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Preferences and Numbers

Comparison

Given objects having a numerical representation how do these
compare (before, after, near, better, worst, similar)?

Representation

Given a binary relation among objects what is a suitable
numerical representation for it?
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What are we looking for?

Intervals comparison

A general framework under which objects represented by n
points of the reals can be compared.

Representation Theorems

Necessary and sufficient conditions for which a numerical
representation (using intervals) fits a certain binary relation.
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An example: 2 points

l(w) r(w)
W

l(z) r(z)
Z

l(y) r(y)
Y

l(x) r(x)
X
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An example: 3 points

l(w) r(w)
k(w)

W

l(z) r(z)
k(z)

Z

l(y) r(y)
k(y)

Y

l(x) r(x)
k(x)

X
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Where do they come from?

Imprecision in measurement and/or information (length
10cm±2mm).

Uncertain information (price between 10e and 12e).

Uncertain assessments (quality between average and
good).

Positive and negative reasons in evaluation.
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Two “different” approaches

Preference and Indifference

Use only two binary relations, an asymmetric one (preference)
and a symmetric one (indifference). The symmetric relation can
always been seen as the union of the identity relation, Io and
two inverse asymmetric relations. We call that a 〈P, I〉
preference structure.

More preference relations

Use n (n > 2) asymmetric relations and the identity relation Io.
This amounts getting an indifference relation I and n − 1
preference relations. A well known case are the 〈P, Q, I〉
preference structures.
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Well known structures

Interval Orders

P(x , y) ⇔ l(x) > r(y)
P.I.P ⊂ P

Semi Orders

P(x , y) ⇔ l(x) > l(y) + k
P.I.P ⊂ P
P.P.I ⊂ P
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Fishburn’s classification

- Bitolerance O

- Split IO- Tolerance O

- Unit TO

- Semitr O

- Sub-SO

- Split SO- Bi-SO - IO

- Bilinear O - SO
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Problems

1 Is this classification exhaustive?
2 There is no unique characterisation of these structures.

Some are characterised using forbidden posets, some
characterising the binary relations, some through their
numerical representation.

3 There is no general framework within which such
structures
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Example: Subsemiorders

Proposition

Let R = P ∪ I be a complete binary relation then the following assertions are
equivalent :

i. R is a subsemiorder;

ii. R is reflexive, complete , (1+2)-Ferrers and (0+3)-Ferrers;

iii.
{

R.Rd .R2 ⊂ R (or R2.Rd .R ⊂ R),
R3.I ⊂ R (or I.R3 ⊂ R),

iv.




P.I.P2 ⊂ P (or P2.I.P ⊂ P),
P3.I ⊂ P (or I.P3 ⊂ P),
P is transitive,

v.
{

P.Pd .P2 ⊂ P (or P2.Pd .P ⊂ P),
P3.Pd ⊂ P (or Pd .P3 ⊂ P),
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Example : Triangle orders

Definition

P ∪ I is a triangle order if it is defined as the intersection of one weak order and one
interval order.




xPy ⇐⇒
{

g1(x) > g1(y),
g2(x) > g3(y),

∀x , ∀i ∈ {1, 2}, gi+1(x) ≥ gi(x).

g2(y) g3(y) g2(x) g3(x)

g1(y) g1(x)

xPy
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n-point intervals

n-point interval : n ordered points, f1(x), f2(x), . . . fn(x), such
that for all x ∈ A and all i in {1, . . . , n − 1}, fi(x) < fi+1(x).

