Preferences on Intervals

Maltem Öztürk ${ }^{1} \quad$ Alexis Tsoukiàs ${ }^{2}$

${ }^{1}$ CRIL, Université d'Artois ozturk@cril.univ-artois.fr http://www.cril.univ-artois.fr/~ozturk
${ }^{2}$ LAMSADE - CNRS, Université Paris-Dauphine tsoukias@lamsade.dauphine.fr http://www.lamsade.dauphine.fr/~tsoukias

Outline

(1) General Setting
(2) What is the Problem?
(3) $\langle P, I\rangle$ Preference Structures

- n-point intervals
- 2-point intervals
- 3-point intervals
- Results

4 $\langle P, Q, I\rangle$ Preference Structures
(5) Conclusions

Preferences and Numbers

Comparison

Given objects having a numerical representation how do these compare (before, after, near, better, worst, similar)?

Representation
Given a binary relation among objects what is a suitable numerical representation for it?

Preferences and Numbers

Comparison

Given objects having a numerical representation how do these compare (before, after, near, better, worst, similar)?

Representation

Given a binary relation among objects what is a suitable numerical representation for it?

What are we looking for?

Intervals comparison

A general framework under which objects represented by n points of the reals can be compared.

Representation Theorems
Necessary and sufficient conditions for which a numerical
representation (using intervals) fits a certain binary relation.

What are we looking for?

Intervals comparison

A general framework under which objects represented by n points of the reals can be compared.

Representation Theorems

Necessary and sufficient conditions for which a numerical representation (using intervals) fits a certain binary relation.

An example: 2 points

An example: 3 points

$$
I(x) \stackrel{\mid}{\stackrel{x}{\vdash}(x)} r(x)
$$

Where do they come from?

- Imprecision in measurement and/or information (length $10 \mathrm{~cm} \pm 2 \mathrm{~mm}$).
- Uncertain information (price between $10 €$ and $12 €$).
- Uncertain assessments (quality between average and good).
- Positive and negative reasons in evaluation.

Two "different" approaches

Preference and Indifference

Use only two binary relations, an asymmetric one (preference) and a symmetric one (indifference). The symmetric relation can always been seen as the union of the identity relation, I_{0} and two inverse asymmetric relations. We call that a $\langle P, I\rangle$ preference structure.

More preference relations
Use $n(n>2)$ asymmetric relations and the identity relation I_{0}. This amounts getting an indifference relation / and $n-1$ preference relations. A well known case are the $\langle P, Q, I$ preference structures.

Two "different" approaches

Preference and Indifference

Use only two binary relations, an asymmetric one (preference) and a symmetric one (indifference). The symmetric relation can always been seen as the union of the identity relation, I_{0} and two inverse asymmetric relations. We call that a $\langle P, I\rangle$ preference structure.

More preference relations
Use $n(n>2)$ asymmetric relations and the identity relation I_{0}. This amounts getting an indifference relation $/$ and $n-1$ preference relations. A well known case are the $\langle P, Q, I\rangle$ preference structures.

Well known structures

Interval Orders

$P(x, y) \Leftrightarrow I(x)>r(y)$
$P . I . P \subset P$

Semi Orders

$I(x)>I(y)+k$

Well known structures

Interval Orders

$P(x, y) \Leftrightarrow I(x)>r(y)$
P.I.P $\subset P$

Semi Orders

$P(x, y) \Leftrightarrow I(x)>I(y)+k$
P.I.P $\subset P$
$P . P . I \subset P$

Fishburn's classification

Problems

© Is this classification exhaustive?
(2) There is no unique characterisation of these structures. Some are characterised using forbidden posets, some characterising the binary relations, some through their numerical representation.
(3) There is no general framework within which such structures

Example: Subsemiorders

Proposition

Let $R=P \cup I$ be a complete binary relation then the following assertions are equivalent :
i. R is a subsemiorder;
ii. R is reflexive, complete , (1+2)-Ferrers and (0+3)-Ferrers;
iii. $\left\{\begin{array}{l}R \cdot R^{d} \cdot R^{2} \subset R\left(\text { or } R^{2} \cdot R^{d} . R \subset R\right), \\ R^{3} \cdot R\left(R^{3} \subset R\right)\end{array}\right.$
ii. $\left\{R^{3} . I \subset R\left(\right.\right.$ or $\left.I . R^{3} \subset R\right)$,
iv. $\left\{\begin{array}{l}P . I . P^{2} \subset P\left(\text { or } P^{2} I I P \subset P\right), \\ P^{3} . I \subset P\left(\text { or } I . P^{3} \subset P\right), \\ P \text { is transitive, }\end{array}\right.$
v. $\left\{\begin{array}{l}P \cdot P^{d} \cdot P^{2} \subset P\left(\text { or } P^{2} \cdot P^{d} \cdot P \subset P\right), \\ P^{3} \cdot P^{d} \subset P\left(\text { or } P^{d} \cdot P^{3} \subset P\right),\end{array}\right.$

