Preferences on Intervals

Maltem Öztürk¹ Alexis Tsoukiàs²

¹CRIL, Université d'Artois ozturk@cril.univ-artois.fr http://www.cril.univ-artois.fr/~ozturk

²LAMSADE - CNRS, Université Paris-Dauphine tsoukias@lamsade.dauphine.fr http://www.lamsade.dauphine.fr/~tsoukias

< 日 > < 同 > < 回 > < 回 > < □ > <

ъ

Outline

1 General Setting

- What is the Problem?
- \bigcirc $\langle P, I \rangle$ Preference Structures
 - n-point intervals
 - 2-point intervals
 - 3-point intervals
 - Results
- 5 Conclusions

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

 $\begin{array}{c} \mbox{General Setting} \\ \mbox{What is the Problem?} \\ \langle P, I \rangle \mbox{ Preference Structures} \\ \langle P, Q, I \rangle \mbox{ Preference Structures} \\ \mbox{ Conclusions} \end{array}$

Preferences and Numbers

Comparison

Given objects having a numerical representation how do these compare (before, after, near, better, worst, similar)?

Representation

Given a binary relation among objects what is a suitable numerical representation for it?

Preferences and Numbers

Comparison

Given objects having a numerical representation how do these compare (before, after, near, better, worst, similar)?

Representation

Given a binary relation among objects what is a suitable numerical representation for it?

• 同 • • 三 • •

-

What are we looking for?

Intervals comparison

A general framework under which objects represented by *n* points of the reals can be compared.

Representation Theorems

Necessary and sufficient conditions for which a numerical representation (using intervals) fits a certain binary relation.

< ロ > < 同 > < 回 > < 回 >

What are we looking for?

Intervals comparison

A general framework under which objects represented by *n* points of the reals can be compared.

Representation Theorems

Necessary and sufficient conditions for which a numerical representation (using intervals) fits a certain binary relation.

▲ 伊 ▶ ▲ 三 ▶ ▲

An example: 2 points

Öztürk and Tsoukiàs Preferences on Intervals

ヘロト 人間 とくほ とくほ とう

€ 9Q@

An example: 3 points

ヘロト 人間 トイヨト イヨト

æ

Where do they come from?

- Imprecision in measurement and/or information (length 10cm±2mm).
- Uncertain information (price between 10 € and 12 €).
- Uncertain assessments (quality between average and good).
- Positive and negative reasons in evaluation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Two "different" approaches

Preference and Indifference

Use only two binary relations, an asymmetric one (preference) and a symmetric one (indifference). The symmetric relation can always been seen as the union of the identity relation, I_o and two inverse asymmetric relations. We call that a $\langle P, I \rangle$ preference structure.

More preference relations

Use n (n > 2) asymmetric relations and the identity relation I_o . This amounts getting an indifference relation I and n - 1preference relations. A well known case are the $\langle P, Q, I \rangle$ preference structures.

ヘロト ヘポト ヘヨト ヘヨト

Two "different" approaches

Preference and Indifference

Use only two binary relations, an asymmetric one (preference) and a symmetric one (indifference). The symmetric relation can always been seen as the union of the identity relation, I_o and two inverse asymmetric relations. We call that a $\langle P, I \rangle$ preference structure.

More preference relations

Use n (n > 2) asymmetric relations and the identity relation I_o . This amounts getting an indifference relation I and n - 1 preference relations. A well known case are the $\langle P, Q, I \rangle$ preference structures.

