Cl1 Cl2 Clp-1 Clp

U[g1(a),…,gn(a)] U[g1(d),…,gn(d)]
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ELECTRE TRI

Decision classes Clt are caracterized by limit profiles bt,  t=0,1,…,p

The preference model, i.e. outranking relation S, is constructed for 

each couple (a, bt),  for every a∈A and bt, t=0,1,…,p

Comparison of decision rule preference model and outranking relation

g1

g2

g3
…

gn

…

…

…

b0 b1 bp-2 bp-1 bpb2
…

Cl1 Cl2 Clp-1 Clp

a d
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ELECTRE TRI

Decision classes Clt are caracterized by limit profiles bt,  t=0,1,…,p

Compare action a successively to each profile bt,  t=p-1,…,1,0; 

if bt is the first profile such that aSbt, then a→Clt+1

e.g. a→Cl1, d→Clp−1

Comparison of decision rule preference model and outranking relation

g1

g2

g3
…

gn

…

…

…

b0 b1 bp-2 bp-1 bpb2
…

Cl1 Cl2 Clp-1 Clp

a d

comparison of action a to profiles bt
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Rule-based classification

The preference model is a set of decision rules for unions ,  

t=2,…,p

A decision rule compares an action profile to a partial profile using

a dominance relation

e.g.  a→Cl2>, because profile of a dominates partial profiles of r2 and r3

Comparison of decision rule preference model and outranking relation

a

Clt
≥

e.g. for Cl2>

g1

g2

g3
…

gn

r1 r3

r2
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DRSA – application of decision rules

Application of decision rules: „intersection” of rules matching object x

Final assignment:
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Decision Rules
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Decision rules

Discovering rules from data is the domain of inductive reasoning (IR)

IR uses data about a sample of larger reality to start inference

S=〈U, A〉 – data table, where U and A are finite, non-empty sets 

U – universe;    A – set of attributes

S=〈U, C, D〉 – decision table,  where C – set of condition attributes,

D – set of decision attributes, C∩D=∅

e.g.

C D
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Decision rules

With every subset of attributes P⊆A, one can associate a formal

language of formulas L, called decision language

Formulas are built from attribute-value pairs (q,v),                  

where q∈P and v∈Vq (domain of q), using logical connectives ∧, ∨, ¬

All formulas in L are partitioned into condition and decision formulas

Decision rule or association rule induced from S

is a consequence relation:  Φ→Ψ read as  if Φ, then Ψ

where Φ and Ψ are condition and decision formulas expressed in L
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Decision rules

is the set of all objects from U, having property Φ in S

is the set of all objects from U, having property Ψ in S

In the Rough Set approach,        is:

• C-lower approximation, or

• C-upper approximation, or

• C-boundary of formula Ψ in S,

giving thus a certain, or possible, or approximate rule Φ→Ψ, resp.

Basic quantitative characteristics of rules

S
Φ

S
Ψ

S
Ψ
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Support of decision rule Φ→Ψ in S:

Strength of decision rule Φ→Ψ in S:

Certainty factor for decision rule Φ→Ψ in S  (Łukasiewicz, 1913): 

(called also confidence)

Coverage factor for decision rule Φ→Ψ in S:

Measures characterizing decision rules in system S=〈U, C, D〉

( ) ( )
( )Ucard

card
,str S

S

ΨΦ
ΨΦ

∧
=

( ) ( )
SS card,supp ΨΦΨΦ ∧=

( ) ( )
( )

S

S
S card

card
,cer

Φ
ΨΦ

ΨΦ
∧

=

( ) ( )
( )

S

S
S card

card
,cov

Ψ
ΨΦ

ΨΦ
∧

=
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Measures characterizing decision rules in system S=〈U, C, D〉

Certainty and coverage factors refer to Bayes’ theorem

Given a decision table S, the probability (frequency) is calculated as:

In fact, without referring to prior and posterior probability:

What is the certainty factor for Φ→Ψ is the coverage factor for Ψ→Φ

This underlines a directional character of the statement if Φ, then Ψ
(e.g. „if x is a square, then x is a rectangle”)

( ) ( ) ( )
( ) ( ) ( ) ( )

( )Ψ
ΨΦΨΦΨΦ

Φ
ΦΨΦΨΨΦ
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Pr,cov,
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∧
=∧==     ,    ,
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SSSS card,covcard,cer ΨΨΦΦΨΦ ×=×  
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Decision rules

E.g. decision rules induced from „characterization of nationalities”:

1) If (Height, tall), then (Nationality, Swede)

2) If (Height, medium) and (Hair, dark), then (Nationality, German)

3) If (Height, medium) and (Hair, blond), then (Nationality, Swede)

4) If (Height, tall), then (Nationality, German)

5) If (Height, short), then (Nationality, German)

6) If (Height, medium) and (Hair, dark), then (Nationality, Swede)

43% tall people are Swede

67% Swede are tall

certain rules
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Decision rules

Decision rules Φ→Ψ have a double utility:

they represent knowledge about the universe 

in terms of laws relating some properties Φ with properties Ψ , 

they can be used for prospective decisions.

The use of rules for prospective decisions can be understood in two 

ways:

matching up the rules to new objects with property Φ
in view of predicting property Ψ ,

building a strategy of intervention based on discovered rules 

in view of transforming the universe in a desired way.
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Decision rules

For example, rules mined from medical data are useful to:

represent relationships between symptoms and diseases

• if test α=P & test β=N, then no disease d

diagnose new patients

• for patient x: test α=P & test β=N ⇒ x is not sick of d

Moreover, rules can be seen as general laws to be considered 

for an intervention:

• for all patients with:

• α=N &  β=N

• α=N &  β=P

• α=P &  β=P

apply a therapy aiming at getting α=P & β=N

in order to get out from disease d
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Decision rules – attractiveness measures

In all practical applications, like medical practice, market basket,

customer satisfaction or risk analysis, it is crucial to know how good

the rules are for:

knowledge representation & prediction (how strong is the law   

Φ→Ψ , and what is the chance of getting Ψ when Φ holds ?)

efficient intervention (how efficient will be the action based 

on a rule discovered in U, and taken in U’ ?)

“How good” is a question about attractiveness measures of rules 

Review of literature shows that there is no single measure which would 

be the best for applications in all possible perspectives 
(e.g. Bayardo and Agrawal 1999, Greco, Pawlak & Slowinski 2004, Yao & Zhong 1999, 

Hilderman and Hamilton 2001)
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Decision rules – knowledge representation and prediction

Φ→Ψ are laws „naturally” characterized by:

number of cases from U supporting them, i.e. strength

probability of getting decision Ψ when condition Φ holds, 
i.e. certainty

Why not other statistical interestingness measures, like lift, conviction, 

laplace, piatetsky-shapiro, kamber-shingal, gini, chi-squared value… ? 

Because for a given hypothesis (fixed Ψ ), the Pareto set of rules with
respect to strength and certainty includes all rules that are best
according to any of these measures (Bayardo and Agrawal 1999)
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Decision rules – knowledge representation and prediction

Let - the number of objects in U for which Φ and Ψ hold

together…
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Decision rules – knowledge representation and prediction
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Support-certainty Pareto border

Support-certainty Pareto border is the set of non-dominated, 

Pareto-optimal rules with respect to both rule support and certainty

Mining the border identifies rules optimal with respect to measures 

such as: lift, gain, conviction, piatetsky-shapiro,…

Pareto bordercertainty

support

no rules fall above this borderdominated rules 
fall in this area

- Pareto-optimal rules 
(non-dominated)
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Support-certainty Pareto border – example

Buses

187: (MaxSpeed ≥ 74) & (Blacking ≤ 65) & (SummerCons ≤ 26) => ( State ≥ 2)

Certainty = 0.96,  Strength = 0.63

Positive support: 1, 4, 5, 7, 8, 12, 13, 15, 17, 18, 20, 21, 22, 25, 26, 29, 30, 31, 32, 33, 35, 36, 37, 

39, 41, 42, 43, 44, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 65, 66, 70, 71, 72, 73, 74, 75, 76

Negative support: 11, 58

0,7

0,8

0,9

1

1,1

0,25 0,35 0,45 0,55 0,65

strength

ce
rta

in
ty

upper border
non-optimal
max lift
max conviction
max laplace
max kamberSN
max piatetsky-shapiro
max gray-orlowska
max chi 2̂
max gini
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Decision rules – knowledge representation and prediction

In statistics, measures of confirmation quantify the degree to which

a piece of evidence Φ provides support for or against hypothesis Ψ

(Fitelson 2001):

Its meaning is different from a simple statistics of co-occurrence 

of properties Φ and Ψ in universe U
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S.Greco, Z.Pawlak, R.Słowiński: Can Bayesian confirmation measures be useful for rough set 
decision rules? Engineering Applications of Artificial Intelligence, 17 (2004) no.4, 345-361
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Bayesian confirmation measure

The most well-known measures of confirmation

Earman (1992), Eells (1982), Gillies (1986), 
Jeffrey (1992), Rosenkrantz (1994)

Horwich (1982), Keynes (1921), 
Mackie (1969), Milne (1995, 1996), 
Schlesinger (1995), Pollard (1999)

Christensen (1999), Joyce (1999)

Carnap (1962)

Kemeny & Oppenheim (1952), 
Good (1984), Heckerman (1988), 
Schumm (1994), 
Horvitz & Heckerman (1986), 
Pearl (1988),    

Fitelson (2001) 
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Why the certainty measure is not sufficient?

Example (Popper, 1959)

Consider the possible result of rolling a die: 1,2,3,4,5,6.

Ψ = "the result is 6" ¬Ψ = "the result is not 6"

Φ = "the result is an even number (i.e. 2 or 4 or 6)"

Φ→Ψ , cerS(Φ,Ψ) = 1/3

Φ→¬Ψ, cerS(Φ,¬Ψ) = 2/3

Probability that the result is 6 is 1/6, 

while the probability that the result is not 6 is 5/6

Information Φ increases the probability of Ψ from 1/6 to 1/3, and 

decreases the probability of ¬Ψ from 5/6 to 2/3

In conclusion: Φ confirms Ψ and disconfirms ¬Ψ, 

independently of the fact that cerS(Φ,Ψ) < cerS(Φ,¬Ψ)
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Bayesian confirmation measure

Given a decision rule Φ→Ψ, the Bayesian confirmation measure gives

the credibility of the proposition: 

Ψ is satisfied more frequently when Φ is satisfied 

rather than when Φ is not satisfied
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Bayesian confirmation measure

c(Φ,Ψ)>0 means that property Ψ is satisfied more frequently

when Φ is satisfied (then, this frequency is cerS(Φ,Ψ)), 

rather than generically (frequency is FrS(Ψ)),

c(Φ,Ψ)=0 means that property Ψ is satisfied with the same frequency

whether Φ is satisfied or not

c(Φ,Ψ)<0 means that property Ψ is satisfied less frequently

when Φ is satisfied, rather than generically
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Bayesian confirmation measure for decision rules

Assuming :
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Bayesian confirmation measure for decision rules

The most well-known measures of confirmation
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Bayesian confirmation measure

Desirable properties of c(Φ,Ψ):

hypothesis symmetry (Eells, Fitelson 2002):  c(Φ,Ψ) = –c(Φ,¬Ψ)

monotonicity property (M) (Greco, Pawlak, Słowiński 2004):

a=suppS(Φ,Ψ), b=suppS(¬Φ,Ψ), c=suppS(Φ,¬Ψ), d=suppS(¬Φ,¬Ψ)

c(Φ,Ψ) = F(a,b,c,d), where F is a function non-decreasing with 

respect to a and d and non-increasing with respect to b and c

Among all popular confirmation measures, the only ones that satisfy

both properties are (Greco, Pawlak, Słowiński 2004):

l(Φ,Ψ) and f(Φ,Ψ) are ordinally equivalent (Fitelson 2001)

( ) ( ) ( )
( ) ( )ΦΨΦΨ

ΦΨΦΨΨΦ
,cer,cer
,cer,cer

,f
SS

SS
¬+
¬−

=

( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
¬

=
ΦΨ
ΦΨΨΦ
,cer

,cer
log,

S

Sl



137

Interpretation of the monotonicity property M

E.g. (Hempel) consider rule φ→ψ : 

if x is a raven then x is black

φ is the property to be a raven, ψ is the property to be black

a – the number of objects in U which are black ravens
(the more black ravens we observe, the more credible becomes the rule)

b – the no. of objects in U which are black non-ravens

c – the no. of objects in U which are non-black ravens

d – the no. of objects in U which are non-black non-ravens
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Support-certainty vs. support-confirmation Pareto border

sup (φ→ψ)

ce
r(
φ→

ψ
)

Dominated rules fall 
into this area

No rules fall 
outside this border

cer(φ→ψ)=0.3
=sup(Ψ)/card(U)

Area of rules to be discarded

1

The set of rules located on the support-certainty Pareto border is exactly 
the same as on the support-f Pareto border (Greco, Brzezińska, Słowiński 2006)

The support-f Pareto border is more meaningful
than the support-certainty Pareto border

f(φ→ψ)=0



Słowiński R., Szczęch I., 
Greco S.: Mining Association 
Ruleswith respect to Support 

and Anti–support -
experimental results.  

