Multi-Criteria Optimization with Preferences

Ulrich Junker ILOG

Lost in Constraints

Pam, a project planner, is facing a decision-making nightmare with the automated planning system APS.
Pam: How many extra-hours do we need for a delivery in May?
Find a project plan assigning everybody to his usual job
APS: 100
Pam: Too much! When can we deliver if we do it without extra-hours?
APS: December
Pam: Too late! When can we deliver if each project member does any task?
APS: October if nobody does his usual job.
Pam: Too bad! I am running out of constraints ...

In Search of the Preferences

Dan, a decision analyst, recommends Pam to relax the constraints into preferences.
Dan: What are your preferences about delivery time if you ignore everything else?
Pam: Early delivery is preferred
Dan: What are your preferences about extra-hours if you ignore everything else?
Pam: Fewer extra-hours are preferred
Dan: You may encounter conflicts between these objectives. Is any criterion more important?
Pam: That depends: for hot projects, it is earliest delivery time; for low-budget projects, it is fewest extra hours; and for all others it is a fair compromise

Problem Type

combinatorial problems where preferences are central

e.g. product configuration, project planning, trip planning

decision space	combinatorial
outcome space	
combinatorial	
preferences	
uncertainty	incomplete \& local

Combinatorial Problem

- Problem space: $X_{1} \times \ldots \times X_{n}$
e.g., for each task $i=1, \ldots, t$ we introduce
- set X_{i} of project members who can do task i;
- set X_{t+i} of time periods for performing task i;
- Constraints: $C \subseteq X_{i_{1}} \times \ldots \times X_{i_{k}}$

Local constraints of small scope $\left\{i_{1}, \ldots, i_{k}\right\}$, e.g.

- precedence constraint between tasks i, j

$$
x_{t+i}<x_{t+j}
$$

- resource constraint for each project member:

$$
\text { if } x_{i}=x_{j} \text { then } x_{t+i}<x_{t+j} \vee x_{t+j}<x_{t+i}
$$

where $x \in X_{1} \times \ldots \times X_{n}$

Combinatorial Decision Space

- Decision space: $D \subseteq X_{1} \times \ldots \times X_{n}$ s.t. $x \in D$ iff $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in C$ for all constraints with scope $\left\{i_{1}, \ldots, i_{k}\right\}$

Combinatorial Outcome Space

- Outcome space: $\Omega_{1} \times \ldots \times \Omega_{m}$
- Criteria: $z_{j}: X_{j_{1}} \times \ldots \times X_{j_{k_{j}}} \rightarrow \Omega_{j}$
global criteria of large scope $\left\{j_{1}, \ldots, j_{k_{j}}\right\}$:
- delivery time
- extra hours
local criteria of small scope $\left\{j_{1}, \ldots, j_{k_{j}}\right\}$:
- task of project member l in period p for each l, p
- Assumption:
global criteria make the problem difficult

Incomplete \& Local Preferences

- Preferences are viewpoint specifi c
each viewpoint is defined by one or more criteria
- Marketing: prefer earlier delivery dates all else ignored
- Administration: prefer less extra-hours all else ignored
- Project member i : prefer task A over B all else ignored
rationality principles are restricted to viewpoints!
- Preferences may be incomplete
- Project member i prefers task A over B, but has no opinion about C

Questions about Preferences

- Modelling:

How to aggregate viewpoint-specific preferences?
Which preference models can do this?

- Solving:

How to solve combinatorial problems under those preferences?

- Explaining:

How to explain the results while allowing user critics?
Can we use the original user preferences for this?

Which Preferences? (outline)

- Single viewpoint
- complete preference orders
- incomplete preference orders
- Multiple independent viewpoints
- lexicographic optimization
- Pareto-optimization
- Importance preferences between viewpoints
- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
- ceteris-paribus
- reversible

Atomic Optimization Problems

- Preference model:
- single criterion $z: \mathcal{X} \rightarrow \Omega$
- total order \geq on Ω
- Problem:

$$
\operatorname{Max}_{z,>}(D):=\left\{x \in D \mid \nexists x^{*} \in D: z\left(x^{*}\right)>z(x)\right\}
$$

- Classic combinatorial optimization
- represent order by utility u s.t. $\omega_{1} \geq \omega_{2}$ iff $u\left(\omega_{1}\right) \geq u(\omega 2)$
- solve $\max \{u(z(x)) \mid x \in D\}$ and let x^{*} be a solution
- can be solved by existing optimizers
- Solved form:
- let ω^{*} be the value $z\left(x^{*}\right)$ of z in solution x^{*}
- then $\operatorname{Max}_{z,>}(D)=\left\{x \mid x \in D \wedge z(x)=\omega^{*}\right\}$

The Answer is 42 ...

but what was the question?