(人間) トイヨト イヨト

n-point intervals 2-point intervals 3-point intervals Results

Well known structures

Interval Orders

$$P(x,y) \Leftrightarrow l(x) > r(y)$$

 $P.l.P \subset P$

Semi Orders

 $P(x, y) \Leftrightarrow l(x) > l(y) + k$ P.I.P \subset P P.P.I \subset P

n-point intervals 2-point intervals 3-point intervals Results

Well known structures

Interval Orders

$$P(x,y) \Leftrightarrow l(x) > r(y)$$

 $P.I.P \subset P$

Semi Orders

 $P(x, y) \Leftrightarrow I(x) > I(y) + k$ $P.I.P \subset P$ $P.P.I \subset P$

▲□▶▲□▶▲□▶▲□▶ □ のQで

n-point intervals 2-point intervals 3-point intervals Results

Fishburn's classification

ヘロト 人間 とく ヨン 人 ヨン

æ.

n-point intervals 2-point intervals 3-point intervals Results

- Is this classification exhaustive?
- There is no unique characterisation of these structures. Some are characterised using forbidden posets, some characterising the binary relations, some through their numerical representation.
- There is no general framework within which such structures

n-point intervals 2-point intervals 3-point intervals Results

Example: Subsemiorders

Proposition

Let $R = P \cup I$ be a complete binary relation then the following assertions are equivalent :

- i. R is a subsemiorder;
- ii. R is reflexive, complete , (1+2)-Ferrers and (0+3)-Ferrers;

$$\begin{array}{ll} \mbox{iii.} & \left\{ \begin{array}{l} R.R^d.R^2 \subset R \ (or \ R^2.R^d.R \subset R), \\ R^3.I \subset R \ (or \ I.R^3 \subset R), \end{array} \right. \\ \mbox{iv.} & \left\{ \begin{array}{l} P.I.P^2 \subset P \ (or \ P^2.I.P \subset P), \\ P^3.I \subset P \ (or \ I.P^3 \subset P), \\ P \ is \ transitive, \end{array} \right. \\ \mbox{v.} & \left\{ \begin{array}{l} P.P^d.P^2 \subset P \ (or \ P^2.P^d.P \subset P), \\ P^3.P^d \subset P \ (or \ P^3 \subset P), \end{array} \right. \end{array} \right. \\ \end{array} \right. \\ \end{array}$$

n-point intervals 2-point intervals 3-point intervals Results

Example : Triangle orders

Definition

 $P \cup I$ is a triangle order if it is defined as the intersection of one weak order and one interval order.

$$egin{aligned} & extsf{xPy} \Longleftrightarrow \left\{ egin{aligned} & extsf{g}_1(x) > extsf{g}_1(y), \ & extsf{g}_2(x) > extsf{g}_3(y), \ & extsf{v}_i \in \{1,2\}, \ & extsf{g}_{i+1}(x) \geq extsf{g}_i(x). \end{aligned}
ight.$$

n-point intervals 2-point intervals 3-point intervals Results

n-point intervals

n-point interval : *n* ordered points, $f_1(x), f_2(x), \ldots, f_n(x)$, such that for all $x \in A$ and all *i* in $\{1, \ldots, n-1\}$, $f_i(x) < f_{i+1}(x)$.

ъ

n-point intervals 2-point intervals 3-point intervals Results

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\langle \varphi_1(x, y), \dots, \varphi_n(x, y) \rangle$ where $\varphi_i(x, y)$ represents the number of *j* such that $f_i(x) \leq f_j(y)$

$$f_1(x) \quad f_2(x) \quad f_3(x)$$

$$f_1(y) \quad f_2(y) \quad f_3(y)$$

 $\varphi(x, y) = (1, 0, 0)$ $\varphi^T(x, y) = \varphi(y, x) = (3, 3, 2)$

n-point intervals 2-point intervals 3-point intervals Results

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\langle \varphi_1(x, y), \dots, \varphi_n(x, y) \rangle$ where $\varphi_i(x, y)$ represents the number of *j* such that $f_i(x) \leq f_j(y)$

$$f_1(x) \quad f_2(x) \quad f_3(x)$$

$$f_1(y) \quad f_2(y) \quad f_3(y)$$

 $\varphi(x, y) = (1, 0, 0)$ $\varphi^T(x, y) = \varphi(y, x) = (3, 3, 2)$

n-point intervals 2-point intervals 3-point intervals Results

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\langle \varphi_1(x, y), \dots, \varphi_n(x, y) \rangle$ where $\varphi_i(x, y)$ represents the number of *j* such that $f_i(x) \leq f_j(y)$