(RSEISP LNAI Warszawa, to 
appear) 
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Is there a curve separating rules with negative value of any measure 

with the confirmation property in the support-confidence space?

Theorem:

Rules lying above a constant:

have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!

sup(ψ)/|U|

Confirmation perspective on support-confidence space
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Dominated rules fall 
into this area

No rules fall 
outside this border

0

Area of rules to be discarded

1

sup (φ→ψ)

conf (φ→ψ)

0.5

For rules lying below the curve for which c=0 

the premise only disconfirms the conclusion

c=0, for sup(ψ)/|U|=50%

Confirmation perspective on support-confidence space
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Computational experiment: general info about the dataset

Dataset adult, created in ’96 by B. Becker & R. Kohavi from census database

32 561 instances

9 nominal attributes

workclass: Private, Local-gov, etc.;

education: Bachelors, Some-college, etc.;

marital-status: Married, Divorced, Never-married, et.; 

occupation: Tech-support, Craft-repair, etc.;

relationship: Wife, Own-child, Husband, etc.; 

race: White, Asian-Pac-Islander, etc.; 

sex: Female, Male;

native-country: United-States, Cambodia, England, etc.;

salary: >50K, <=50K 

throughout the experiment, sup(φ→ψ) is denotes relative rule support [0,1]
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Support-certainty vs. support-confirmation Pareto border

Example of „CENSUS” dataset:

9 attributes

32.561 instances (objects) Association rules

premise conclusion support certainty
confirmation

s
confirmation

f

race is White native-country is United-States 0,80 0,93 0,16 0,15

native-country is United-States race is White 0,80 0,88 0,24 0,09

class is <=50K native-country is United-States 0,68 0,91 -0,03 -0,04

native-country is United-States class is <=50K 0,68 0,75 -0,06 -0,01

native-country is United-States workclass is Private 0,67 0,73 -0,08 -0,02

workclass is Private native-country is United-States 0,67 0,90 -0,03 -0,05

race is White workclass is Private 0,63 0,74 -0,01 0,00

workclass is Private race is White 0,63 0,86 0,00 0,00

race is White class is <=50K 0,63 0,74 -0,11 -0,04

class is <=50K race is White 0,63 0,84 -0,07 -0,07

native-country is United-States sex is Male 0,62 0,68 0,00 0,00

sex is Male native-country is United-States 0,62 0,91 0,00 0,00

race is White sex is Male 0,60 0,70 0,14 0,05

sex is Male race is White 0,60 0,89 0,08 0,11

workclass is Private native-country is United-States and race is White 0,59 0,80 -0,03 -0,02

native-country is United-States and workclass is Private race is White 0,59 0,88 0,06 0,09

race is White and workclass is Private native-country is United-States 0,59 0,93 0,04 0,10
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Support-certainty vs. support-confirmation Pareto border

confirmation<=0

„CENSUS” dataset

association rules

supp ≥ 15%

cer ≥ 45%

certainty

support
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Support-certainty vs. support-confirmation Pareto border

confirmation<=0

certainty

support

„CENSUS” dataset

association rules

supp ≥ 15%

cer ≥ 20%
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Support-certainty vs. support-confirmation Pareto border

• indicates rules with negative confirmation

• the decision class constitutes over 70% of the whole dataset

• rules with high certainty can be disconfirming

• even some rules from the Pareto border need to be discarded 

certainty
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Support-certainty vs. support-confirmation Pareto border

• indicates rules with negative confirmation

• both Pareto borders contain the same rules

certainty
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Support-certainty vs. support-confirmation Pareto border

certainty



Słowiński R., Brzezińska I., 
Greco S.: Application of 
Bayesian confirmation 

measures for mining rules 
from support-confidence 

Pareto-optimal set. (ICAISC 
LNAI Zakopane, 2006) 
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Theorem:

When the value of support is held fixed, then F(a, b, c, d) is monotone 

in confidence. 

Theorem:

When the value of confidence is held fixed, then F(a, b, c, d) admitting 

derivative with respect to all its variables a, b, c and d, is monotone 

in support if:

Measures with the property M in support-confidence space

( )  
conf

c
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d
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b
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Conclusions:

For a set of rules with the same conclusion, any interestingness 

measure with property M is always non-decreasing with respect to 

confidence when the value of support is kept fixed

All those interestingness measures that are independent of 

c=sup(φ→¬ψ) and d=sup(¬φ→¬ψ) are always monotone in support 

when the value of confidence remains unchanged

There are some measures with property M whose optimal rules will 

not be on the support-confidence Pareto border.

Measures with the property M in support-confidence space
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Support-anti-support Pareto border

How to find rules optimal according to any confirmation measure 

with the property of monotonicity (M) ?

Theorem (Greco, Brzezińska, Słowiński 2006):

When the value of support is held fixed, then F(a, b, c, d) 

with property (M) is anti-monotone (non-increasing) in anti-support

Theorem (Greco, Brzezińska, Słowiński 2006):

When the value of anti-support is held fixed, then F(a, b, c, d) 

with property (M) is monotone (non-decreasing) in support

Anti-support is the number of examples which satisfy the premise of 

the rule but not its conclusion: supp(φ→¬ψ)



Brzezińska I., Greco S., 
Słowiński R.: Mining Pareto-

Optimal Rules with Respect to 
Support and Confirmation or 
Support and Anti-Support 

(EAAI Journal, 2007) 
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Support - anti-support Pareto border

Theorem:

For rules with the same conclusion,

the best rules according to any measure with the property M

must reside on the support-anti-support Pareto border 

The support-anti-support Pareto border is the set of rules such that 

there is no other rule having greater support and smaller anti-support

Theorem:

The support - anti-support Pareto border is, in general, not smaller 

than the support-confidence Pareto border
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Dominated rules fall 

into this area

No rules fall 
outside this border

Support - anti-support Pareto border

0

anti-support=

The best rules according to any measure with the property M
must reside on the support - anti-support Pareto border

sup (φ→ψ)

sup (φ→ ¬ ψ)



Słowiński R., Szczęch I., 
Greco S.: Mining Association 
Ruleswith respect to Support 

and Anti–support -
experimental results.  

(RSEISP LNAI Warszawa, to 
appear) 
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Is there a curve separating rules with negative value of 

any confirmation measure in the support-anti-support space?

Theorem:

Rules lying above a linear function:

have a negative value of any confirmation measure. 

For those rules, the premise only disconfirms the conclusion!

sup(φ→ ψ)[|U|/sup(ψ)-1]

Confirmation perspective on support - anti-support border



154

Dominated rules fall 

into this area

No rules fall 
outside this border

0

anti-support= c=0, for sup(ψ)/|U|=50%

For rules lying above the curve for which c=0 

the premise only disconfirms the conclusion

c=0, for sup(ψ)/|U|=66%

c=0, for sup(ψ)/|U|=33%

sup (φ→ψ)

sup (φ→ ¬ ψ)

Confirmation perspective on support - anti-support border
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Support - anti-support (workclass=Private)

• indicates rules with negative confirmation

•even some rules from the Pareto border need to be discarded 
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0
100%

100%

50%

50%

min acceptable support

max acceptable 
anti-support Pareto border

Dominated 
but interesting rules

anti-support F=0, for sup(ψ)/|U|=50%

su
p

(φ
→

¬
ψ
)

sup (φ→ψ)

Confirmation perspective on support-anti-support border

support

ce
r S
(Φ

,Ψ
) = F

r S
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Decision rules – efficiency of intervention

Intervention is a three-stage process: 
(Greco, Matarazzo, Pappalardo, Słowiński 2005)

mining rules in universe U

modification (manipulation) of universe U', based on a rule mined 

in U, with the aim of getting a desired result

transition from universe U' to universe U'' due to the modification

S.Greco, B.Matarazzo, N.Pappalardo, R.Słowiński: Measuring expected effects of interventions based 

on decision rules. J. of Experimental and Applied Artificial Intelligence, 17 (2005) no. 1-2, 103-118
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Efficiency of intervention − the playground of three universes

For example, suppose the following rule mined from U:

r ≡ if absence of symptom Φ, then no disease Ψ with 90% certainty

(i.e. in 90% of cases where symptom Φ is absent there is no disease Ψ)

On the basis of r, intervention T in U' can be taken:

T ≡ eliminate symptom Φ to get out from disease Ψ in U”

T is based on a hypothesis of homogeneity of universes U and U'

Homogeneity means that r is also valid in U’:

one can expect that 90% of sick patients with symptom Φ

will get out from the disease due to the intervention T

S = (U, A),  S' = (U', A) : two data tables referring to universes U, U'
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Decision rules – efficiency of intervention

If we modify property ¬Φ to property Φ in set ||¬Φ∧¬Ψ ||S’

we may reasonably expect that:

cerS(Φ,Ψ ) × suppS’(¬Φ,¬Ψ ) 

objects from set ||¬Φ∧¬Ψ ||S' in U' will enter decision class Ψ in U’’

Expected relative increment of objects from U' entering 

decision class Ψ in universe U'':

where cerS'(¬Ψ,¬Φ) is a certainty factor of the contrapositive rule

rcp ≡ ¬Ψ→¬Φ in U'

Efficiency of the intervention:

( ) ( ) ( ) ( )
( )'Ucard

card
,cer,cerincr 'S
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ΦΨΨΦΨ

¬
×¬¬×=
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Efficiency of intervention − multi-attribute intervention

If condition formula Φ is composed of n elementary conditions, 

we consider rule r ≡ Φ1∧Φ2∧ …∧Φn →Ψ , with cerS(Φ,Ψ )

Relative increment, for P⊆N={1,…,n} :

where is a certainty factor 

of the contrapositive rule in U'

Efficiency of the multi-attribute intervention:
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Intervention based on „at least” and „at most” rules

Interpretation of the intervention based on „at least” and „at most”

rules obtained from the Dominance-based Rough Set Approach

„at least” rules

if xq1fq1rq1 and xq2fq2rq2 and … xqpfqprqp, then x∈Classt
≥

where for wq,zq∈Xq, „wqfqzq” means „wq is at least as good as zq”

and x∈Classt
≥ means „x belongs to class Classt or better”

„at most” rules

if xq1pq1rq1 and xq2pq2rq2 and … xqppqprqp, then x∈Classt
≤

where for wq,zq∈Xq, „wqpqzq” means „wq is at most as good as zq”

and x∈Classt
≤ means „x belongs to class Classt or worse”
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Intervention based on „at least” and „at most” rules