- Optimization proble:m
let ω^{*} be the optimal value of z under constraints \mathcal{C}
- Explanation questions:
- Why is ω^{*} optimal?
- Why isn't ω chosen instead?
- Explanation of optimality: $\left(>, \omega^{*}, E\right)$
where E is a simplest subproblem (minimal subset) of \mathcal{C}
s.t. ω^{*} is the optimal value of z under E
$-\omega^{*}$ is optimal as E defeats all better values
$-\omega$ is not chosen since $\omega^{*}>\omega$ or ω is defeated by E

How to compute explanations?

- Reduce to conflicts:
- find a minimal unsatisfiable subset E^{\prime} ("conflict") of $\mathcal{C} \cup\left\{z>\omega^{*}\right\}$
- (>, $\left.\omega^{*}, E^{\prime} \backslash\left\{z>\omega^{*}\right\}\right)$ is an explanation of optimality
- How to compute conflicts?
- perform a sequence of satisfiability checks
- QuickXplain accelerates the basic method by divide-and-conquer [AAAI-04]
- QuickXplain provides a well working explanation technology with a growing list of successful applications.

Incomplete Preference Orders

- Assumption:
- the decision maker has given only some preferences
- hence, the complete preference relation is a superset of the given preferences
- the given preferences define a space of possible complete preference relations
- Preference model:
-Single criterion $z: \mathcal{X} \rightarrow \Omega$
- space of complete orders on Ω that are supersets of a given (Partial) preorder \succsim on Ω

Alternative Optimizations

- Problem:
- let $\tau(\succ)$ the set of complete extensions of \succ
- $\operatorname{Max}_{z, \succ}(D):=\bigcup_{>\in \tau(\succ)} \operatorname{Max}_{z,>}(D)$
- Optimization under Partial Orders:

$$
\operatorname{Max}_{z, \succ}(D)=\left\{x \in D \mid \nexists x^{*} \in D: z\left(x^{*}\right) \succ z(x)\right\}
$$

- Solved form:
- let Ω^{*} be the optima to be found by the optimizer
- $\operatorname{Max}_{z, \succ}(D)=\left\{x \mid x \in D \wedge \bigvee_{\omega^{*} \in \Omega^{*}} z(x)=\omega^{*}\right\}$

Optimization under Partial Orders

- Inner branching
- divide decision space by a constraint α
- $\operatorname{Max}_{z, \succ}(\{x \mid x \in D \wedge \alpha\}) \cup \operatorname{Max}_{z, \succ}(\{x \mid x \in D \wedge \neg \alpha\})$
- results into a relaxation of the original problem
- used in multi-objective branch-and-bound
- Outer branching
- divide space of optional solutions by a constraint α
$-\left\{x \mid x \in \operatorname{Max}_{z, \succ}(D) \wedge \alpha\right\} \cup\left\{x \mid x \in \operatorname{Max}_{z, \succ}(D) \wedge \neg \alpha\right\}$
- subproblems can be simplified for certain branching constraints
- see [MOPGP'06]

Outer Branching

- Branching constraint $z(x)=\omega^{*}$
- choose one linear extension $>$ of \succ
- solve $\operatorname{Max}_{z,>}(D)$ and let ω^{*} be the optimum
- Left-branch
- set of all optimal solutions x of D s.t. $z(x)=\omega^{*}$
- this reduces to $\left\{x \mid x \in D \wedge z(x)=\omega^{*}\right\}$
- Right-branch
- set of all optimal solutions x of D s.t. $z(x) \neq \omega^{*}$
- this reduces to $\operatorname{Max}_{z, \succ}\left(\left\{x \mid x \in D \wedge z(x) \npreceq \omega^{*}\right\}\right)$
- Property
each atomic optimization problem, except for the last one, produces a new optimal value

Explanations under Partial Orders

- Outer branching
- chooses a linear extension $>$ of \succ and
- generates the optima $\omega_{1}^{*}, \ldots, \omega_{k}^{*}$ in decreasing $>$-order
- Explanation with dominance constraints
- each ω_{i}^{*} has an explanation of optimality $\left(>, \omega_{i}^{*}, E_{i}\right)$
- but E_{i} contains dominance constraints $z(x) \npreceq \omega_{j}^{*}$
- Explanation without dominance constraints
- define extension \succ_{i} of \succ s.t. $\omega_{i}^{*} \succ_{i} \omega_{j}^{*}$ for $j \neq i$
- choose a linear extension $>_{i}$ of \succ_{i}
- find new explanation $\left(>_{i}, \omega_{i}, E_{i}^{\prime}\right)$, namely for the optimality of ω_{i}^{*} w.r.t. to $>_{i}$