$$f_1(x) \quad f_2(x) \quad f_3(x)$$

$$f_1(y) \quad f_2(y) \quad f_3(y)$$

$$\varphi(\mathbf{x},\mathbf{y}) = (1,0,0) \qquad \varphi^{\mathsf{T}}(\mathbf{x},\mathbf{y}) = \varphi(\mathbf{y},\mathbf{x}) = (3,3,2)$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

ъ

n-point intervals 2-point intervals 3-point intervals Results

Relative positions and inverse

Proposition

Let $\varphi(x, y)$ be the relative position of the n-point interval x with respect to the n-point interval y then $\forall i$,

$$\begin{cases} \varphi_{I}^{T}(x,y) = n+1 - |j,\varphi_{j}(x,y) \ge (n+1-i)| & \text{if } \exists k, f_{i}(y) = f_{k}(x) \\ \varphi_{I}^{T}(x,y) = n-|j,\varphi_{j}(x,y) \ge (n+1-i)| & \text{otherwise} \end{cases}$$

n-point intervals 2-point intervals 3-point intervals Results

Intervals of Time

Allen introduced 13 relations

7 of them are "basic", the others are the inverse:

Name	Not.	Position	$\varphi(\mathbf{x},\mathbf{y})$	$\varphi(y, x)$
Equal	x = y	$f_1(x) = f_1(y) \wedge f_2(x) = f_2(y)$	(2,1)	(2, 1)
Before	x <u>b</u> y	$f_1(x) > f_2(y)$	(0,0)	(2, 2)
Overlap	х <u>о</u> у	$f_1(x) > f_1(y) \land f_2(y) > f_1(x) \land f_2(x) > f_2(y)$	(1,0)	(2, 1)
Meets	х <u>т</u> у	$f_1(x) = f_2(y)$	(1,0)	(2, 2)
During	x <u>d</u> y	$f_1(y) > f_1(x) \wedge f_2(x) > f_2(y)$	(2,0)	(1, 1)
Starts	x <u>s</u> y	$f_1(x) = f_1(y) \wedge f_2(x) > f_2(y)$	(2,0)	(2, 1)
Finishes	x <u>f</u> y	$f_1(y) > f_1(x) \wedge f_2(x) = f_2(y)$	(2,1)	(1, 1)

・ロト ・聞 ト ・ ヨト ・ ヨト …

I nar

n-point intervals 2-point intervals 3-point intervals Results

How many are they?

Proposition

Let x and y be two n-point intervals then the number of possible relative positions $\varphi(x, y)$ is $m = \frac{(2n)!}{(n!)^2}$.

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n
Relative positions	6	20	70	$\frac{(2n)!}{(n!)^2}$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

 $\begin{array}{c} \mbox{General Setting} \\ \mbox{What is the Problem?} \\ \mbox{$\langle P, l \rangle$} \mbox{Preference Structures} \\ \mbox{$\langle P, Q, l \rangle$} \mbox{Preference Structures} \\ \mbox{Conclusions} \end{array}$

n-point intervals 2-point intervals 3-point intervals Results

"Stronger than" Relation: ⊳

Definition ("Stronger than" relation)

Let φ and φ' be two relative positions, then we say that φ is "stronger than" φ' and note $\varphi \triangleright \varphi'$ if $\forall i \in \{1, ..., n\}, \varphi_i \leq \varphi'_i$.

< /□ > < □ >

n-point intervals 2-point intervals 3-point intervals Results

The graph of ⊳

Ξ.

