Multi-Criteria Optimization with Preferences

Ulrich Junker ILOG

1

Ulrich Junker, Multi-Criteria Optimization with Preferences, IC0602 Catania Meeting - WG3

Lost in Constraints

Pam, a project planner, is facing a decision-making nightmare with the automated planning system APS.

Pam: How many extra-hours do we need for a delivery in May? Find a project plan assigning everybody to his usual job

APS: 100

Pam: Too much! When can we deliver if we do it without extra-hours?

APS: December

Pam: Too late! When can we deliver if each project member does any task?

2

- APS: October if nobody does his usual job.
- Pam: Too bad! I am running out of constraints ...

In Search of the Preferences

Dan, a decision analyst, recommends Pam to relax the constraints into preferences.

- Dan: What are your preferences about delivery time if you ignore everything else?
- Pam: Early delivery is preferred
- Dan: What are your preferences about extra-hours if you ignore everything else?
- Pam: Fewer extra-hours are preferred
- Dan: You may encounter conflicts between these objectives. Is any criterion more important?
- Pam: That depends: for hot projects, it is earliest delivery time; for low-budget projects, it is fewest extra hours; and for all others it is a fair compromise

3

Problem Type

combinatorial problems where preferences are central

e.g. product configuration, project planning, trip planning

decision space	combinatorial
outcome space	combinatorial
preferences	incomplete & local
uncertainty	no
-	

Combinatorial Problem

• Problem space: $X_1 \times \ldots \times X_n$

e.g., for each task $i = 1, \ldots, t$ we introduce

- set X_i of project members who can do task *i*;
- set X_{t+i} of time periods for performing task *i*;
- Constraints: $C \subseteq X_{i_1} \times \ldots \times X_{i_k}$

Local constraints of small scope $\{i_1, \ldots, i_k\}$, e.g.

– precedence constraint between tasks i, j

$$x_{t+i} < x_{t+j}$$

- resource constraint for each project member:

if
$$x_i = x_j$$
 then $x_{t+i} < x_{t+j} \lor x_{t+j} < x_{t+i}$
where $x \in X_1 \times \ldots \times X_n$

Combinatorial Decision Space

• Decision space: $D \subseteq X_1 \times \ldots \times X_n$

s.t. $x \in D$ iff $(x_{i_1}, \ldots, x_{i_k}) \in C$ for all constraints with scope $\{i_1, \ldots, i_k\}$

6

Combinatorial Outcome Space

- Outcome space: $\Omega_1 \times \ldots \times \Omega_m$
- Criteria: $z_j : X_{j_1} \times \ldots \times X_{j_{k_j}} \to \Omega_j$

global criteria of large scope $\{j_1, \ldots, j_{k_j}\}$:

- delivery time
- extra hours

local criteria of small scope $\{j_1, \ldots, j_{k_j}\}$:

– task of project member l in period p for each l, p

• Assumption:

global criteria make the problem difficult

Incomplete & Local Preferences

- Preferences are viewpoint specifi c
 - each viewpoint is defined by one or more criteria
 - Marketing: prefer earlier delivery dates all else ignored
 - Administration: prefer less extra-hours all else ignored
 - Project member i: prefer task A over B all else ignored

rationality principles are restricted to viewpoints!

- Preferences may be incomplete
 - Project member i prefers task A over B, but has no opinion about C

8

Questions about Preferences

• Modelling:

How to aggregate viewpoint-specific preferences? Which preference models can do this?

• Solving:

How to solve combinatorial problems under those preferences?

• Explaining:

How to explain the results while allowing user critics?

Can we use the original user preferences for this?

Which Preferences? (outline)

- Single viewpoint
 - complete preference orders
 - incomplete preference orders
- Multiple independent viewpoints
 - lexicographic optimization
 - Pareto-optimization

Importance preferences between viewpoints

- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
 - ceteris-paribus
 - reversible

Atomic Optimization Problems

• Preference model:

- single criterion $z : \mathcal{X} \to \Omega$
- total order \geq on Ω
- Problem:

 $Max_{z,>}(D) := \{ x \in D \mid \not\exists x^* \in D : z(x^*) > z(x) \}$

- Classic combinatorial optimization
 - represent order by utility u s.t. $\omega_1 \ge \omega_2$ iff $u(\omega_1) \ge u(\omega_2)$
 - solve $max\{u(z(x)) \mid x \in D\}$ and let x^* be a solution
 - can be solved by existing optimizers
- Solved form:
 - let ω^* be the value $z(x^*)$ of z in solution x^*

- then $Max_{z,>}(D) = \{x \mid x \in D \land z(x) = \omega^*\}$

The Answer is 42 ...

but what was the question?