Which Preferences? (outline)

- Single viewpoint
- complete preference orders
- incomplete preference orders
- Multiple independent viewpoints
- lexicographic optimization
- Pareto-optimization
- Importance preferences between viewpoints
- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
- ceteris-paribus
- reversible

Multiple criteria

- Assumptions:
- each criterion represents an independent viewpoint
- rationality principles are restricted to this viewpoint
- DM answers questions about viewpoint-preferences promptly
- DM needs to reason, make judgements and choices when being asked for preferences involving multiple viewpoints together; the rationality of those answers is not guaranteed
- Preference model:
- multiple criteria $z_{i}: \mathcal{X} \rightarrow \Omega_{i}$
- (partial) preorder \succsim_{i} on Ω_{i}

Lexicographical Optimality

- Preference aggregation:
- $\succ_{l e x}$ on $\Omega_{1} \times \ldots \times \Omega_{m}$
- $\left(\omega_{1}^{*}, \ldots, \omega_{m}^{*}\right) \succ_{l e x}\left(\omega_{1}, \ldots, \omega_{m}\right)$ iff there is a k s.t. $\omega_{j}^{*}=\omega_{j}$ for all $j=1, \ldots, k-1$ and $\omega_{k}^{*} \succ \omega_{k}$
- Problem:

$$
\begin{aligned}
& \operatorname{Lex}_{\left\langle z_{1}, \succ_{1}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle}(D):=\left\{x \in D \mid \nexists x^{*} \in D:\right. \\
&\left.z\left(x^{*}\right) \succ_{\text {lex }} z(x)\right\}
\end{aligned}
$$

- Optimization:

$$
\begin{aligned}
- & \operatorname{Lex}_{\left\langle z_{1}, \succ_{1}\right\rangle}(D)=\operatorname{Max}_{z_{1}, \succ_{1}}(D) \\
- & \operatorname{Lex}_{\left\langle z_{1}, \succ_{1}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle}(D)= \\
& \operatorname{Lex}_{\left\langle z_{2}, \succ_{2}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle}\left(\operatorname{Max}_{z_{1}, \succ_{1}}(D)\right)
\end{aligned}
$$

Lexicographical Optimality

Lex-Optimality Explained

- Lexicographic Optimization:
- solved by a sequence of atomic optimization problems
- if $\left(\omega_{1}^{*}, \ldots, \omega_{m}^{*}\right)$ is a lex-optimal solution, then ω_{i}^{*} is an optimal value of z_{i} in
$\operatorname{Max}_{z_{i}, \succ_{i}}\left(\left\{x \mid x \in D \wedge z_{1}(x)=\omega_{1}^{*} \wedge \ldots \wedge z_{i-1}(x)=\omega_{i-1}^{*}\right\}\right)$
- Explanations of Lexicographic Optimality:
- sequence $\left(\xi_{1}, \ldots, \xi_{n}\right)$ of explanations
- $\xi_{i}=\left(>_{i}, \omega_{i}^{*}, E_{i}\right)$ is an explanation of optimality of ω_{i}^{*}
- E_{i} may contain constraints $z_{j}(x)=\omega_{j}^{*}$ for $j<i$
- these constraints indicate that the optimal values of more important criteria defeated better values of z_{i}

Alternative Sequentializations

- Preference aggregation:
- let Π be the set of permutations of $1, \ldots, m$
- Extreme $\left\langle z_{1}, \succ_{1}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle(D):=$ $\bigcup_{\pi \in \Pi} \operatorname{Lex}\left\langle z_{\left.\pi_{1}, \not, \pi_{1}\right\rangle}\right\rangle, \ldots,\left\langle z_{\pi_{m}}, \succ_{\pi_{m}}\right\rangle(D)$

Alternative Sequentializations

Extreme Solutions Explained

- A sequentialization:
- is characterized by a permutation π
- let $\left(\omega_{\pi_{1}}^{*} \ldots, \omega_{\pi_{m}}^{*}\right)$ be a solution of $\left.\operatorname{Lex}_{\left\langle z_{\pi_{1}}, \succ \tau_{1}\right\rangle, \ldots,\left\langle z_{\pi_{m}}, \succ_{\pi_{m}}\right\rangle}\right\rangle(D)$
- Explanation of Optimality:
- take an explanation $\left(\xi_{\pi_{1}} \ldots, \xi_{\pi_{m}}\right)$ of the lex-optimality of $\left(\omega_{\pi_{1}}^{*} \ldots, \omega_{\pi_{m}}^{*}\right)$
- it lists the criteria in the chosen order of importance