Öztürk and Tsoukiàs Preferences on Intervals

n-point intervals 2-point intervals **3-point intervals** Results

The graph of \triangleright

(a)

ъ

n-point intervals 2-point intervals **3-point intervals** Results

- Axiom 1 The relation *P* ∪ *I* is complete and *I* is the complement of *P*.
- **Axiom 2** P(x, y) and I(x, y) depend only on the relative position of x and y.
- **Axiom 3** For all x, y in A, if $f_i(x) \le f_i(y)$ for all i then P(x, y) does not hold.
- **Axiom 4** Given a relative position $\varphi(x, y)$, if P(x, y) holds then $\forall z, t$ such that $\varphi(z, t) \rhd \varphi(x, y)$, P(z, t) holds.
- **Axiom 5** Let Θ be the set of relative positions $\varphi(x, y)$ such that P(x, y) holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

n-point intervals 2-point intervals 3-point intervals Results

- **Axiom 1** The relation *P* ∪ *I* is complete and *I* is the complement of *P*.
- Axiom 2 P(x, y) and I(x, y) depend only on the relative position of x and y.
- **Axiom 3** For all x, y in A, if $f_i(x) \le f_i(y)$ for all i then P(x, y) does not hold.
- **Axiom 4** Given a relative position $\varphi(x, y)$, if P(x, y) holds then $\forall z, t$ such that $\varphi(z, t) \rhd \varphi(x, y)$, P(z, t) holds.
- **Axiom 5** Let Θ be the set of relative positions $\varphi(x, y)$ such that P(x, y) holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

n-point intervals 2-point intervals 3-point intervals Results

- **Axiom 1** The relation *P* ∪ *I* is complete and *I* is the complement of *P*.
- **Axiom 2** P(x, y) and I(x, y) depend only on the relative position of x and y.
- **Axiom 3** For all x, y in A, if $f_i(x) \le f_i(y)$ for all i then P(x, y) does not hold.
- **Axiom 4** Given a relative position $\varphi(x, y)$, if P(x, y) holds then $\forall z, t$ such that $\varphi(z, t) \rhd \varphi(x, y)$, P(z, t) holds.
- **Axiom 5** Let Θ be the set of relative positions $\varphi(x, y)$ such that P(x, y) holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

n-point intervals 2-point intervals 3-point intervals Results

- Axiom 1 The relation P ∪ I is complete and I is the complement of P.
- **Axiom 2** P(x, y) and I(x, y) depend only on the relative position of x and y.
- **Axiom 3** For all x, y in A, if $f_i(x) \le f_i(y)$ for all i then P(x, y) does not hold.
- **Axiom 4** Given a relative position $\varphi(x, y)$, if P(x, y) holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y)$, P(z, t) holds.
- **Axiom 5** Let Θ be the set of relative positions $\varphi(x, y)$ such that P(x, y) holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

n-point intervals 2-point intervals 3-point intervals Results

- **Axiom 1** The relation *P* ∪ *I* is complete and *I* is the complement of *P*.
- **Axiom 2** P(x, y) and I(x, y) depend only on the relative position of x and y.
- **Axiom 3** For all x, y in A, if $f_i(x) \le f_i(y)$ for all i then P(x, y) does not hold.
- Axiom 4 Given a relative position φ(x, y), if P(x, y) holds then ∀z, t such that φ(z, t) ▷ φ(x, y), P(z, t) holds.
- **Axiom 5** Let Θ be the set of relative positions $\varphi(x, y)$ such that P(x, y) holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

n-point intervals 2-point intervals **3-point intervals** Results

How many such sets of relative positions?