• Optimization proble:m

let ω^* be the optimal value of z under constraints ${\mathcal C}$

- Explanation questions:
 - Why is ω^* optimal?
 - Why isn't ω chosen instead?
- Explanation of optimality: $(>, \omega^*, E)$

where E is a simplest subproblem (minimal subset) of ${\cal C}$ s.t. ω^* is the optimal value of z under E

 $-\omega^*$ is optimal as *E* defeats all better values

 $-\omega$ is not chosen since $\omega^* > \omega$ or ω is defeated by E

How to compute explanations?

• Reduce to conflicts:

- find a minimal unsatisfiable subset E' ("conflict") of $\mathcal{C} \cup \{z > \omega^*\}$
- $-\left(>,\omega^{*},E^{\prime}\setminus\{z>\omega^{*}\}\right)$ is an explanation of optimality
- How to compute conflicts?
 - perform a sequence of satisfiability checks
 - QUICKXPLAIN accelerates the basic method by divide-and-conquer [AAAI-04]
 - QUICKXPLAIN provides a well working explanation technology with a growing list of successful applications.

Incomplete Preference Orders

• Assumption:

- the decision maker has given only some preferences
- hence, the complete preference relation is a superset of the given preferences
- the given preferences define a space of possible complete preference relations
- Preference model:
 - Single criterion $z: \mathcal{X} \to \Omega$
 - space of complete orders on Ω that are supersets of a given (Partial) preorder \succeq on Ω

Alternative Optimizations

• Problem:

– let $\tau(\succ)$ the set of complete extensions of \succ

 $-\operatorname{Max}_{z,\succ}(D) := \bigcup_{>\in \tau(\succ)} \operatorname{Max}_{z,>}(D)$

• Optimization under Partial Orders:

 $Max_{z,\succ}(D) = \{ x \in D \mid \not\exists x^* \in D : z(x^*) \succ z(x) \}$

• Solved form:

- let Ω^* be the optima to be found by the optimizer - $Max_{z,\succ}(D) = \{x \mid x \in D \land \bigvee_{\omega^* \in \Omega^*} z(x) = \omega^*\}$

Optimization under Partial Orders

Inner branching

- divide decision space by a constraint $\boldsymbol{\alpha}$
- $-\operatorname{Max}_{z,\succ}(\{x\mid x\in D\wedge\alpha\})\cup\operatorname{Max}_{z,\succ}(\{x\mid x\in D\wedge\neg\alpha\})$
- results into a relaxation of the original problem
- used in multi-objective branch-and-bound
- Outer branching
 - divide space of optional solutions by a constraint $\boldsymbol{\alpha}$
 - $\{x \mid x \in Max_{z,\succ}(D) \land \alpha\} \cup \{x \mid x \in Max_{z,\succ}(D) \land \neg \alpha\}$
 - subproblems can be simplified for certain branching constraints
 - see [MOPGP'06]

Outer Branching

- Branching constraint $z(x) = \omega^*$
 - choose one linear extension > of \succ
 - solve $Max_{z,>}(D)$ and let ω^* be the optimum

• Left-branch

- set of all optimal solutions x of D s.t. $z(x) = \omega^*$
- this reduces to $\{x \mid x \in D \land z(x) = \omega^*\}$
- Right-branch

– set of all optimal solutions x of D s.t. $z(x) \neq \omega^*$

- this reduces to $Max_{z,\succ}(\{x \mid x \in D \land z(x) \not\preceq \omega^*\})$

• Property

each atomic optimization problem, except for the last one, produces a new optimal value

Explanations under Partial Orders

Outer branching

- chooses a linear extension > of \succ and
- generates the optima $\omega_1^*, \ldots, \omega_k^*$ in decreasing >-order
- Explanation with dominance constraints
 - each ω_i^* has an explanation of optimality $(>, \omega_i^*, E_i)$ – but E_i contains dominance constraints $z(x) \not\preceq \omega_i^*$
- Explanation without dominance constraints
 - define extension \succ_i of \succ s.t. $\omega_i^* \succ_i \omega_j^*$ for $j \neq i$
 - choose a linear extension $>_i$ of \succ_i
 - find new explanation $(>_i, \omega_i, E'_i)$, namely for the optimality of ω_i^* w.r.t. to $>_i$