�
f1(x) f2(x) f3(x) fn−1(x) fn(x)

...............
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Relative Positions

Definition (Relative position)

A relative position ϕ(x , y) is the n-tuple 〈ϕ1(x , y), . . . , ϕn(x , y〉)
where ϕi(x , y) represents the number of j such that fi(x) ≤ fj(y)

f1(y) f2(y) f3(y)

f1(x) f2(x) f3(x)

ϕ(x , y) = (1, 0, 0) ϕT (x , y) = ϕ(y , x) = (3, 3, 2)
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Relative positions and inverse

Proposition

Let ϕ(x , y) be the relative position of the n-point interval x with
respect to the n-point interval y then ∀i ,

{
ϕT

i (x , y) = n + 1 − |j , ϕj (x , y) ≥ (n + 1 − i)| if ∃k , fi (y) = fk (x)
ϕT

i (x , y) = n − |j , ϕj (x , y) ≥ (n + 1 − i)| otherwise
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Intervals of Time

Allen introduced 13 relations

7 of them are “basic”, the others are the inverse:

Name Not. Position ϕ(x , y) ϕ(y , x)

Equal x = y f1(x) = f1(y) ∧ f2(x) = f2(y) (2, 1) (2, 1)
Before xby f1(x) > f2(y) (0, 0) (2, 2)
Overlap xoy f1(x) > f1(y) ∧ f2(y) > f1(x) ∧ f2(x) > f2(y) (1, 0) (2, 1)
Meets xmy f1(x) = f2(y) (1, 0) (2, 2)
During xdy f1(y) > f1(x) ∧ f2(x) > f2(y) (2, 0) (1, 1)
Starts xsy f1(x) = f1(y) ∧ f2(x) > f2(y) (2, 0) (2, 1)
Finishes xfy f1(y) > f1(x) ∧ f2(x) = f2(y) (2, 1) (1, 1)
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How many are they?

Proposition

Let x and y be two n-point intervals then the number of
possible relative positions ϕ(x , y) is m = (2n)!

(n!)2 .

n = 2 n = 3 n = 4 n
Relative positions 6 20 70 (2n)!

(n!)2
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“Stronger than” Relation: �

Definition (“Stronger than” relation)

Let ϕ and ϕ′ be two relative positions, then we say that ϕ is
“stronger than” ϕ′ and note ϕ � ϕ′ if ∀i ∈ {1, . . . , n}, ϕi ≤ ϕ′

i .

f1(x) f2(x) f3(x)

f1(y) f2(y) f3(y)

f1(z) f2(z) f3(z)

(3,2,1)

(1,1,0)

(1,1,0)�(3,2,1)
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The graph of �
(0, 0)

(1, 0)

(2, 0) (1, 1)

(2, 1)

(2, 2)
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The graph of �
(0, 0, 0)

(1, 0, 0)

(2, 0, 0) (1, 1, 0)

(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 1, 0) (2, 2, 0) (2, 1, 1)

(3, 2, 0) (3, 1, 1) (2, 2, 1)

(3, 3, 0) (3, 2, 1) (2, 2, 2)

(3, 3, 1) (3, 2, 2)

(3, 3, 2)

(3, 3, 3)
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Axioms
Axiom 1 The relation P ∪ I is complete and I is the
complement of P.

Axiom 2 P(x , y) and I(x , y) depend only on the relative
position of x and y .

Axiom 3 For all x , y in A, if fi(x) ≤ fi(y) for all i then
P(x , y) does not hold.

Axiom 4 Given a relative position ϕ(x , y), if P(x , y) holds
then ∀z, t such that ϕ(z, t) � ϕ(x , y), P(z, t) holds.

Axiom 5 Let Θ be the set of relative positions ϕ(x , y) such
that P(x , y) holds. Then the sublattice formed by the
elements of Θ has one and only one lower bound.
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How many such sets of relative positions?

Proposition

Let m be the number of sets of relative positions satisfying
axioms 1-5 then

m =
(2n)!