The „at least” rules indicate opportunities for improving

the assignment of object x to Classt or better, if it was not assigned 

as high, and its score on q1,…,qp would grow to rq1,…,rqp

The „at most” rules indicate threats for deteriorating

the assignment of object x to Classt or worse, if it was not assigned 

as low, and its score on q1,…,qp would drop to rq1,…,rqp
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Intervention based on „at least” and „at most” rules - example

Example: customer satisfaction analysis by a Company

19 questions and 3 classes of overall satisfaction: High, Medium, Low

Improvement from Low
to Medium or High satisfaction

Improvement from Low or
Medium to High satisfaction

Deterioration from High or
Medium to Low satisfaction

Deterioration from High
to Medium or Low satisfaction

Opportunities for improvement
of satisfaction

Threats of deterioration
of satisfaction
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Intervention based on monotonic rules - example

At least rule:

If (A3 ≥ 4) & (C3 ≥ 3), then Satisfaction f Medium

incrSS’(Medium) =77%

Opportunity: if

invoicing is at least mostly accurate and errors are rare, and

Company is involved in at least some advertising / promotions,

then satisfaction of 77% of customers with Satisfaction = Low

will improve to Medium or High
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Intervention based on monotonic rules - example

At most rule:

If (A2 ≤ 3) & (E4 ≤ 4) , then Satisfaction p Low

incrSS’(Low) =89%

Threat: if

products are not in good condition, and

Company is not always the first to come out with 

technologically advanced products and better solutions,

then satisfaction of 89% of customers with Satisfaction = High or 

Medium will deteriorate to Low
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Intervention based on monotonic rules

In practice, the choice of rules used for intervention can be supported 

by additional measures, like:

length of the rule − the shorter the better,

cost of intervention on attributes present in the rule,

priority of intervention on some types of attributes, 

like: short-term before long-term actions
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Examples of Application
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DRSA – example of technical diagnostics

176 vehicles (objects)

8 symptoms

decision = technical state:

3 – good state (in use)

2 – minor repair

1 – major repair (out of use)

there is a monotonic relationship

between each symptom 

and the decision

inconsistent objects:

11, 12, 39
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Mobile Emergency Triage System - MET System

MET – Mobile Emergency Triage

• Facilitates triage disposition for presentations of 

acute pain (abdominal and scrotal pain, hip pain)

• Supports triage decision with or without 

complete clinical information

• Provides mobile support through handheld 

devices

• http://www.mobiledss.uottawa.ca

W. Michalowski

University of Ottawa

R. Słowiński, Sz. Wilk

Poznań University of Technology
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Triage Process

Hospital/Clinic

Discharge

Surgery

Observation

Emergency Room (ER)

Observation/Clinic

Examination
(Specialist)

Consult

Discharge

Prioritization
(Triage nurse)

Disposition
(ED Physician)

Triage Diagnosis and treatment

Management

≤ 2 hoursNon UrgentV

≤ 1 hourLess UrgentIV 

≤ 30 min.UrgentIII

≤ 15 min.EmergentII

ImmediateResuscitationI



174

Clinical Attributes

RLQ, lower_abdomenomen, otherSite of tendernessTendSite

numeric – discretized: < 37°C, ≥ 37°C and ≤39°C, > 39°CTemperatureTempr

male, femaleSexSex

yes, noRebound tendernessRebTend

yes, noPrevious visit to ERPrevVisit

constant, intermittentType of painPainType

RLQ, lower_abdomenomen, otherSite of painPainSite

yes, noShifting of painPainShift

numeric – discretized: ≤ 24h, > 24h and ≤7 days, > 7 daysDuration of painPainDur

yes, noMuscle guardingGuard

WBC

Vomiting

Age

numeric – discretized: ≤ 4, > 4 and < 12, ≥ 12White blood cells

yes, noVomiting

numeric – discretized: ≤ 5 years; > 5 yearsAge
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MET Server

Model 
Subsystem

Database 
Subsystem

MET Server

Mobile
MET Client

Sync 
Subsystem

Web-based
MET Client

Modules Patients



176

Mobile MET Client

Triage 
Subsystem

Database 
Subsystem

Interface 
Subsystem

Dialog 
Subsystem

Sync 
Subsystem

MET 
Server

Mobile MET Client

Patients Modules

Local
replica
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MET interactions

Navigation between
screens/activities

Using icon-based models
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MET interactions

Inputting data

Using checkboxes Using pictograms
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MET interactions

Entering numerical values Writing comments
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Decision Rules

if (Age < 5 years) and (PainSite = lower_abdomen) 

and (RebTend = yes) and (4 < WBC < 12)

then (Triage = discharge)

if (PainDur > 7 days) and (PainSite = lower_abdomen) 

and (37 ≤ Tempr ≤ 39) and (TendSite = lower_abdomen) 

then (Triage = observation)

if (Sex = male) and (PainSite = lower_abdomen) 

and (PainType = constant) and (RebTend = yes) 

and (WBCC ≥ 12) then (Triage = consult)
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MET System - suggesting triage disposition

• Strength factors are presented
instead of a definite and univocal
answer (debiaser, not oracle)

• Strength factors are established
with decision rules
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Trial Location

Total pediatric population 

>400,000

55,000 patient visits in the 

ER per year

3 pediatric general surgeons 

(supported by emergency 

physicians and residents)
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Trial Results

Accuracy of disposition for ED physicians and MET
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MET System – scrotal pain triage
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DRSA to Multicriteria Choice and Ranking



186

DRSA to multicriteria choice & ranking

Preference information is given by the DM as a set B⊆AR×AR

of pairwise comparisons of reference actions

The preference model is a set of decision rules induced from

rough approximations of the holistic preference relation,

e.g. S and Sc

vSczqm(v),qm(z)...q2(v),q2(z)q1(v),q1(z)(v,z) 

...

...

...

...

... qmq2q1

...............

ySuqm(y),qm(u)q2(y),q2(u)q1(y),q1(u)(y,u)

yScxqm(y),qm(x)q2(y),q2(x)q1(y),q1(x)(y,x)

xSyqm(x),qm(y)q2(x),q2(y)q1(x),q1(y)(x,y)

Preference

relation

Evaluation on criteriaPairs of ref. 

actions

S – outranking

Sc – non-outranking

F = {q1,q2,…,qm}

Pairwise
Comparison

Table
(PCT)

B⊆AR×AR
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Pairwise Comparison Table (PCT)

If qi is a cardinal criterion, the pair of evaluations [qi(x); qi(y)], 

is replaced by the difference Δi(x,y)=qi(x)–qi(y), which may be

translated to a degree of intensity of preference of x over y, e.g.: 

If qi is an ordinal criterion, one keeps in PCT the pair of evaluations:  

[qi(x); qi(y)],  e.g. [Medium; Basic]

hi=
degree

of intensity
of preference

on qi

-1 -0.5 0 0.5 1

inverse
strong

preference

inverse
weak

preference

asymmetric
indifference

weak
preference

strong
preference

Δi(x,y)
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Problem → inconsistencies in the preference information, due to:

uncertainty of information – hesitation, unstable preferences,

incompleteness of the family of criteria,

granularity of information

Inconsistency w.r.t. dominance principle:

hq2

S

Sc

f

hq1

(x,y)

(w,z)

1

0.5

-0.5

0 0

-1

0.5

-0.5

-1

1

holistic
preference

x Sc y

while

w S z

DRSA to multicriteria choice & ranking
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DRSA to multicriteria choice & ranking

Dominance relation for pairs of actions (x,y),(w,z)∈A×A

For cardinal criterion q∈C :

(x,y)Dq(w,z)

if and  

where hq≥kq

For subset P⊆C of criteria: P-dominance relation on pairs of actions:

(x,y)DP(w,z) if (x,y)Dq(w,z) for all q∈P,  i.e., 

if x is preferred to y at least as much as w is preferred to z for all q∈P

Dq is reflexive, transitive, but not necessarily complete (partial preorder)

is a partial preorder on A×A

yxP qh
q zwP qk

q

x
qq

(x,y)Dq(w,z)
p

f

zy

w

For ordinal criterion q∈C:

I Pq qDD
P ∈=
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DRSA to multicriteria choice & ranking

Basic idea of rough approximation applied to MCDA:

Information
on preferences w.r.t.

particular criteria

Information
on holistic

preference relation
explains

Preferences w.r.t.
particular criteria

Holistic
preference relation

determine

granular
representation

granular
representation

Rough approximation

Decision rule model

Pairwise Comparison Table
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Let B⊆AR×AR be a set of pairs of reference objects in a given PCT

Granules of knowledge relative to preferences on particular criteria

positive dominance cone

negative dominance cone

( ) ( ) ( ) ( ){ }y,xDz,wBz,wy,xD PP  :∈=+

( ) ( ) ( ) ( ){ }z,wDy,xBz,wy,xD PP  :∈=−

DRSA to multicriteria choice & ranking
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DRSA – positive and negative dominance cones w.r.t. (x,y)

(x,y)

area dominating
(x,y)

area incomparable
with (x,y)

area dominated
by (x,y)

?

?

(x,y)DP(w,z) ≡ (x,y) P-dominates (w,z) for P⊆C

if xfq
hy and wfq

kz, where h≥k, for each q∈P

(w,z)

(u,x)

. .. . . .

.

.

.

.

.

.

.

.
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DRSA to multicriteria choice & ranking– formal definitions

P-lower and P-upper approximations of outranking relations S:

P-lower and P-upper approximations of non-outranking relation Sc:

P-boundaries of S and Sc:

P⊆C

( ) ( ) ( ){ }
( ) ( )

( )
U

Sy,x
P

P

y,xDSP

Sy,xDBy,xSP

∈

+

+

=

⊆∈=

 

  : 

( ) ( ) ( ){ }
( ) ( )

( )
U

cSy,x
P

c

c
P

c

y,xDSP

Sy,xDBy,xSP

∈

−

−

=

⊆∈=

 

  : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )c

PP

ccc
PP

SBnSBn

SPSPSBn,SPSPSBn

=

−=−=      
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DRSA for multiple-criteria choice and ranking – formal definitions

Basic properties:

Quality of approximation of S and Sc:

(S,Sc)-reduct and (S,Sc)-core

Variable-consistency rough approximations of S and Sc (l∈(0,1]) :

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )SPBSP,SPBSP

SPBSP,SPBSP

SPSSP,SPSSP

cc

cc

ccc

−=−=

−=−=

⊆⊆⊆⊆

     

     

     

( ) ( )( )
( )Bcard

SPSPcard c

P
∪

=γ

( ) ( ) ( )( )
( )( )

( ) ( )

( ) ( ) ( )( )
( )( )

( ) ( )cc

P

c
Pc

P

P

SPBSP

y,xDcard
Sy,xDcard

:By,xSP

SPBSP

y,xDcard
Sy,xDcard

:By,xSP

ll

l

ll

l

l

l

−=

⎭
⎬
⎫

⎩
⎨
⎧

≥
∩

∈=

−=

⎭
⎬
⎫

⎩
⎨
⎧

≥
∩

∈=

−

−

+

+
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q1 = 2.3     q2 = 18.0     … qm = 3.0

q1 = 1.2     q2 = 19.0     … qm = 5.7

q1 = 4.7     q2 = 14.0     … qm = 7.1

q1 = 0.5     q2 = 12.0     … qm = 9.0

Example of application of DRSA

Acquiring reference objects

Preference information on reference objects:

making a ranking

pairwise comparison of the objects (x S y) or (x Sc y) 

Building the Pairwise Comparison Table (PCT)

Inducing rules from rough approximations of relations S and Sc

x

y

u

z u Sc zΔn(u,z) = 1.9...Δ2(u,z) = -2.0Δ1(u,z) = -4.2(u,z) 

...