Example : Triangle orders

Definition

$P \cup I$ is a triangle order if it is defined as the intersection of one weak order and one interval order.

$$
\begin{aligned}
& \left\{x P y \Longleftrightarrow \left\{\begin{array}{l}
g_{1}(x)>g_{1}(y), \\
g_{2}(x)>g_{3}(y),
\end{array}\right.\right. \\
& \forall x, \forall i \in\{1,2\}, g_{i+1}(x) \geq g_{i}(x) \text {. }
\end{aligned}
$$

n-point intervals

n-point interval : n ordered points, $f_{1}(x), f_{2}(x), \ldots f_{n}(x)$, such that for all $x \in A$ and all i in $\{1, \ldots, n-1\}, f_{i}(x)<f_{i+1}(x)$.

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\left\langle\varphi_{1}(x, y), \ldots, \varphi_{n}(x, y\rangle\right)$ where $\varphi_{i}(x, y)$ represents the number of j such that $f_{i}(x) \leq f_{j}(y)$

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\left\langle\varphi_{1}(x, y), \ldots, \varphi_{n}(x, y\rangle\right)$ where $\varphi_{i}(x, y)$ represents the number of j such that $f_{i}(x) \leq f_{j}(y)$

Relative Positions

Definition (Relative position)

A relative position $\varphi(x, y)$ is the n-tuple $\left\langle\varphi_{1}(x, y), \ldots, \varphi_{n}(x, y\rangle\right)$ where $\varphi_{i}(x, y)$ represents the number of j such that $f_{i}(x) \leq f_{j}(y)$

$$
\begin{aligned}
& f_{1}(x) \quad f_{2}(x) \quad f_{3}(x) \\
& \underset{f_{1}(y)}{\stackrel{1}{\prime}} \underset{f_{2}(y)}{ } \quad \underset{f_{3}(y)}{-} \\
& \varphi(x, y)=(1,0,0) \quad \varphi^{\top}(x, y)=\varphi(y, x)=(3,3,2)
\end{aligned}
$$

Relative positions and inverse

Proposition

Let $\varphi(x, y)$ be the relative position of the n-point interval x with respect to the n-point interval y then $\forall i$,

$$
\begin{cases}\varphi_{i}^{T}(x, y)=n+1-\left|j, \varphi_{j}(x, y) \geq(n+1-i)\right| & \text { if } \exists k, f_{i}(y)=f_{k}(x) \\ \varphi_{i}^{T}(x, y)=n-\left|j, \varphi_{j}(x, y) \geq(n+1-i)\right| & \text { otherwise }\end{cases}
$$

Intervals of Time

Allen introduced 13 relations
7 of them are "basic", the others are the inverse:

Name	Not.	Position	$\varphi(x, y)$	$\varphi(y, x)$
Equal	$x=y$	$f_{1}(x)=f_{1}(y) \wedge f_{2}(x)=f_{2}(y)$	$(2,1)$	$(2,1)$
Before	$x \underline{b} y$	$f_{1}(x)>f_{2}(y)$	$(0,0)$	$(2,2)$
Overlap	$x \underline{o} y$	$f_{1}(x)>f_{1}(y) \wedge f_{2}(y)>f_{1}(x) \wedge f_{2}(x)>f_{2}(y)$	$(1,0)$	$(2,1)$
Meets	$x \underline{m} y$	$f_{1}(x)=f_{2}(y)$	$(1,0)$	$(2,2)$
During	$x \underline{d} y$	$f_{1}(y)>f_{1}(x) \wedge f_{2}(x)>f_{2}(y)$	$(2,0)$	$(1,1)$
Starts	$x \underline{s} y$	$f_{1}(x)=f_{1}(y) \wedge f_{2}(x)>f_{2}(y)$	$(2,0)$	$(2,1)$
Finishes	$x \underline{f} y$	$f_{1}(y)>f_{1}(x) \wedge f_{2}(x)=f_{2}(y)$	$(2,1)$	$(1,1)$

How many are they?