Proposition

Let m be the number of sets of relative positions satisfying axioms 1-5 then

$$m = \frac{(2n)!}{(n!)^2} - \frac{1}{n+1} {\binom{2n}{n}}$$

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n
Set of relative positions	4	15	56	$\frac{(2n)!}{(n!)^2} - \frac{1}{n+1} \binom{2n}{n}$

n-point intervals 2-point intervals **3-point intervals** Results

Preference Structure

Definition

Let φ be an n-tuple and x and y 2 n-point intervals. Relations $P_{\leq \varphi}$ and $I_{\leq \varphi}$ where $(n, n - 1, n - 2, ..., 1) \not > \varphi$ are defined as

$$egin{aligned} & P_{\leq arphi}(\pmb{x},\pmb{y}) & \iff & arphi(\pmb{x},\pmb{y}) arphi arphi, \ & I_{\leq arphi}(\pmb{x},\pmb{y}) & \iff &
egnet P_{\leq arphi}(\pmb{x},\pmb{y}) \land
egnet P_{\leq arphi}(\pmb{y},\pmb{x}). \end{aligned}$$

イロン 不良 とくほう イロン しゅ

n-point intervals 2-point intervals **3-point intervals** Results

Ξ.

(P, I) Preference Structures (P, Q, I) Preference Structures (P, Q, I) Preference Structures Conclusions n-point intervals 2-point intervals **3-point intervals** Results

n-point intervals 2-point intervals **3-point intervals** Results

Preference Structure

Proposition

The strict preference and the indifference of Definition 4 form a **preference structure**, i.e. the strict preference is asymmetric, the indifference is symmetric and reflexive, their union is complete and their intersection is empty. And this preference structure verifies Axioms 1-5.

・ ロ ト ・ 雪 ト ・ 目 ト ・

n-point intervals 2-point intervals 3-point intervals Results

Component set

Definition

The component set $Cp_{\leq \varphi}$ is the set of couples $(n - \varphi_i, i)$ such that $\varphi_i \neq n$ and there is no i' < i with $\varphi_{i'} = \varphi_i$

$$P_{\leq (2,0,0)}:(0,0,0)$$

$$\begin{array}{c|c} f_1(x)f_2(x)f_3(x) \\ \hline \\ f_1(y) & f_2(y) & f_3(y) \end{array}$$

(日)

n-point intervals 2-point intervals **3-point intervals** Results

Component set

Definition

The component set $Cp_{\leq \varphi}$ is the set of couples $(n - \varphi_i, i)$ such that $\varphi_i \neq n$ and there is no i' < i with $\varphi_{i'} = \varphi_i$

 $\textit{P}_{\leq(2,0,0)}:(0,0,0)\cup(1,0,0)$

イロト イヨト イヨト

n-point intervals 2-point intervals **3-point intervals** Results

Component set

Definition

The component set $Cp_{\leq \varphi}$ is the set of couples $(n - \varphi_i, i)$ such that $\varphi_i \neq n$ and there is no i' < i with $\varphi_{i'} = \varphi_i$

$$P_{\leq (2,0,0)}: (0,0,0) \cup (1,0,0) \cup (2,0,0)$$

$$\begin{array}{c|c} f_1(x) & f_2(x)f_3(x) \\ \hline \\ f_1(y) & f_2(y) & f_3(y) \end{array}$$

イロト イヨト イヨト

n-point intervals 2-point intervals **3-point intervals** Results

Component set

Definition

The component set $Cp_{\leq \varphi}$ is the set of couples $(n - \varphi_i, i)$ such that $\varphi_i \neq n$ and there is no i' < i with $\varphi_{i'} = \varphi_i$

$$P_{\leq (2,0,0)}: (0,0,0) \cup (1,0,0) \cup (2,0,0)$$

$$\begin{array}{c|c} f_1(x) & f_2(x) f_3(x) \\ \hline \\ f_1(y) & f_2(y) & f_3(y) \end{array}$$