(n!)2 − 1
n + 1

(
2n
n

)

n = 2 n = 3 n = 4 n

Set of relative positions 4 15 56 (2n)!
(n!)2 − 1

n+1

(2n
n

)
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Preference Structure

Definition

Let ϕ be an n-tuple and x and y 2 n-point intervals. Relations
P≤ϕ and I≤ϕ where (n, n − 1, n − 2, . . . , 1) � ϕ are defined as

P≤ϕ(x , y) ⇐⇒ ϕ(x , y) � ϕ,

I≤ϕ(x , y) ⇐⇒ ¬P≤ϕ(x , y) ∧ ¬P≤ϕ(y , x).
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P≤(2,0,0)

(0, 0, 0)

(1, 0, 0)

(2, 0, 0) (1, 1, 0)

(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 1, 0) (2, 2, 0) (2, 1, 1)

(3, 2, 0) (3, 1, 1) (2, 2, 1)

(3, 3, 0) (3, 2, 1) (2, 2, 2)

(3, 3, 1) (3, 2, 2)

(3, 3, 2)

(3, 3, 3)
P−1

P

I
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P≤(3,1,0)

(0, 0, 0)

(1, 0, 0)

(2, 0, 0) (1, 1, 0)

(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 1, 0) (2, 2, 0) (2, 1, 1)

(3, 2, 0) (3, 1, 1) (2, 2, 1)

(3, 3, 0) (3, 2, 1) (2, 2, 2)

(3, 3, 1) (3, 2, 2)

(3, 3, 2)

(3, 3, 3)P−1

P

I
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Preference Structure

Proposition

The strict preference and the indifference of Definition 4 form a
preference structure, i.e. the strict preference is asymmetric,
the indifference is symmetric and reflexive, their union is
complete and their intersection is empty. And this preference
structure verifies Axioms 1-5.
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Component set

Definition

The component set Cp≤ϕ is the set of couples (n − ϕi , i) such
that ϕi �= n and there is no i ′ < i with ϕi ′ = ϕi

P≤(2,0,0) : (0, 0, 0)

f1(y) f2(y) f3(y)

f1(x)f2(x)f3(x)
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f1(y) f2(y) f3(y)

f1(x) f2(x)f3(x)
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Component set

Definition

The component set Cp≤ϕ is the set of couples (n − ϕi , i) such
that ϕi �= n and there is no i ′ < i with ϕi ′ = ϕi

P≤(2,0,0) : (0, 0, 0) ∪ (1, 0, 0) ∪ (2, 0, 0)

f1(y) f2(y) f3(y)

f1(x) f2(x)f3(x)

Cp≤(2,0,0) = {(1, 1), (3, 2)}
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Some characterisations

|Cp≤ϕ| (i , j) ∈ Cp≤ϕ

P≤ϕ is transitive ∀(i , j), i ≥ j ,

I≤ϕ is transitive 1 Cp≤ϕ = {(i , i)}
P≤ϕ ∪ I≤ϕ is a weak oder 1 Cp≤ϕ = {(i , i)}
P≤ϕ ∪ I≤ϕ is a d-weak order d ∀(i , j), i = j

P≤ϕ ∪ I≤ϕ is an interval order 1

P≤ϕ ∪ I≤ϕ is a “bi-tolerance order” 2 ∀(i , j), i ≥ j ,

P≤ϕ ∪ I≤ϕ is a triangle order 2 Cp≤ϕ = {(l , l), (i , j)}
where i ≥ j
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How many representations?

n = 2 n = 3 n = 4 n

weak order 2 3 4 n

d-weak order
(2

d

) (3
d

) (4
d

) (n
d

)
bi-weak order 1 3 6 n(n−1)

2

3-weak order 0 1 4
(n

3

)
interval order 1 3 6 n(n−1)

2

bitolerance order 0 0 6

triangle order 0 2 8
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Results for 3-point intervals

Preference Structure 〈P≤ϕ, I≤ϕ〉 interval representation

Weak Orders

Cp≤(3,3,0) = {(3, 3)}
Cp≤(3,1,1) = {(2, 2)}
Cp≤(2,2,2) = {(1, 1)}

Bi-weak Orders

Cp≤(3,1,0) = {(2, 2), (3, 3)}
Cp≤(2,1,1) = {(1, 1), (2, 2)}
Cp≤(2,2,0) = {(1, 1), (3, 3)}