...

...

...

… Δ qnΔ q2Δ q1

...............

y S uΔn(y,u) = -6.0Δ2(y,u) = 6.0 Δ1(y,u) =  1.8(y,u)

y S zΔn(y,z) = -4.1Δ2(y,z) = 4.0Δ1(y,z) =  -2.4(y,z)

x Sc yΔn(x,y) =  2.7Δ2(x,y) = 1.0Δ1(x,y) = -1.1(x,y)

Preference
relation

Difference of evaluations on each criterionPairs of 
objects…
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Induction of decision rules from rough approximations of S and Sc

if Δq1(a,b) ≥ -2.4 & Δq2(a,b) ≥ 4.0 then aSb

if Δq1(a,b) ≤ -1.1 & Δq2(a,b) ≤ 1.0 then aScb

if Δq1(a,b) ≤ 2.4 & Δq2(a,b) ≤ -4.0 then aScb

if Δq1(a,b) ≥ 4.1 & 
Δq2(a,b) ≥ 1.9 then aSb

Δ q1

Δ q2

x Sc y

z Sc y

u Sc y

u Sc z

y S x

y S z

y S u

t Sc q

u S z
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P qp(hqp≤

DRSA to multicriteria choice & ranking – decision rules

Decision rules (for criteria with cardinal scales)

Certain D≥-decision rules (induced from P(S))

if (x fq1
≥h(q1) y) and (x fq2

≥h(q2) y) and ... (x fqp
≥h(qp) y), then certainly xSy

Possible D≥-decision rules (induced from⎯P(S))

if (x fq1
≥h(q1) y) and (x fq2

≥h(q2) y) and ... (x fqp
≥h(qp) y), then possibly xSy

where fq
≥h(q) = preference in degree „at least” h(q) on criterion q

e.g. if car x is at least weakly preferred to y w.r.t. maximum speed &

strongly preferred w.r.t. price, then x is at least as good as y
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P qp(hqp≤

DRSA to multicriteria choice & ranking – decision rules

Decision rules (for criteria with cardinal scales)

Certain D≤-decision rules (induced from P(Sc))

if (x fq1
≤h(q1) y) and (x fq2

≤h(q2) y) and ... (x fqp
≤h(qp) y), then certainly xScy

Possible D≤-decision rules (induced from⎯P(Sc))

if (x fq1
≤h(q1) y) and (x fq2

≤h(q2) y) and ... (x fqp
≤h(qp) y), then possibly xScy

Approximate D≥≤-decision rules (induced from BnP(S)=BnP(Sc))

if (x fq1
≥h(q1) y) and (x fq2

≥h(q2) y) and ... (x fqk
≥h(qk) y)

and (x fq(k+1)
≤h(q(k+1)) y) and ... (x fqp

≤h(qp) y),   then xSy or xScy

where fq
≥h(q) = preference in degree „at least” h(q) on criterion q

fq
≤h(q) = preference in degree „at most” h(q) on criterion q
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Application of decision rules for multicriteria choice & ranking

Application of decision rules (preference model) on the whole set A induces 

a specific preference structure on A

Any pair of objects (x,y)∈A×A can match the decision rules in one of four ways:

xSy and not xScy,  that is true outranking  (xSTy),

xScy and not xSy, that is false outranking  (xSFy),

xSy and xScy, that is contradictory outranking  (xSKy),

not xSy and not xScy,  that is unknown outranking  (xSUy).

x y x

x xy y

y

xSTy

xSFy

xSKy

xSUy

S S

Sc

Sc

The 4-valued outranking underlines the presence and the absence
of positive and negative reasons of outranking
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DRSA for multicriteria choice & ranking – Net Flow Score

x

v

uy

z

S S

ScSc

weakness of x strength of x

NFS(x) = strength(x) – weakness(x)

(–,a)

(+,a) (+,f)

(–,f)

xSy – positive (+) argument in favor of x but against y

xScy – negative (–) argument against x but in favor of y
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DRSA for multiple-criteria choice and ranking – final recommendation

Exploitation of the preference structure by the Net Flow Score

procedure for each action x∈A:

NFS(x) = strength(x) – weakness(x)

Final recommendation:

ranking: complete preorder determined by NSF(x) in A

best choice: action(s) x*∈A such that NSF(x*)= max {NSF(x)}
x∈A
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DRSA for multiple-criteria choice and ranking – example

Decision table with reference objects (warehouses)
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DRSA for multicriteria choice and ranking – example

Pairwise comparison table (PCT)
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DRSA for multicriteria choice and ranking – example

Quality of approximation of S and Sc by criteria from set C is 0.44

REDPCT = COREPCT = {A1,A2,A3}

D≥-decision rules and D≤-decision rules 
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DRSA for multicriteria choice and ranking – example

D≥≤-decision rules 
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DRSA for multicriteria choice and ranking – example

Ranking of warehouses for sale by decision rules and the NFS procedure

Final ranking: (2',6') → (8') → (9') → (1') → (4') → (5') → (3') → (7',10')

Best choice: select warehouse 2' and 6' having maximum score (11)
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Input (preference) information:

k-thf(z, qm)...f(z, q2)f(z, q1)z

...

...

...

...

... qmq2q1

...............

3rdf(u, qm)f(u, q2)f(u, q1)u

2ndf(y, qm)f(y, q2)f(y, q1)y

1stf(x, qm)f(x, q2)f(x, q1)x

Rank in

order

CriteriaRerefence

actions

vSczΔm(v,z)...Δ2(v,z) Δ1(v,z) (v,z) 

...

...

...

...

... qmq2q1

...............

ySuΔm(y,u)Δ2(y,u)Δ1(y,u)(y,u)

yScxΔm(y,x)Δ2(y,x)Δ1(y,x)(y,x)

xSyΔm(x,y)Δ2(x,y)Δ1(x,y)(x,y)

Preference

relation

Difference on criteriaPairs of ref. 

actions

S – outranking

Sc – non-outranking

Δi – difference on qi

DRSA for multiple-criteria choice and ranking - examples

Pairwise 
Comparison

Table
(PCT)

AR

B⊆AR×AR
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Association rules representing the Pareto optimal set 
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Association rules

Relationships between attainable values of different objective functions

(criteria) in the set of Pareto optimal (efficient) solutions

Formal syntax (in case of maximization of objectives w.l.g.): 

If fi1(x)≥ri1 and fi2(x)≥ri2 and … fip(x)≥rip, 

then fip+1(x)≤rip+1 and fip+2 (x)≤rip+2 and … fiq(x)≤riq

Example:

„if the maximum speed is at least 200 km/h and the time to reach 

100 km/h is at most 7 seconds, 

then the price is not less than 40,000$ and the fuel consumption is 

not less than 9 litres per 100 km”
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Dominance-based Rough Set Approach to 
Interactive Multiple Objective Optimization

(DRSA-IMO)
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DRSA within Interactive Multiple Objective Optimization

1) Present to the DM a representative set of efficient solutions

2) Present association rules showing relationships between the 
attainable values of the objective functions in the Pareto optimal set

3) If the DM finds a satisfactory solution, then end; else go to 
the next step

4) The DM marks efficient solutions considered as (relatively) good

5) DRSA “if...,then...” decision rules are induced 

6) The most interesting decision rules are presented to the DM

7) The DM selects one decision rule being the most adequate to his/her 
preferences

8) Constraints relative to this decision rule are adjoined

9) Go back to step 1
Greco, S., Matarazzo, B., Slowinski, R.: Dominance-Based Rough Set Approach to Interactive 

Multiobjective Optimization, Chapter 5 in J.Branke, K.Deb, K.Miettinen, R.Slowinski (eds.), 
Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer-Verlag, to appear
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Example of Product Mix Problem: Data

Three products: A, B, C

Produced quantity: xA , xB , xC

Price: pA=20, pB=30, pC=25

Time machine 1: t1A=5, t1B=8, t1C=10 

Time machine 2: t2A=8, t2B=6, t2C=2 

Raw material 1: r1A=1, r1B=2, r1C=0.75; unit cost: 6

Raw material 2: r2A=0.5, r2B=1, r2C=0.5; unit cost: 8 

Market limit: x*A =10, x*B =20, x*C =10



213

Example of Product Mix Problem: Mathematical formulation

Max Profit

Min Total time (machine 1 + machine 2)

Max Produced quantity of A

Max Produced quantity of B

Max Produced quantity of C

Max Sales
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Example of Product Mix Problem: Objectives and Constraints

Max 20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +             

− (0.5xA  + xB  + 0.5 xC )8 [Profit] 

Min 5xA + 8xB + 10xC + 8xA + 6xB + 2xC 

[Total time machine 1 + machine 2]

Max xA [Produced quantity of A]

Max xB [Produced quantity of B]

Max xC [Produced quantity of C]

Max 20xA + 30xB + 25xC [Sales]

xA≤10, xB≤20, xC≤10 [Market Limits]

xA≥0, xB ≥0, xC≥0 [Non-negativity]
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Set of representative efficient solutions

231.253.2533120113.625S13

252.08334.08333333130127.375S12

385.41675.41666755200189.375S11

375.83337.83333326200209.25S10

271.66673.66666726150140.5S9

270606150159S8

296.15381002.3076150188.0769S7

279.58333.58333335150139.125S6

278.754.7525150148.375S5

272.91674.91666733140141.125S4

280.76921001.5384140180.3846S3

265.38461000.7692130172.6923S2

2501000120165S1

SalesxCxBxATotal 

time

ProfitSolutions
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The most interesting association rules

If time≤140, then profit≤180.38 and sales≤280.77

(s1,s2,s3,s4,s12,s13)

If time≤150, then profit≤188.08 and sales≤296.15

(s1,s2,s3,s4,s5,s6,s7,s8,s9,s12,s13)

If xB≥2, then profit≤209.25 and xA≤6 and xC≤7.83

(s4,s5,s6,s9,s10,s11,s12,s13)

If time≤150, then xB≤3

(s1,s2,s3,s4,s5,s6,s7,s8,s9,s12,s13)

If profit≥148.38 and time≤150, then xB ≤2

(s1,s2,s3,s5,s7,s8)
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The most interesting association rules

If xA≥5, then time≥150

(s5,s6,s8,s9,s10,s11)

If profit≥127.38 and xA≥3, then time≥130

(s4,s5,s6,s8,s9,s10,s11,s12)

If time≤150 and xB≥2, then profit≤148.38

(s4,s5,s6,s9,s12,s13)

If xA≥3 and xC≥4.08, then time≥130

(s4,s5,s8,s10,s11,s12)

If sales≥256.38, then time ≥130

(s2,s3,s4,s5,s6,s7,s8,s9,s10,s11)
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Sorting of representative efficient solutions

*231.253.2533120113.625S13

*252.08334.08333333130127.375S12

*385.41675.41666755200189.375S11

*375.83337.83333326200209.25S10

Good271.66673.66666726150140.5S9

*270606150159S8

*296.15381002.3076150188.0769S7

*279.58333.58333335150139.125S6

Good278.754.7525150148.375S5

Good272.91674.91666733140141.125S4

Good280.76921001.5384140180.3846S3

*265.38461000.7692130172.6923S2

*2501000120165S1

ClassSalesxCxBxATotal 

time

ProfitSolutions
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DRSA decision rule induction

12 rules were induced with the following frequency 

of the presence of objectives in the premise:

Profit:  4/12

Total time: 12/12

Produced quantity A: 7/12

Produced quantity B: 4/12

Produced quantity C: 5/12

Sales: 5/12
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The most interesting DRSA decision rules

If profit≥140.5 and time≤150 and xB≥2, 

then product mix is good (s4,s5,s9)

If time≤140 and xA≥1.538462 and xC≥10, 

then product mix is good (s3)