Pareto-Optimality

- Preference aggregation:
- define $\succ_{\text {Pareto }}$ on $\Omega_{1} \times \ldots \times \Omega_{m}$
- $\left(\omega_{1}^{*}, \ldots, \omega_{m}^{*}\right) \succ_{\text {Pareto }}\left(\omega_{1}, \ldots, \omega_{m}\right)$ iff $\omega_{i}^{*} \succeq \omega_{i}$ for all i and $\omega_{i}^{*} \succ \omega_{i}$ for one i
- Problem:

$$
\begin{aligned}
\text { Pareto }_{\left\langle z_{1}, \succ_{1}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle}(D):= & \left\{x \in D \mid \nexists x^{*} \in D:\right. \\
& \left.z\left(x^{*}\right) \succ_{\text {pareto }} z(x)\right\}
\end{aligned}
$$

- Optimization:
- use outer branching
- lexicographic order is used as linear extension of Pareto-dominance

Pareto Optimality

Which Preferences? (outline)

- Single viewpoint
- complete preference orders
- incomplete preference orders
- Multiple independent viewpoints
- lexicographic optimization
- Pareto-optimization
- Importance preferences between viewpoints
- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
- ceteris-paribus
- reversible

Importance of criteria

- Assumption:
- DM is easily able to decide the relative importance of criteria
- Preference model:
- multiple criteria $z_{i}: \mathcal{X} \rightarrow \Omega_{i}$
- (partial) preorder \succsim_{i} on Ω_{i}
- a strict partial order I on the set of criteria indices
- Aggregation principles:
a preorder \succsim on Ω is an aggregation under this model iff
- if $(i, j) \in I$ then $\omega^{*} \succ \omega$ for all $\omega^{*}, \omega \in \Omega$ that satisfy
$\omega_{i}^{*} \succ_{i} \omega_{i}$, and $\omega_{k}^{*}=\omega_{k}$ for $k \in\{1, \ldots, m\} \backslash\{i, j\}$

Constrained Sequentializations

- Preference aggregation:
- a permutation π respects I iff

$$
\left(\pi_{i}, \pi_{j}\right) \in I \text { implies } i<j
$$

- let $\Pi(I)$ be the set of permutations of $1, \ldots, m$ respecting I
- Extreme ${ }_{\left\langle z_{1}, \succ_{1}\right\rangle, \ldots,\left\langle z_{m}, \succ_{m}\right\rangle}^{I}(D):=$
$\bigcup_{\pi \in \Pi(I)} \operatorname{Lex}\left\langle z_{\left.\pi_{1}, \succ \pi_{1}\right\rangle, \ldots,\left\langle z_{\pi_{m}}, \succ \pi_{m}\right\rangle}(D)\right.$
- see [ANOR 04]

Constrained Pareto-Optimality

- Preference aggregation:
- define $\succ_{\text {Pareto }}^{I}$ on $\Omega_{1} \times \ldots \times \Omega_{m}$
- $\left(\omega_{1}^{*}, \ldots, \omega_{m}^{*}\right) \succ_{\text {Pareto }}^{I}\left(\omega_{1}, \ldots, \omega_{m}\right)$ iff

1. $\omega_{i}^{*} \neq \omega_{i}$ for some i and
2. if $\omega_{i}^{*} \neq \omega_{i}$ then (i) $\omega_{i}^{*} \succ \omega_{i}$ or (ii) there is a j that is more important than i and $\omega_{j}^{*} \neq \omega_{j}$

Which Preferences? (outline)

- Single viewpoint
- complete preference orders
- incomplete preference orders
- Multiple independent viewpoints
- lexicographic optimization
- Pareto-optimization
- Importance preferences between viewpoints
- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
- ceteris-paribus
- reversible

Reversible Preferences

- Assumption:
- there are different overlapping viewpoints
- some viewpoints are more specific than others (supersets)
- preferences on more specific viewpoints may reverse preferences obtained from more general preferences by Pareto-aggregation
- Approach:
- extension principle: more general preferences are extended to more specific viewpoints
- conservation principle: best choices of the more specific viewpoint need to be preserved under certain conditions

Conclusion

- Modelling
- viewpoint specific semantics
- importance preferences constraint Pareto-aggregation
- Optimzation
- complex problems are reduced to atomic problems solvable
- preference and constraint handling is decoupled
- existing optimizers can be used
- Explanation
- are important to justify a solution
- exhibit critical preferences for changing the solution