Three-Weak Orders Cp≤(2,1,0) = {(1, 1), (2, 2), (3, 3)}
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Results for 3-point intervals

Preference Structure 〈P≤ϕ, I≤ϕ〉 interval representation

Interval Orders

Cp≤(0,0,0) = {(3, 1)}
Cp≤(3,0,0) = {(3, 2)}
Cp≤(1,1,1) = {(2, 1)}

Split Interval Orders Cp≤(1,0,0) = {(3, 2), (2, 1)}

Triangle Orders
Cp≤(1,1,0) = {(2, 1), (3, 3)}
Cp≤(2,0,0) = {(1, 1), (3, 2)}

Intransitive Orders
Cp≤(3,2,0) = {(3, 3), (1, 2)}
Cp≤(2,2,1) = {(1, 1), (2, 3)}
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〈P, Q, I〉 Interval Orders

Definition

A 〈P, Q, I〉 IO is a 〈P, Q, I〉 Preference Structure such that:
P(x , y) ⇔ l(x) > r(y)
Q(x , y) ⇔ r(x) > r(y) > l(x) > l(y)
I(x , y) ⇔ r(x) > r(y) > l(y) > l(x) or the inverse.

Theorem

A 〈P, Q, I〉 Preference Structure is a 〈P, Q, I〉 Interval Order iff:
I = Il ∪ Ir ∪ Io; Ir = I−1

l
(P ∪ Q ∪ Il).P ⊆ P
P.(P ∪ Q ∪ Ir ) ⊆ P
(P ∪ Q ∪ Il).Q ⊆ P ∪ Q ∪ Il
Q.(P ∪ Q ∪ Ir ) ⊆ P ∪ Q ∪ Ir
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Double-threshold Orders

Definition

A Double-threshold Order is a 〈P, Q, I〉 Preference Structure
such that:
P(x , y) ⇔ l(x) > r(y)
Q(x , y) ⇔ r(y) > l(x) > k(y)
I(x , y) ⇔ k(y) > l(x) ∧ k(x) > l(y)

Theorem

A 〈P, Q, I〉 Preference Structure is a Double-threshold Order iff:
Q.I.Q ⊆ P ∪ Q
Q.I.P ⊆ P
P.I.P ⊆ P
P.Q−1.P ⊆ P
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Generalised Transitivity

Consider three asymmetric relations P3, P2, P1 such that:
- P = P3

- Q = P2

- I = P1 ∪ Io ∪ P−1
1

What happens to the preference structures we introduced
before?
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Generalised Transitivity

Theorem

A 〈P, Q, I〉 Preference Structure is a 〈P, Q, I〉 Interval Order iff:
P3.P3 ⊆ P3

P2.P3 ⊆ P3

P3.P2 ⊆ P3

P3.P1 ⊆ P3

P−1
1 .P3 ⊆ P3

P2.P2 ⊆ P2 ∪ P3

P1.P2 ⊆ P2 ∪ P1

P2.P
−1
1 ⊆ P2 ∪ P−1

1
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Generalised Transitivity

Theorem

A 〈P, Q, I〉 Preference Structure is a Double-threshold Order iff:
P3.P3 ⊆ P3

P2.P3 ⊆ P3

P3.P1 ⊆ P3

P−1
1 .P3 ⊆ P3

P−1
2 .P3 ⊆ P3

P2.P2 ⊆ P2 ∪ P3

P2.P1 ⊆ P2 ∪ P3

P−1
1 .P2 ⊆ P2 ∪ P3
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So what?

A general framework for comparing n-point intervals and
for characterising such relations.

Some representation theorems for 〈P, Q, I〉 preference
structures.

A framework for continuous valuation of intervals
comparison.

Coherence Conditions

Algorithmic and Complexity Issues.

Further generalisations.
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