If time≤150 and xB≥2 and xC≥4.75, 

then product mix is good (s4,s5)

If time≤140 and sales≥272.9167, 

then product mix is good (s3,s4)

If time≤150 and xB≥2 and xC≥3.666667 and sales≥271.6667, 

then product mix is good (s4,s5,s9)
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Selected decision rule and relative added constraints

The DM selected the following rule as the most adequate

to his/her preferences:

If profit ≥ 140.5 and time ≤ 150 and xB ≥2, 

then product mix is good (s4,s5,s9)

Added constraints to the production mix problem:

20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +                   

− (0.5xA  + xB  + 0.5 xC)8  ≥ 140.5 [Profit ≥ 140.5] 

5xA + 8xB + 10xC + 8xA + 6xB + 2xC ≤ 150 [time ≤ 150]

xB ≥ 2 [Produced quantity of B ≥ 2]



222

Set of representative efficient solutions (second iteration)

SalesxCxBxATotal 

time

ProfitSolutions

251.456.4521.5125141.5625S12’

255721125145.5S11’

262.088.0820125153.375S10’

258.336.3322130144.5S9’

272.58.520130160.25S8’

280632140149S7’

279.167.1622140158.25S6’

293.339.3320140174S5’

300.836.8332150162.75S4’

300822150172S3’

293.755.7533150154.87S2’

313.071020.15150186.53S1’
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The most interesting association rules

If time≤140, then profit≤174 and xC≤9.33 and sales≤293.33 

(s5’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

If xA≥2, then xB≤3 and sales≤300.83

(s2’,s3’,s4’,s6’,s7’,s9’)

If xA≥2, then profit≤172 and xC≤8

(s2’,s3’,s4’,s6’,s7’,s9’)

If time≤140, then xA≤2 and xB≤3

(s5’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

If profit≥158.25, then xA≤2

(s1’,s3’,s4’,s5’,s6’,s8’)

If xA≥2, then time≥130

(s2’,s3’,s4’,s6’,s7’,s9’)
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The most interesting association rules

If xC≥7.17, then xA≤2 and xB≤2 

(s1’,s3’,s5’,s6’,s8’,s10’)

If xC≥6, then xA≤2 and xB≤3

(s1’,s3’,s4’,s5’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

If xC≥7, then time≥125 and xB≤2

(s1’,s3’,s5’,s6’,s8’,s10’,s11’)

If sales≥280, then time≥140 and xB≤3

(s1’,s2’,s3’,s4’,s5’,s7’)

If sales≥279.17, then time≥140

(s1’,s2’,s3’,s4’,s5’,s6’,s7’)

If sales≥272, then time≥130

(s1’,s2’,s3’,s4’,s5’,s6’,s7’,s8’)
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Sorting of representative efficient solutions (second iteration)

ClassSalesxCxBxATotal 

time

ProfitSolutions

Good251.456.4521.5125141.562
5

S12’

Good255721125145.5S11’

*262.088.0820125153.375S10’

*258.336.3322130144.5S9’

*272.58.520130160.25S8’

*280632140149S7’

Good279.167.1622140158.25S6’

*293.339.3320140174S5’

Good300.836.8332150162.75S4’

Good300822150172S3’

*293.755.7533150154.87S2’

*313.071020.15150186.53S1’
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DRSA decision rule induction

8 rules were induced with the following frequency 

of the presence of objectives in the premise: 

Profit:  2/8

Total time: 1/8

Produced quantity A: 5/8

Produced quantity B: 3/8

Produced quantity C: 3/8

Sales: 2/8
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The most interesting DRSA decision rules

If profit≥158.25 and xA≥2, 

then product mix is good (s3’,s4’,s6’)

If time≤125 and xA≥1, 

then product mix is good (s11’,s12’)

If xA≥1 and xC≥7, 

then product mix is good (s3’,s6’,s11’)

If xA≥1.5 and xC≥6.46, 

then product mix is good (s3’,s4’,s6’,s12’)

If xA≥2 and sales≥300, 

then product mix is good (s3’,s4’)
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Selected decision rule and relative added constraints

The DM selected the following rule as the most adequate

to his/her preferences:

If profit ≥ 158.25 and xA ≥ 2, 

then product mix is good (s3’,s4’,s6’)

Added constraints to the production mix problem:

20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +                   

− (0.5xA  + xB  + 0.5xC)8 ≥ 158.25 [Profit ≥ 158.25] 

xA ≥ 2 [Produced quantity of A ≥ 2] 
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Set of representative efficient solutions (third iteration)

SalesxCxBxATotal 

time

ProfitSolutions

284.016.5623145.72158.25S6’’

292.916.9123150164.125S5’’

279.167.1622140158.25S4’’

290.206.712.742145158.25S3’’

301.236.263.482150158.25S2’’

289.587.5822145165.125S1’’
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The most interesting association rules

If time≤145, then xA≤2 and xB≤2.74 and sales≤290.2 

(s2’’,s3’’,s4’’)

If xC≥6.92, then xA≤3 and xB≤2 and sales≤292.92

(s3’’,s4’’,s5’’)

If time≤145, then profit≤165.13 and xA≤2 and xC≤7.58 

(s2’’,s3’’,s4’’)

If xC≥6.72, then xB≤2.74

(s2’’,s3’’,s4’’,s5’’)

If sales≥289.58, then profit≤165.13 and time≥145 and xC≤7.58

(s1’’,s2’’,s3’’,s5’’)
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Set of representative efficient solutions (third iteration)
and the selected solution

ClassSalesxCxBxATotal 

time

ProfitSolutions

*284.016.5623145.72158.25S6’’

*292.916.9123150164.125S5’’

*279.167.1622140158.25S4’’

*290.206.712.742145158.25S3’’

*301.236.263.482150158.25S2’’

Selected289.587.5822145165.125S1’’
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Conclusions 1

Main features of the interactive method: 

The method is based on ordinal properties of values of objective 

functions only 

At each step, the method does not aggregate the objective functions 

into a single value (no scalarization is involved)

DM gives preference information by answering easy questions

in terms of holistic sorting, without use of any technical parameters,

such as weights, tradeoffs, thresholds,...
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Conclusions 2

Main advantages of DRSA involving rules:

Association rules

They represent relationships between attainable values of 
objective functions

DM learns from them about the shape of the Pareto optimal set

Both association and decision rules are important in a learning 
oriented perspective:

They are easily understandable and intelligible for the DM 
(“glass box”) 

They permit the DM to identify Pareto optimal solutions supporting 
each rule

They enable argumentation, explanation and justification of the 
final decision 
(as a conclusion of a decision process,
not just as a mechanical application of a technical approach)
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Financial Portfolio Decision Analysis 
using Dominance-based Decision Rules
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Portfolio analysis: basic data

Three securities: S1, S2, S3 

Expected returns of the securities: r1=12%, r2=14%, r3=16%.

Variance-Covariance matrix

Weights of three securities in a portfolio P: w1, w2, w3; 

w1≥0, w2≥0, w3≥0

w1+w2+w3 =1

30010-20S3

1020050S2

-2050100S1

S3S2S1



236

Portfolio Risk and Return

Expected return on a portfolio [E(RP)] is a linear combination 
of expected returns [E(Ri)] of N component securities using
weights (wi):

Variance of a portfolio

Standard deviation of a portfolio

STD[R(P)]=
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Efficient frontier

0
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STD[R(P)]

E[
R

(P
)]

Series1
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Portfolio selection: mathematical formulation

r1%(P) =Max return at 1% (E[R(P)] + 2.33×STD[R(P)])

r25%(P)=Max return at 25% (E[R(P)] + 0.67×STD[R(P)])

r50%(P)=Max return at 50% (E[R(P)])

r75%(P)=Max return at 75% (E[R(P)] - 0.67×STD[R(P)])

r99%(P)=Max return at 99% (E[R(P)] - 2.33×STD[R(P)])
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Set of representative solutions (first iteration)

Good-24.364.401627.6056.3617.3216100P17

*-16.196.3915.524.6147.1913.6015.50.750.250P16

*-11.397.411522.5941.3911.33150.540.410.04P15

Good-8.307.9414.521.0637.309.7914.50.460.340.21P14

Good-6.098.2241419.7834.098.62140.370.260.37P13

Good-5.148.1413.518.8632.148.0013.50.280.190.53P12

*-5.217.9713.2818.6031.787.9413.280.250.150.60P11

Good-5.248.0313.3818.7432.017.9913.380.230.220.54P10

*-7.138.0814.2220.3635.579.1614.220.450.210.34P9

Good-6.537.9213.7519.5834.038.7013.750.420.040.54P8

Good-5.168.1613.5418.9232.248.0313.540.290.200.52P7

*-9.296.6213.0419.4635.379.5813.040.030.460.51P6

Good-6.487.7713.5219.2733.518.5813.520.180.390.43P5

*-5.837.9413.5019.0532.828.3013.500.350.040.61P4

*-11.547.3715.0122.6441.5511.3915.010.510.480.01P3

*-10.077.5814.7121.8439.4910.6414.710.570.220.21P2

*-5.788.2113.8619.5133.508.4313.860.320.290.39P1

Classr99%(P)r75%(P)r50%(P)r25%(P)r1%(P)σrw3w2w1



240

DRSA decision rule induction

19 rules were induced with the following frequency 

of the presence of objectives in the premise:

r1%(P): 6/19

r25%(P): 5/19

r50%(P): 5/19

r75%(P): 5/19

r99%(P): 12/19
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The most interesting DRSA decision rules (1)

If r1%(P)≥32.01% and r99%(P)≥-5.24%, 

then portfolio is good (P7, P10, P12)

If r25%(P)≥18.74% and r99%(P)≥-5.24%, 

then portfolio is good (P7, P10, P12)

If r50%(P)≥13.38% and r99%(P)≥-5.24%, 

then portfolio is good (P7, P10, P12)

If r75%(P)≥8.03% and r99%(P)≥-5.24%, 

then portfolio is good (P7, P10, P12)
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The most interesting DRSA decision rules (2)

If r1%(P)≥33.51% and r99%(P)≥-6.48%, 

then portfolio is good (P5, P13)

If r1%(P)≥34.03% and r99%(P)≥-6.53%, 

then portfolio is good (P8, P13)

If r50%(P)≥16%, then portfolio is good (P17)

If r50%(P)≥14.5% and r99%(P)≥-8.3%, 

then portfolio is good (P14)
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Selected decision rule and relative added constraints

The DM selected the following rule as the most adequate

to his preferences:

If r75%(P) ≥ 8.03% and r99%(P) ≥ -5.24%, 

then portfolio is good (P7, P10, P12)

Added constraints to the portfolio selection problem:

r75%(P)=E[R(P)] − 0.67×STD[R(P)] ≥ 8.03% ,

r99%(P)=E[R(P)] − 2.33×STD[R(P)] ≥ -5.24%.
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Set of representative solutions (second iteration)

Good-5.218.1913.619.0132.418.0713.600.300.200.50P16’

*-5.148.1413.518.8632.148.0013.500.280.180.53P15’

Good-5.138.1113.4518.7932.037.9713.450.270.180.55P14’

*-5.148.0713.418.7331.947.9613.400.270.170.57P13’

Good-5.248.2013.6219.0532.498.1013.620.300.200.49P12’

*-5.168.0313.3518.6731.867.9413.350.260.160.58P11’

*-5.238.0513.4218.7832.068.0013.380.300.120.59P10’

*-5.228.0413.3918.7432.007.9914.220.290.120.59P9’

*-5.178.1213.4918.8532.148.0113.750.270.210.52P8’

*-5.188.1413.5118.8932.208.0213.540.300.160.54P7’

Good-5.148.0613.3918.7231.937.9613.040.270.160.57P6’

Good-5.168.1513.5218.8932.208.0213.520.290.180.53P5’