Which Preferences? (outline)

- Single viewpoint
 - complete preference orders
 - incomplete preference orders
- Multiple independent viewpoints
 - lexicographic optimization
 - Pareto-optimization

Importance preferences between viewpoints

- unconditional importance
- conditional importance
- Multiple overlapping viewpoints
 - ceteris-paribus
 - reversible

Multiple criteria

• Assumptions:

- each criterion represents an independent viewpoint
- rationality principles are restricted to this viewpoint
- DM answers questions about viewpoint-preferences promptly
- DM needs to reason, make judgements and choices when being asked for preferences involving multiple viewpoints together; the rationality of those answers is not guaranteed
- Preference model:
 - multiple criteria $z_i : \mathcal{X} \to \Omega_i$

– (partial) preorder \succeq_i on Ω_i

Lexicographical Optimality

• Preference aggregation:

$$\begin{aligned} - \succ_{lex} & \text{on } \Omega_1 \times \ldots \times \Omega_m \\ - (\omega_1^*, \ldots, \omega_m^*) \succ_{lex} (\omega_1, \ldots, \omega_m) & \text{iff there is a } k \text{ s.t.} \\ \omega_j^* = \omega_j & \text{for all } j = 1, \ldots, k-1 \text{ and } \omega_k^* \succ \omega_k \end{aligned}$$

• Problem:

$$Lex_{\langle z_1,\succ_1\rangle,\dots,\langle z_m,\succ_m\rangle}(D) := \begin{cases} x \in D \mid \not\exists x^* \in D : \\ z(x^*) \succ_{lex} z(x) \end{cases}$$

• Optimization:

$$-Lex_{\langle z_1,\succ_1 \rangle}(D) = Max_{z_1,\succ_1}(D)$$
$$-Lex_{\langle z_1,\succ_1 \rangle,...,\langle z_m,\succ_m \rangle}(D) =$$
$$Lex_{\langle z_2,\succ_2 \rangle,...,\langle z_m,\succ_m \rangle}(Max_{z_1,\succ_1}(D))$$

Lexicographical Optimality

Lex-Optimality Explained

• Lexicographic Optimization:

solved by a sequence of atomic optimization problems

– if $(\omega_1^*, \ldots, \omega_m^*)$ is a lex-optimal solution, then ω_i^* is an optimal value of z_i in

 $Max_{z_{i},\succ_{i}}(\{x \mid x \in D \land z_{1}(x) = \omega_{1}^{*} \land \ldots \land z_{i-1}(x) = \omega_{i-1}^{*}\})$

• Explanations of Lexicographic Optimality:

- sequence (ξ_1, \ldots, ξ_n) of explanations
- $-\xi_i = (>_i, \omega_i^*, E_i)$ is an explanation of optimality of ω_i^*
- E_i may contain constraints $z_j(x) = \omega_j^*$ for j < i
- these constraints indicate that the optimal values of more important criteria defeated better values of z_i

Alternative Sequentializations

• Preference aggregation:

– let Π be the set of permutations of $1,\ldots,m$

$$- Extreme_{\langle z_1, \succ_1 \rangle, \dots, \langle z_m, \succ_m \rangle}(D) := \bigcup_{\pi \in \Pi} Lex_{\langle z_{\pi_1}, \succ_{\pi_1} \rangle, \dots, \langle z_{\pi_m}, \succ_{\pi_m} \rangle}(D)$$

Alternative Sequentializations

Extreme Solutions Explained

• A sequentialization:

- is characterized by a permutation π
- $\begin{array}{l} -\operatorname{let} \left(\omega_{\pi_{1}}^{*}\ldots,\omega_{\pi_{m}}^{*} \right) \text{ be a solution of } \\ Lex_{\langle z_{\pi_{1}},\succ_{\pi_{1}}\rangle,\ldots,\langle z_{\pi_{m}},\succ_{\pi_{m}}\rangle}(D) \end{array}$
- Explanation of Optimality:
 - take an explanation $(\xi_{\pi_1} \dots, \xi_{\pi_m})$ of the lex-optimality of $(\omega_{\pi_1}^* \dots, \omega_{\pi_m}^*)$

- it lists the criteria in the chosen order of importance

Pareto-Optimality

• Preference aggregation:

- define \succ_{Pareto} on $\Omega_1 \times \ldots \times \Omega_m$
- $\begin{array}{l} -\left(\omega_{1}^{*},\ldots,\omega_{m}^{*}\right)\succ_{Pareto}\left(\omega_{1},\ldots,\omega_{m}\right) \text{ iff } \omega_{i}^{*}\succeq\omega_{i} \text{ for all } i \\ \text{ and } \omega_{i}^{*}\succ\omega_{i} \text{ for one } i \end{array}$

• Problem:

$$Pareto_{\langle z_1,\succ_1\rangle,\dots,\langle z_m,\succ_m\rangle}(D) := \begin{cases} x \in D \mid \not\exists x^* \in D : \\ z(x^*) \succ_{pareto} z(x) \end{cases}$$

• Optimization:

- use outer branching
- lexicographic order is used as linear extension of Pareto-dominance

Pareto Optimality

Which Preferences? (outline)

- Single viewpoint
 - complete preference orders
 - incomplete preference orders
- Multiple independent viewpoints
 - lexicographic optimization
 - Pareto-optimization
- Importance preferences between viewpoints
 - unconditional importance
 - conditional importance
- Multiple overlapping viewpoints
 - ceteris-paribus
 - reversible

Importance of criteria

• Assumption:

- DM is easily able to decide the relative importance of criteria
- Preference model:
 - multiple criteria $z_i : \mathcal{X} \to \Omega_i$
 - (partial) preorder \succeq_i on Ω_i
 - -a strict partial order I on the set of criteria indices
- Aggregation principles:

a preorder \succsim on Ω is an aggregation under this model iff

- if
$$(i, j) \in I$$
 then $\omega^* \succ \omega$ for all $\omega^*, \omega \in \Omega$ that satisfy $\omega_i^* \succ_i \omega_i$, and $\omega_k^* = \omega_k$ for $k \in \{1, \dots, m\} \setminus \{i, j\}$

Constrained Sequentializations

- Preference aggregation:
 - a permutation π respects I iff

 $(\pi_i, \pi_j) \in I \text{ implies } i < j$

– let $\Pi(I)$ be the set of permutations of $1, \ldots, m$ respecting I

$$- Extreme_{\langle z_1, \succ_1 \rangle, \dots, \langle z_m, \succ_m \rangle}^I(D) := \bigcup_{\pi \in \Pi(I)} Lex_{\langle z_{\pi_1}, \succ_{\pi_1} \rangle, \dots, \langle z_{\pi_m}, \succ_{\pi_m} \rangle}(D)$$

- See [ANOR 04]

Constrained Pareto-Optimality

• Preference aggregation:

 $\begin{aligned} -\operatorname{define} &\succ_{Pareto}^{I} \text{ on } \Omega_{1} \times \ldots \times \Omega_{m} \\ -(\omega_{1}^{*}, \ldots, \omega_{m}^{*}) \succ_{Pareto}^{I} (\omega_{1}, \ldots, \omega_{m}) \text{ iff} \\ \mathbf{1}. \ \omega_{i}^{*} \neq \omega_{i} \text{ for some } i \text{ and} \\ \mathbf{2}. \text{ if } \omega_{i}^{*} \neq \omega_{i} \text{ then (i) } \omega_{i}^{*} \succ \omega_{i} \text{ or (ii) there is a } j \text{ that is} \\ \text{ more important than } i \text{ and } \omega_{j}^{*} \neq \omega_{j} \end{aligned}$

Which Preferences? (outline)

- Single viewpoint
 - complete preference orders
 - incomplete preference orders
- Multiple independent viewpoints
 - lexicographic optimization
 - Pareto-optimization
- Importance preferences between viewpoints
 - unconditional importance
 - conditional importance
- Multiple overlapping viewpoints
 - ceteris-paribus
 - reversible

Reversible Preferences

• Assumption:

- there are different overlapping viewpoints
- some viewpoints are more specific than others (supersets)
- preferences on more specific viewpoints may reverse preferences obtained from more general preferences by Pareto-aggregation

• Approach:

- extension principle: more general preferences are extended to more specific viewpoints
- conservation principle: best choices of the more specific viewpoint need to be preserved under certain conditions

Conclusion

Modelling

- viewpoint specific semantics
- importance preferences constraint Pareto-aggregation

Optimzation

- complex problems are reduced to atomic problems solvable
- preference and constraint handling is decoupled
- existing optimizers can be used
- Explanation
 - are important to justify a solution
 - exhibit critical preferences for changing the solution