 $Cp_{\leq (2,0,0)} = \{(1,1), (3,2)\}$

・ロト ・ 同ト ・ ヨト ・ ヨト

n-point intervals 2-point intervals 3-point intervals Results

Some characterisations

	$ Cp_{\leq \varphi} $	$(i,j)\in {C\!p}_{\leq \varphi}$
$P_{\leq \varphi}$ is transitive		$\forall (i,j), i \geq j,$
$I_{\leq \varphi}$ is transitive	1	$Cp_{\leq arphi} = \{(i,i)\}$
$\textit{P}_{\leq arphi} \cup \textit{I}_{\leq arphi}$ is a weak oder	1	$Cp_{\leq \varphi} = \{(i, i)\}$
$\textit{P}_{\leq arphi} \cup \textit{I}_{\leq arphi}$ is a <i>d</i> -weak order	d	$\forall (i,j), i = j$
${\it P}_{\leq arphi} \cup {\it I}_{\leq arphi}$ is an interval order	1	
$\textit{P}_{\leq arphi} \cup \textit{I}_{\leq arphi}$ is a "bi-tolerance order"	2	$\forall (i,j), i \geq j,$
$\textit{P}_{\leq arphi} \cup \textit{I}_{\leq arphi}$ is a triangle order	2	$Cp_{\leq \varphi} = \{(I, I), (i, j)\}$
		where $i \ge j$

ヘロト 人間 とく ヨン 人 ヨン

€ 9Q@

n-point intervals 2-point intervals 3-point intervals Results

How many representations?

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n
weak order	2	3	4	n
d-weak order	$\binom{2}{d}$	$\binom{3}{d}$	$\binom{4}{d}$	$\binom{n}{d}$
bi-weak order	1	3	6	$\frac{n(n-1)}{2}$
3-weak order	0	1	4	$\binom{n}{3}$
interval order	1	3	6	$\frac{n(n-1)}{2}$
bitolerance order	0	0	6	
triangle order	0	2	8	

Öztürk and Tsoukiàs Preferences on Intervals

ヘロト 人間 とくほ とくほ とう

æ.

n-point intervals 2-point intervals 3-point intervals Results

Results for 3-point intervals

Preference Structure	$\langle P_{<\varphi}, I_{<\varphi} \rangle$ interval representation
Weak Orders	$\begin{array}{l} C\rho_{\leq(3,3,0)} = \{(3,3)\} \\ C\rho_{\leq(3,1,1)} = \{(2,2)\} \\ C\rho_{<(2,2,2)} = \{(1,1)\} \end{array}$
Bi-weak Orders	$\begin{array}{l} C\rho_{\leq(3,1,0)} = \{(2,2),(3,3)\} \\ C\rho_{\leq(2,1,1)} = \{(1,1),(2,2)\} \\ C\rho_{<(2,2,0)} = \{(1,1),(3,3)\} \end{array}$
Three-Weak Orders	$Cp_{\leq (2,1,0)} = \{(1,1), (2,2), (3,3)\}$

Öztürk and Tsoukiàs Preferences on Intervals

ヘロト 人間 とく ヨン 人 ヨン

ヨ のへで

n-point intervals 2-point intervals 3-point intervals Results

Results for 3-point intervals

Preference Structure	$\langle P_{\leq \varphi}, I_{\leq \varphi} \rangle$ interval representation
Interval Orders	$\begin{array}{l} \mathcal{C}\rho_{\leq(0,0,0)} = \{(3,1)\} \\ \mathcal{C}\rho_{\leq(3,0,0)} = \{(3,2)\} \\ \mathcal{C}\rho_{\leq(1,1,1)} = \{(2,1)\} \end{array}$
Split Interval Orders	$Cp_{\leq(1,0,0)} = \{(3,2), (2,1)\}$
Triangle Orders	$Cp_{\leq(1,1,0)} = \{(2,1), (3,3)\}$ $Cp_{<(2,0,0)} = \{(1,1), (3,2)\}$
Intransitive Orders	$Cp_{\leq(3,2,0)} = \{(3,3), (1,2)\}$ $Cp_{<(2,2,1)} = \{(1,1), (2,3)\}$