Good-5.228.1413.5318.9332.298.0513.500.270.230.50P4’

*-5.158.1013.4518.8032.057.9815.010.260.200.54P3’

Good-5.138.1113.4518.8032.047.9814.710.270.190.54P2’

*-5.168.1613.5418.9232.248.0313.860.290.200.52P1’

Classr99%(P)r75%(P)r50%(P)r25%(P)r1%(P)σrw3w2w1
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DRSA decision rule induction

5 rules were induced with the following frequency 

of the presence of objectives in the premise:

r1%(P): 1/5

r25%(P): 1/5

r50%(P): 1/5

r75%(P): 1/5

r99%(P): 1/5
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The most interesting DRSA decision rules

If r1%(P)≥32.29%, 

then portfolio is good (P4', P12', P16')

If r25%(P)≥18.93%, 

then portfolio is good (P4', P12', P16')

If r50%(P)≥13.6%, 

then portfolio is good (P12', P16')

If r75%(P)≥8.19%, 

then portfolio is good (P12', P16') 

If r99%(P)≥-5.13%, 

then portfolio is good (P2', P14')
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Selected decision rule and relative added constraints

The DM selected the following rule as the most adequate to his 

preferences:

If r25%(P) ≥ 18.93%, 

then portfolio is good (P4', P12', P16')

Added constraint to the portfolio selection problem:

r25%(P)=E[R(P)] −0.67×STD[R(P)] ≥ 18.93%.
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Set of representative solutions (third iteration) 
and the selected solution

*-5.218.1913.6019.0132.418.0713.600.30.20.5P14’’

*-5.198.1813.5718.9632.338.0513.570.290.200.51P13’’

Selected-5.248.2013.6219.0532.498.1013.620.300.200.49P12’’

*-5.178.1713.5518.9332.268.0313.550.290.190.52P11’’

*-5.218.1613.5618.9632.338.0513.560.300.200.50P10’

*-5.238.1713.5818.9932.398.0713.580.280.230.49P9’’

*-5.218.1813.5918.9932.388.0713.590.290.210.50P8’’

*-5.198.1713.5618.9532.308.0413.560.300.170.52P7’’

*-5.198.1613.5518.9432.298.0413.550.280.210.50P6’’

*-5.208.1613.5518.9532.318.0513.550.280.220.50P5’’

*-5.178.1713.5518.9332.278.0313.550.290.200.51P4’’

*-5.238.2013.6219.0432.478.0913.620.310.190.50P3’’

*-5.248.2013.6219.0432.488.0913.620.300.200.49P2’’

*-5.208.1813.5918.9932.388.0713.590.300.200.50P1’’

Classr99%(P)r75%(P)r50%(P)r25%(P)r1%(P)σrw3w2w1
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DRSA to Decision under Risk and Uncertainty



250

DRSA to decision under risk and uncertainty

A={A1, A2, A3, A4, A5, A6, ...} – set of acts

ST={st1, st2,  st3, ...} – set of elementary states of the world

Pr – a priori probability distribution over ST

e.g.: pr1=0.25, pr2=0.35, pr3=0.40, ...

X={0, 10, 15, 20, 30, ...} – set of possible outcomes (gains)

Cl={Cl1, Cl2, Cl3 , ...} – set of quality classes of the acts, 

e.g.: Cl1=bad acts, Cl2=medium acts, Cl3=good acts

ρ(Ai,π)=x means that by act Ai one can gain at least x with probability

π=Pr(W), where W⊆ST is an event

There is a partial preorder on probabilities π of events

Act Ai stochastically dominates Aj iff ρ(Ai,π) ≥ ρ(Aj,π) 

for each probability π∈Π
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DRSA to decision under risk and uncertainty

Preference information given by a Decision Maker:

assignment to acts to quality classes

Example:
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Decision rules induced from rough approximations of quality classes

if ρ(Ai, 0.75)≥20 and ρ(Ai, 1)≥10,  then Ai ∈

“if the probability of gaining at least 20 is 0.75 and the probability 

of gaining at least 10 is 1, then act Ai is at least good”

if ρ(Ai, 0.25)≤20 and ρ(Ai, 0.75)≤15, then Ai ∈

“if the probability of gaining at most 20 is 1 and the probability 

of gaining at most 15 is 0.75, then act Ai is at most medium”

Generalization: 

DRSA for decision under risk with outcomes distributed over time

Greco S., Matarazzo B., Slowinski R., Rough set approach to decisions under risk. 

[In]: W.Ziarko, Y.Yao (eds.): Rough Sets and Current Trends in Computing, LNAI 2005, 

Springer-Verlag, Berlin, 2001, pp. 160-169

DRSA to decision under risk and uncertainty

≥
3Cl

≤
2Cl
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DRSA to Case-Based Reasoning
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DRSA to Fuzzy Case-Based Reasoning (CBR)

Case-Based Reasoning regards the inference of some proper

conclusions related to a new situation by the analysis of similar cases

from a memory of previous cases

It is based on three principles

a) similar problems have similar solutions

b) types of encountered problems tend to recur

c) the more similar are the causes, 

the more similar the effects one can expect (DRSA!)

Fuzzy set approach to Case-Based Reasoning: 
Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L., Lopez de Mantara, R., Fuzzy Set 

Modelling in Case-based Reasoning, Int. J. of Intelligent Systems, 13 (1998) 345-373
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DRSA to Fuzzy Case-Based Reasoning

Measuring similarity is the essential point of all case-based reasoning

and, particularly, of fuzzy set approach to case-based reasoning

Problems of modelling similarity are relative to two levels:

at level of similarity with respect to single features: how to define

a meaningful similarity measure with respect to a single feature ?

at level of similarity with respect to all features: how to propely

aggregate the similarity measure with respect to single features

in order to obtain a comprehensive similarity measure ?

S.Greco, B.Matarazzo, R.Słowiński: Dominance-based Rough Set Approach to Case-Based 

Reasoning. [In]: V. Torra, Y. Narukawa, A. Valls, J. Domingo-Ferrer (eds.), Modelling

Decisions for Artificial Intelligence. LNAI 3885, Springer-Verlag, Berlin, 2006, pp. 7-18
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DRSA to Fuzzy Case-Based Reasoning

DRSA tends to be as „neutral” and „objective” as possible with respect

to similarity relation

At level of similarity concerning single features:

only ordinal properties of similarity are exploited

At level of aggregation of similarity relative to single features:

no specific functional aggregation (like weighted Lp norms, min, etc.)

is used

a set of decision rules based on very general monotonicity relation

between comprehensive similarity and similarity on single features

Such an approach to Case-Based Reasoning is very little „invasive”
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Monotonicity:  “The more similar are the descriptions, 

the more similar are the outcomes”

Similarity is a concept concerning pairs of objects

Pairwise fuzzy information base: B=<U, F, σ>, where

U − finite set of objects (universe)

F={f1,f2,…,fm} − finite set of features

σ : U×U×F → [0,1] − function expressing the credibility σ(x,y,fh)∈[0,1] 

that object x is similar to object y w.r.t. feature fh [σ(x,x,fh)=1]

Each pair (x,y)∈U×U is described by:   DesF(x,y)=[σ(x,y,f1),…,σ(x,y,fm)]

For each subset of properties E⊆F:  DesE(x,y)=[σ(x,y,fh), fh∈E]

DRSA to Fuzzy Case-Based Reasoning
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DRSA to Fuzzy Case-Based Reasoning

Dominance relation on U×U, concerning similarity between pairs

of objects: for all x,y,w,z∈U, E⊆F

(x,y)DE(w,z) : „x is similar to y at least as much as w is similar to z

w.r.t. all the considered attributes from E”

Dominance principle with respect to similarity

If x belongs to X and (y,x)DE(z,x), then y should belong to X

with at least the same credibility as z belongs to X.
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DRSA to Fuzzy Case-Based Reasoning

For each ∅⊂E⊆F and x,y,w,z∈U

(x,y)DE(w,z) ⇔ σ(x,y,fi) ≥ σ(w,z,fi) for all fi∈E

For each ∅⊂E⊆F and x∈U

positive cone: DE
+(y,x)={w∈U: (w,x)DE(y,x)}

Interpretation: 

set of objects being similar to x not less than y is similar to x

negative cone: DE
−(y,x)={w∈U: (y,x)DE(w,x)}

Interpretation: 

set of objects being similar to x not more than y is similar to x

In the pair (y,x), x is a reference object, and y is a limit object, 

for y is conditioning the membership of w in DE
+(y,x) and DE

−(y,x)



260

Fuzzy set of „similar objects”

Fuzzy set X on U incl. objects with decision similar to reference object x

Membership function of fuzzy set X (degree of similarity): 

μX: U→[0,1]

For each cutting level (limit degree of similarity) α∈[0,1]:

upside cutting

X≥α={y∈U: μX(y)≥α} X>α={y∈U: μX(y)>α}

downside cutting

X≤α={y∈U: μX(y)≤α} X<α={y∈U: μX(y)<α}

Complementarity :

U−X≥α = X<α,       U−X≤α = X>α,        U−X>α = X≤α,       U−X<α= X≥α
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Case-Based Rough approximations of a fuzzy set of similar objects

For each reference object x∈U, cutting level α∈[0,1] and similarity

function σ, we can define lower & upper approximations of X≥α

with respect to features E⊆F :

Upside lower approximation :

it contains all objects y∈U such that any object w being similar to x at least

as much as y is similar to x w.r.t. features from E, also belongs to X≥α

Upside upper approximation :

it contains all objects y∈U such that there is at least one object w being similar

to x at most as much as y is similar to x w.r.t. features from E, which belongs

to X≥α

( ) ( ) ( ){ }∅≠∩∈= α≥−α≥
σ Xx,yD:UyXxE E 

( ) ( ) ( ){ }α≥+α≥
σ ⊆∈= Xx,yD:UyXxE E 
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Case-Based Rough approximations of a fuzzy set of similar objects

For each reference object x∈U, cutting level α∈[0,1] and similarity

function σ, we can define lower & upper approximations of X≤α

with respect to features E⊆F :

Downside lower approximation :

Downside upper approximation :

( ) ( ) ( ){ }∅≠∩∈= α≤+α≤
σ Xx,yD:UyXxE E 

( ) ( ) ( ){ }α≤−α≤
σ ⊆∈= Xx,yD:UyXxE E 
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Case-Based Rough approximations of a fuzzy set of similar objects

Rough approximations can be rewritten in logical terms

Upside lower approximation :

Upside upper approximation :

Downside lower approximation :

Downside upper approximation :

( ) ( ) ( ) ( ){ }α≥α≥
σ ∈⇒∈∀∈= Xwx,yDw,xthatsuchUw:UyXxE E        

( ) ( ) ( ) ( ){ }α≥α≥
σ ∈∈∃∈= Xwandx,wDy,xthatsuchUw:UyXxE E             

( ) ( ) ( ) ( ){ }α≤α≤
σ ∈⇒∈∀∈= Xwx,wDy,xthatsuchUw:UyXxE E        

( ) ( ) ( ) ( ){ }α≤α≤
σ ∈∈∃∈= Xwandx,yDw,xthatsuchUw:UyXxE E             
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Similarity space in CBR

σ(x,y,fj)

( ) ( )α≥σ∈ XxEy

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x is a reference object, fi and fj are two features

( )y,xDE
+

w
y

x
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Similarity space in CBR

σ(x,y,fj)

( )y,xDE
−

( ) ( )α≤σ∈ XxEy

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x is a reference object, fi and fj are two features

w

y

x
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Similarity space in CBR

σ(x,y,fj)

( )y,xDE
−

( ) ( ) ( ) ( )α≥σ
α≥

σ ∈∉ XxEybutXxEy      

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x is a reference object, fi and fj are two features

( )y,xDE
+

w
y

x
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Similarity space in CBR

σ(x,y,fj)

( )y,xDE
−

( ) ( ) ( ) ( )α≤σ
α≤

σ ∈∉ XxEybutXxEy      

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x is a reference object, fi and fj are two features

( )y,xDE
+

w

y

x



268

Similarity space in CBR

σ(x,y,fj)

( ) ( )α≥σ XxE

( ) ( )α≥σ XxE

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x is a reference object, fi and fj are two features

x
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Similarity space in CBR

σ(x,y,fj)

x is a reference object, fi and fj are two features

( ) ( )α≤σ XxE

( ) ( )α≤σ XxE

σ(x,y,fi)

1

1

y∈X≥α

y∈X≤α

x
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CBR-DRSA decision rules

Decision rules induced by DRSA from pairwise fuzzy information base:

„if object w is similar to object x w.r.t. feature fi1 to degree at least hi1, 

and … and w.r.t. feature fim to degree at least him, 

then object w certainly belongs to set X to degree at least α”

„if object w is similar to object x w.r.t. feature fi1 to degree at least hi1, 

and … and w.r.t. feature fim to degree at least him, 

then object w possibly belongs to set X to degree at least α”

where {fi1,…,fim}=E and hi1,…,him∈[0, 1]

( ) ( )α≥σ XxE

( ) ( )α≥σ XxE



271

CBR-DRSA decision rules

Decision rules induced by DRSA from pairwise fuzzy information base:

„if object w is similar to object x w.r.t. feature fi1 to degree at most hi1, 

and … and w.r.t. feature fim to degree at most him, 

then object w certainly belongs to set X to degree at most α”

„if object w is similar to object x w.r.t. feature fi1 to degree at most hi1, 

and … and w.r.t. feature fim to degree at most him, 

then object w possibly belongs to set X to degree at most α”

where {fi1,…,fim}=E and hi1,…,him∈[0, 1]

( ) ( )α≤σ XxE

( ) ( )α≤σ XxE
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Comparison of CBR-DRSA decision rules and CBR-gradual rules

CBR-gradual rules: s(z,x)≥α ⇒ t(z,x)≥α

where s and t measure the credibility of similarity with respect to

condition attribute and decision attribute, respectively

Advantages of CBR-DRSA decision rules:

The CBR-DRSA decision rules do not need the aggregation

(always subjective and arbitrary to some extent) of the similarity

w.r.t. different features in one comprehensive similarity function

The CBR-DRSA decision rules permit to consider different

thresholds for degrees of credibility in the premise 

and in the conclusion
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Other extensions of DRSA

DRSA as a way of handling fuzzy-rough hybridization

DRSA for choice and ranking with graded preference relations

DRSA for choice and ranking with Lorenz dominance relation

DRSA for decision with multiple decision makers

DRSA with missing values of attributes and criteria

DRSA for hierarchical decision making

Discovering association rules in preference-ordered data sets
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DRSA as a Way of Handling Fuzzy-Rough Hybridization
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DRSA as a proper way of handling graduality in Rough Set Theory

Rough set concept refers to some ideas of Leibniz (indiscernibility), Frege

(vague concepts), Boole (reasoning methods) and Bayes (inductive reasoning)

Gottfried Leibniz (Leibniz’s law)

„identity of indiscernibles”:

if x and y are indiscernible (i.e. x and y have the same properties), then x=y

„indiscernibility of identicals”:

if x=y, then x and y are indiscernible (i.e. x and y have the same properties)

Rough set theory by Zdzisław Pawlak uses Leibniz’s law to classify objects falling

under the same concept – reformulation of the „identity of indiscernibles”:

if x and y are indiscernible, then x and y belong to the same class

„Indiscernibility of identicals” cannot be reformulated analogously, because it is

not true that if x and y belong to the same class, then x and y are indiscernible

Rough set theory needs a still weaker form of „identity of indiscernibles”
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DRSA as a proper way of handling graduality in Rough Set Theory

According to Gottlob Frege:

„A concept must have a sharp boundary. 

To the (vague) concept without a sharp boundary there would correspond

an area that had not a sharp boundary-line all around”

Following this intuition, one can further reformulate the „identity of 

indiscernibles”:

if x and y are indiscernible, then x and y should belong to the same class

This formulation implies that there is an inconsistency if x and y are

indiscernible and x and y belong to different classes

The contribution of the ideas of Leibniz and Frege to the Pawlak’s rough set 

should be completed by the idea of Georg Boole concerning

presence (truth) or absence (falsity) of a property for an object

It is natural, moreover, to weaken this principle by considering that

a property can be present (true) to some degree (graduality)
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DRSA as a proper way of handling graduality in Rough Set Theory

The graduality of truth was considered by Jan Łukasiewicz in multi-valued logic, 

and then by Lotfi Zadeh within fuzzy set theory, where graduality concerns

membership to a set

Any proposal of putting rough sets and fuzzy sets together can be seen as 

a reconstruction of the rough set concept, where the Boole’s binary logic is

substituted by Łukasiewicz’s multi-valued logic, such that the Leibniz’s identity

of indiscernibles and the Frege’s intuition about vagueness are combined

through the idea that a property is true to some degree:

if the degree of each property for x is greater than or equal to the degree for y,

then x should belong to the considered class in degree at least as high as y

This formulation is perfectly concordant with our Dominance-based Rough

Set Approach – it handles the monotonic relationship in exacly the same way
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Remarks on fuzzy extensions of rough sets

Cattaneo 1998; Dubois & Prade 1992; Lin 1992; Greco, Matarazzo & Słowiński

1999, 2000; Inuiguchi & Tanino 2002; Morsi & Yakout 1998; Nakamura & Gao

1991; Polkowski 2002, Słowiński 1995; Słowiński & Stefanowski 1996; Yao 1997; 

Radzikowska & Kerre 2003; Thiele 2000; Wu, Mi & Zhang 2003; ... 

The fuzzy extensions of Pawlak’s definition 

of lower and upper approximations use fuzzy connectives

(t-norm, t-conorm, fuzzy implication)

There is no “right” connective

In general, fuzzy connectives depend on cardinal properties of 

membership degrees, i.e. the result is sensitive to order preserving 

transformation of membership degrees



279

Remarks on fuzzy extensions of rough sets

A natural question arises: is it reasonable to expect from 

membership degree a cardinal content instead of ordinal only? 

In other words, is it realistic to think that human is able to express

in a meaningful way not only that

“object x belongs to fuzzy set X more likely than object y”

but even something like

“object x belongs to fuzzy set X two times more likely than object y”?

S.Greco, M.Inuiguchi, R.Słowiński: Fuzzy rough sets and multiple-premise gradual decision 

rules. International Journal of Approximate Reasoning, 41 (2005) 179-211
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Remarks on fuzzy extensions of rough sets

The dominance based rough approximation of a fuzzy set avoids 

arbitrary choice of fuzzy connectives and not meaningful operations 

on membership degrees

Approximation of knowledge about Y using knowledge about X is based 

on positive or negative relationships between premises and conclusions,

called gradual rules, i.e.:

i) „the more x is X, the more it is Y” (positive relationship)

ii) „the more x is X, the less it is Y” (negative relationship)

Example: 

„the larger the market share of a company, the larger its profit”

„the larger the debt of a company, the smaller its profit”
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DRSA as an approach to computing with words

Classical fuzzy set approach to computing with words:

i) qualitative inputs, such as „very bad”, „bad”, „medium”, „good”, „very good”

ii) numerical codification of the inputs (fuzzification): e.g.

„very bad”=0, „bad”=0.25, „medium”=0.5, „good”=0.75, „very good”=1 

iii) algebraic operations on numerical codes : e.g.

„comprehensive evalaution of a student good in mathematics and medium in

physics”=(0.75+0.5)/2=0.625

iv) recodification in qualitiative terms of the calculation result (defuzzification):

e.g., 0.625=between medium and good

Dominance-based Rough Set Approach does not need fuzzification

and defuzzification: e.g.

„if the student is at least medium in Mathematics and

at least medium in Literature, then the student is at least medium”
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Classical rough set as a particular case of
dominance-based rough approximation of a fuzzy set
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Classical rough set as a particular case of 
dominance-based rough approximation of a fuzzy set

Given E⊆U, for each set X⊆U, we can define its upward lower approximation

and its upward upper approximation :

Analogously, we can define downward lower approximation and

downward upper approximation of set X⊆U :

The above approximations can be used to analyse data relative to gradual

membership of objects to some concepts representing properties on one hand, 

and decision classes, on the other hand
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Classical rough set as a particular case of 
dominance-based rough approximation of a fuzzy set

Classical rough sets based on indiscernibility relation :

IP = {(x,y)∈U×U : f(x,q)=f(y,q), for each q∈P}

IP(x) = {y∈U : f(x,q)=f(y,q), for each q∈P}

For information table S=<U, Q, V, f>, for set X⊆U and for subset P⊆Q, 

the P-lower and the P-upper approximations of X are defined as follows :

Let B=<U, F, φ> be a Boolean information base, where φ : U × F → {0,1}

Partition F={F1,…,Fr} of the set of properties F is called canonical, if for each

x∈U and for each Fk⊆F, k=1,…,r, there exists only one fj∈Fk such that φ(x,fj)=1, 

and for all the others, φ(x,fh)=0 (h≠j)  (N.B. card(Fk)≥2, k=1,…,r) 

( ) ( ){ }
( ) ( ){ }∅≠∩∈=

⊆∈=

XxI:UxXP

XxI:UxXP

P

P
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Classical rough set as a particular case of 
dominance-based rough approximation of a fuzzy set

Any information table S=<U, Q, V, f>, can be interpreted as a Boolean

information base B=<U, F, φ>, such that to each v∈Vq there corresponds one 

property fqv∈F for which φ(x,fqv)=1  if f(x,q)=v, and φ(x,fqv)=0  otherwise

F={F1,…,Fr}, with Fq={fqv, v∈Vq}, q∈Q, is a canonical partition of F

Theorem (Greco, Matarazzo, Słowiński 2006):

Let P⊆Q and let EP be the set of all properties fqv corresponding to values v∈Vq

for each attribute q∈P; for each set X⊆U, we have

In fact, 
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DRSA for Multiple Decision Makers (DRSA-MDM)
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Multiple Criteria Classification by Multiple Decision Makers

Classification of objects described by multiple criteria is done by 

Multiple Decision Makers (MDM)

Previous studies concentrated on convergence toward a consensus 

decision minimizing dissimilarities w.r.t. decisions of MDM (e.g. Inuiguchi, 

Miyajima 2006; Jelassi, Kersten, Zionts 1990; Nurmi,  Kacprzyk, Fedrizzi 1996)

Instead of supporting negotiation between MDM, we want to 

define conditions for a given scenario of a consensus decision, 

expressed in terms of decision rules

To this aim, we extend the Dominance-based Rough Set Approach

by introducing concepts related to dominance w.r.t. minimal profiles

of evaluations given by MDM
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Multiple Criteria Classification by Multiple Decision Makers

Example: students described by scores (1–20) in mathematics (M), 

physics (Ph) and literature (L) are classified by 3 professors (P1, P2, P3) 

to preference ordered classes: Bad, Medium, Good

Decisions of P1, P2, P3 have to be aggregated so as to designate

students which will be finally accepted for a graduate program

The aggregate decision represents a consensus between professors

Possible consenus: 

2 professors classify as „at least Medium” + 1 professor classifies as „Good”

[Medium, Medium, Good], [Medium, Good, Medium], [Good, Medium, Medium]

Resulting rules, e.g.:

if student x gained at least 15 in M, and at least 18 in L, then x is accepted

if student x gained at most 10 in M, and at most 13 in Ph, then x is not accepted
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DRSA for Multiple Decision Makers – definitions