Öztürk and Tsoukiàs Preferences on Intervals

ヘロト 人間 とく ヨン 人 ヨン

ヨ のへで

$\langle P, Q, I \rangle$ Interval Orders

Definition

 $\begin{array}{lll} A \left\langle P, Q, I \right\rangle \ \textit{IO is a} \left\langle P, Q, I \right\rangle \ \textit{Preference Structure such that:} \\ P(x,y) \ \Leftrightarrow \ \textit{I}(x) > r(y) \\ Q(x,y) \ \Leftrightarrow \ \textit{r}(x) > r(y) > \textit{I}(x) > \textit{I}(y) \\ \textit{I}(x,y) \ \Leftrightarrow \ \textit{r}(x) > r(y) > \textit{I}(y) > \textit{I}(x) \ \textit{or the inverse.} \end{array}$

Theorem

A $\langle P, Q, I \rangle$ Preference Structure is a $\langle P, Q, I \rangle$ Interval Order iff: $I = I_I \cup I_r \cup I_o; I_r = I_I^{-1}$ $(P \cup Q \cup I_I).P \subseteq P$ $P.(P \cup Q \cup I_r) \subseteq P$ $(P \cup Q \cup I_I).Q \subseteq P \cup Q \cup I_I$ $Q.(P \cup Q \cup I_r) \subseteq P \cup Q \cup I_r$

Double-threshold Orders

Definition

A Double-threshold Order is a $\langle P, Q, I \rangle$ Preference Structure such that:

$$\begin{array}{lll} P(x,y) & \Leftrightarrow & l(x) > r(y) \\ Q(x,y) & \Leftrightarrow & r(y) > l(x) > k(y) \\ l(x,y) & \Leftrightarrow & k(y) > l(x) & \wedge & k(x) > l(y) \end{array}$$

Theorem

A $\langle P, Q, I \rangle$ Preference Structure is a Double-threshold Order iff: Q.I.Q $\subseteq P \cup Q$ Q.I.P $\subseteq P$ P.I.P $\subseteq P$ P.Q⁻¹.P $\subseteq P$

Generalised Transitivity

Consider three asymmetric relations P_3 , P_2 , P_1 such that:

- $-P = P_3$
- $Q = P_2$
- $-I = P_1 \cup I_0 \cup P_1^{-1}$

What happens to the preference structures we introduced before?

・ロト ・聞 ト ・ ヨト ・ ヨト …

÷

Generalised Transitivity

Theorem

 $\begin{array}{l} A \left\langle P, Q, I \right\rangle \ \textit{Preference Structure is a} \left\langle P, Q, I \right\rangle \ \textit{Interval Order iff:} \\ P_3.P_3 \subseteq P_3 \\ P_2.P_3 \subseteq P_3 \\ P_3.P_2 \subseteq P_3 \\ P_3.P_1 \subseteq P_3 \\ P_1^{-1}.P_3 \subseteq P_3 \\ P_2.P_2 \subseteq P_2 \cup P_3 \\ P_1.P_2 \subseteq P_2 \cup P_1 \\ P_2.P_1^{-1} \subseteq P_2 \cup P_1^{-1} \end{array}$

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

э.

Generalised Transitivity

Theorem

 $\begin{array}{l} A \left\langle P, Q, I \right\rangle \ Preference \ Structure \ is \ a \ Double-threshold \ Order \ iff: \\ P_3.P_3 \subseteq P_3 \\ P_2.P_3 \subseteq P_3 \\ P_3.P_1 \subseteq P_3 \\ P_1^{-1}.P_3 \subseteq P_3 \\ P_2^{-1}.P_3 \subseteq P_3 \\ P_2.P_2 \subseteq P_2 \cup P_3 \\ P_2.P_1 \subseteq P_2 \cup P_3 \\ P_1^{-1}.P_2 \subseteq P_2 \cup P_3 \\ P_1^{-1}.P_2 \subseteq P_2 \cup P_3 \end{array}$

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

э.

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

・ロト ・四ト ・ヨト ・ヨト

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

・ロト ・四ト ・ヨト ・ヨト

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

- A general framework for comparing *n*-point intervals and for characterising such relations.
- Some representation theorems for (P, Q, I) preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

・ 同 ト ・ ヨ ト ・ ヨ ト …