Set of criteria:  C={1,…,q,…,m}

Set of decision makers (DM):  H={1,…,i,…,h}   (h decision attributes)

Set of preference ordered classes for each DM i∈H :

Cli={Clt,i , t∈Ti},  Ti={1,…,ni}

if x∈Clr,i , y∈Cls,i and r>s, then x is better than y for DM i∈H

For a single DM i∈H, the sets to be approximated are the upward and

the downward unions of decision classes (t=1,…,ni):
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DRSA for Multiple Decision Makers – definitions

Considering the set of DMs as a whole, we need new concepts

concerning minimal or maximal evaluation profiles, 
i.e. vectors of names of decision classes used by particular DMs

Upward multi-union with respect to one configuration [t(1),…,t(h)]:

Downward multi-union with respect to one configuration [t(1),…,t(h)]:

Configuration [t(1),…,t(h)] means evaluation profile by h DMs

E.g. Upward multi-union w.r.t. [Bad, Medium, Average] includes objects

qualified as at least Bad by the 1st DM, and at least Medium by the 2nd DM, 

and at least Average by the 3rd DM

( ) ( )[ ] ( )I
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i,itht,...,t ClCl
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DRSA for Multiple Decision Makers – definitions

Upward mega-union with respect to k configurations, 
{[t1(1),…,t1(h)],…,[tk(1),…,tk(h)]}:

Downward mega-union with respect to k configurations,
{[t1(1),…,t1(h)],…,[tk(1),…,tk(h)]}:

is the maximum number of all possible configurations [t(1),…,t(h)], 

i.e. combinations of class names by particular DMs

E.g. for 2 configurations [Bad, Medium, Average] and [Medium, Bad, Average], 

the upward mega-union includes objects qualified as at least Bad by the 1st DM, 

and at least Medium by the 2nd DM, and at least Average by the 3rd DM, PLUS

objects qualified as at least Medium by the 1st DM, and at least Bad by the 2nd 

DM, and at least Average by the 3rd DM
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DRSA for Multiple Decision Makers – definitions

Using the concept of a mega-union, one can model a collective

decision of majority type, 
e.g. for 3 DMs and YES/NO voting decisions for the objects, 

a „majority” mega-union is composed of such objects that at least 2 DMs voted

YES for them: Cl≥{[YES,YES,NO], [YES,NO,YES], [NO,YES,YES]}

Principle of consistent representation of multi-unions: for any P⊆C

x∈U belongs to Cl≥[t(1),…,t(h)] without inconsistency if x∈Cl≥[t(1),…,t(h)] and, 

for all y∈U dominating x on P, also y belongs to Cl≥[t(1),…,t(h)], i.e.

x∈U could belong to Cl≥[t(1),…,t(h)] if there existed at least one y∈Cl≥[t(1),…,t(h)]

such that x dominates y on P, i.e. 

( )yDx P
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DRSA for Multiple Decision Makers – definitions

P-lower approximation of upward multi-union Cl≥[t(1),…,t(h)] :

P-upper approximation of upward multi-union Cl≥[t(1),…,t(h)] :

Analogously, for downward multi-union Cl≤[t(1),…,t(h)] :
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DRSA for Multiple Decision Makers – definitions

Theorem 1. For all P⊆C and for any configuration [t(1),…,t(h)]:
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DRSA for Multiple Decision Makers – definitions

P-lower approximation of upward mega-union

P-upper approximation of upward mega-union

Analogously, for downward mega-union
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DRSA for Multiple Decision Makers – definitions

Theorem 2. For all P⊆C and for any set of configurations

:
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DRSA for multiple DMs – properties

Each upward union is a particular upward multi-union:

Each upward multi-union is a particular upward mega-union:

All properties of mega-unions also hold for multi-unions and for single DM

We present properties for all kinds of upward unions – the properties for 

all downward unions are analogous
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DRSA for multiple DMs – property of inclusion

Property of inclusion and the associated order relation between upward

and downward unions, multi-unions and mega-unions

There is an isomorphism between inclusion relation ⊆ on the set of all

upward unions and order relation ≥ on the set of 

class indices T = {1,…,n}:

Inclusion relation ⊆ on Cl≥ is a complete preorder (strongly complete & 

transitive)

{ }TtClt ∈= ≥≥   ,Cl

srClCl sr ≥⇔⊆ ≥≥
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DRSA for multiple DMs – property of inclusion

There is an isomorphism between inclusion relation ⊆ on the set of all

upward multi-unions

and order relation ≥ on the Cartesian product of class indices

expressed as follows:

for any two configurations

The order relation ≥ is the dominance relation (partial preorder)  

in the set of all configurations

Inclusion relation ⊆ on is a partial preorder (reflexive & transitive)
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DRSA for multiple DMs – property of inclusion

For all two configurations ,  which

implies: 
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DRSA for multiple DMs – property of inclusion

For upward mega-unions, we consider order relation defined

in the power set of h-dimensional real space

For any two sets of k1 and k2 configurations

the order relation holds: 

Similarily,
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DRSA for multiple DMs – property of inclusion

The order relations and on         are independent:

E.g.  h=2, and

Then
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DRSA for multiple DMs – property of inclusion

There is an isomorphism between inclusion relation ⊆ on the set of all

upward mega-unions

and order relation on the power set of Cartesian product of class

indices expressed as follows:

for any two sets of k1 and k2 configurations

Inclusion relation ⊆ on is a partial preorder, however,
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DRSA for multiple DMs – properties

The upward mega-unions satisfy the basic properties of rough

approximations:

for all P ⊆ R ⊆ C,  and for all ,

Rough inclusion

Complementarity

Monotonicity
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DRSA for Multiple Decision Makers is based on a new definition of 

dominance w.r.t. profiles of classification (configurations) made by DMs

DRSA for MDM permits to characterize conditions for objects

to reach a given consensus

These conditions are expressed in terms of decision rules

Premises are formulated in multiple-criteria evaluation space

Conclusions are formulated in multiple-DMs classification space

DRSA for MDM exploits ordinal information only, and decision rules

do not convert ordinal information into numeric one

DRSA for MDM does not search for concordant decision rules for 

multiple DMs considered as individuals but rather characterizes

conditions for a consensus attainable for multiple DMs considered

as a whole

Conclusions to DRSA for Multiple Decision Makers
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Other extensions of DRSA
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Extensions of DRSA dealing with preference-ordered data

Missing values of attributes and criteria

Low135

High3531

Medium25.510.5

Low517.5

Low910

High17,840

Medium9.521

Medium179.75

Low211

Medium12.518

Medium2527

Medium19*

High2022.5

High17.524

High17.527.5

High3932.5

High3035

Effectiveness ↑Sales ↑Investments ↑



308

c1

0 40

40

20

20

Missing values of attributes and criteria

c2

Granules of knowledge

x



309

c1

0 40

40

20

20

Missing values of attributes and criteria

Granules of knowledge

c2

}:{)( xDyUyxD PP
∗∗+ ∈=

}:{)( yDxUyxD PP
∗−∗ ∈=

x

x
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Hierarchical structure of attributes and criteria

Example

Hierarchical structure of attributes and criteria

Air quality Water quality Landscape change

Local level Global Effect Ecosystem impact

Environmental Value
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Hierarchical structure of attributes and criteria

VG f G f M f B

III f II f I

A f B f C

M

G

G

M

G

M

M

B

Landscape

change

CBBI15P1

CBMI32P2

VG

G

G

G

B

B

Global

effect

B

A

B

A

B

C

Environmental

value

GIII66P7

VGIII55P5

MI43P3

GII75P8

M-GIII72P6

M-GII61P4

Ecosystem

impact

Local

level

Water

quality

Air

quality
Projects
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Hierarchical structure of attributes and criteria

IIM75P8

IIIG66P7

IIIG72P6

IIIM55P5

IIG61P4

IM43P3

IM32P2

IB15P1

Local

level

Landscape

change

Water

quality

Air

quality

Projects

CBBIP1

CBMIP2

VG

G

G

G

B

B

Global

effect

B

A

B

A

B

C

Environmental

value

GIIIP7

VGII-IIIP5

MIP3

GII-IIP8

M-GIIIP6

M-GIIP4

Ecosystem

impact

Local

level
Projects

P5 and P8 are inconsistenst P6 and P7 are inconsistenst

P8 and P7 are inconsistenst

The second inconsistency does
not appear in the original table –
it is conditioned by the first level



313

c1

c2

0 40

40

20

20

Hierarchical structure of attributes and criteria

Interval order – dominance cones

D+
P(   )

D-
P(   )
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Hierarchical structure of attributes and criteria

Examples of decision rules with interval order

If u(x, Local) ≥ II, then x is at least B on EV (P4, P5, P6, P7, P8)

If l(x, Local) ≤ I, then x is at most C on EV (P1, P2, P3)

u(x)- upper bound of value x

l(x)- lower bound of value x
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Discovering association rules in preference-ordered data sets

Discovering association rules in preference-ordered data sets

Example

Monotonic relationship between “salary” and “credit risk ” :  

improvement of “salary” should not increase “credit risk”

If so, B and C are inconsistent examples!
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Discovering association rules in preference-ordered data sets

Technical diagnostics – study of dependencies among values of symptoms

Criteria = symptoms: 

↑ a1 - maximum speed [km/h], 

↑ a2 - compression pressure [Mpa], 

↓ a3 - blacking components in exhaust gas [%], 

↑ a4 - torque [Nm], 

↓ a5 - summer fuel consumption [l/100 km], 

↓ a6 - winter fuel consumption [l/100 km], 

↓ a7 - oil consumption [l/1000 km], 

↑ a8 - maximum horsepower of the engine [KM]. 
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Discovering association rules in preference-ordered data sets

Monotonic relationship (MR):

Looking for association rules with parameters:

minsupport = 50% (38 objects)

minconfidence = 75%

mincredibility = 75%

Speed Pressure Blacking Torque FuelS FuelW Oil HorsePower
Speed x x x
Pressure x x x x x x x
Blacking x x x x
Torque x x x
FuelS x x
FuelW x x x x
Oil x x x
HorsePower x x x x
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Without considering MR among criteria: 40 association rules

Considering MR among criteria, 23 on 28 rules had to be removed 

because their credibility < 75% !

Next 8 rules had to be deleted, because they are absorbed by others.

Finally, 9 association rules satisfied all requirements!

An example of association rule:

„(pressure>2.4) → (torque>44.1)&(speed>74)”

with support 53.9%, confidence 97.6% and credibility 97.62%

Ignoring the preference information may lead to wrong results – 78% of 

typical association rules are not valid!

Discovering association rules in preference-ordered data sets
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DRSA handles monotonic relationships between condition and decision attributes

Classical rough set is a particular case of dominance-based rough approximation
of a fuzzy set

Preference model induced from rough approximations of unions of decision
classes (or preference relations S and Sc) is expressed in a natural and 
comprehensible language of "if..., then..." decision rules

Preference model built of decision rules is the most general, requires the
weakest axioms, and can represent inconsistent preferences

Heterogeneous information (attributes, criteria) and scales of preference
(ordinal, cardinal) can be processed within DRSA

DRSA exploits ordinal information only, and decision rules do not convert ordinal 
information into numeric one

DRSA supplies useful elements of knowledge about decision situation:
certain and doubtful knowledge distinguished by lower and upper approximations

relevance of particular attributes or criteria and information about their interaction

reducts of attributes or criteria conveying important knowledge contained in data

the core of indispensable attributes and criteria

decision rules can be used for explanation of past decisions, for decision support
and for strategic interventions

Conclusions



320

Free software available

ROSE

ROugh Set data Explorer

4eMka  &  JAMM  &  jMAF

New Decision Support Tools for Analysis and Solving

Multicriteria Classification Problems

http://idss.cs.put.poznan.pl/site/software.html