Proposition

Let x and y be two n-point intervals then the number of possible relative positions $\varphi(x, y)$ is $m=\frac{(2 n)!}{(n!)^{2}}$.

	$n=2$	$n=3$	$n=4$	n
Relative positions	6	20	70	$\frac{(2 n)!}{(n!)^{2}}$

"Stronger than" Relation: \triangleright

Definition ("Stronger than" relation)

Let φ and φ^{\prime} be two relative positions, then we say that φ is "stronger than" φ^{\prime} and note $\varphi \triangleright \varphi^{\prime}$ if $\forall i \in\{1, \ldots, n\}, \varphi_{i} \leq \varphi_{i}^{\prime}$.

n-point intervals 2-point intervals 3-point intervals Results

The graph of \triangleright

The graph of \triangleright

Axioms

- Axiom 1 The relation $P \cup I$ is complete and I is the complement of P.
- Axiom $2 P(x, y)$ and $I(x, y)$ depend only on the relative position of x and y.
- Axiom 3 For all x, y in A, if $f_{i}(x) \leq f_{i}(y)$ for all i then $P(x, y)$ does not hold.
- Axiom 4 Given a relative position $\varphi(x, y)$, if $P(x, y)$ holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y), P(z, t)$ holds.
- Axiom 5 Let Θ be the set of relative positions $\varphi(x, y)$ such that $P(x, y)$ holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

Axioms

- Axiom 1 The relation $P \cup I$ is complete and $/$ is the complement of P.
- Axiom $2 P(x, y)$ and $I(x, y)$ depend only on the relative position of x and y.
- Axiom 3 For all x, y in A, if $f_{i}(x) \leq f_{i}(y)$ for all i then $P(x, y)$ does not hold.
- Axiom 4 Given a relative position $\varphi(x, y)$, if $P(x, y)$ holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y), P(z, t)$ holds.
- Axiom 5 Let Θ be the set of relative positions $\varphi(x, y)$ such that $P(x, y)$ holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

Axioms

- Axiom 1 The relation $P \cup I$ is complete and $/$ is the complement of P.
- Axiom $2 P(x, y)$ and $I(x, y)$ depend only on the relative position of x and y.
- Axiom 3 For all x, y in A, if $f_{i}(x) \leq f_{i}(y)$ for all i then $P(x, y)$ does not hold.
- Axiom 4 Given a relative position $\varphi(x, y)$, if $P(x, y)$ holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y), P(z, t)$ holds.
- Axiom 5 Let Θ be the set of relative positions $\varphi(x, y)$ such that $P(x, y)$ holds. Then the sublattice formed by the elements of Θ has one and only one lower bound

Axioms

- Axiom 1 The relation $P \cup I$ is complete and $/$ is the complement of P.
- Axiom $2 P(x, y)$ and $I(x, y)$ depend only on the relative position of x and y.
- Axiom 3 For all x, y in A, if $f_{i}(x) \leq f_{i}(y)$ for all i then $P(x, y)$ does not hold.
- Axiom 4 Given a relative position $\varphi(x, y)$, if $P(x, y)$ holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y), P(z, t)$ holds.
- Axiom 5 Let Θ be the set of relative positions $\varphi(x, y)$ such that $P(x, y)$ holds. Then the sublattice formed by the elements of Θ has one and only one lower bound

Axioms

- Axiom 1 The relation $P \cup I$ is complete and I is the complement of P.
- Axiom $2 P(x, y)$ and $I(x, y)$ depend only on the relative position of x and y.
- Axiom 3 For all x, y in A, if $f_{i}(x) \leq f_{i}(y)$ for all i then $P(x, y)$ does not hold.
- Axiom 4 Given a relative position $\varphi(x, y)$, if $P(x, y)$ holds then $\forall z, t$ such that $\varphi(z, t) \triangleright \varphi(x, y), P(z, t)$ holds.
- Axiom 5 Let Θ be the set of relative positions $\varphi(x, y)$ such that $P(x, y)$ holds. Then the sublattice formed by the elements of Θ has one and only one lower bound.

How many such sets of relative positions?

Proposition

Let m be the number of sets of relative positions satisfying axioms 1-5 then

$$
m=\frac{(2 n)!}{(n!)^{2}}-\frac{1}{n+1}\binom{2 n}{n}
$$

	$n=2$	$n=3$	$n=4$	n
Set of relative positions	4	15	56	$\frac{(2 n)!}{(n!)^{2}}-\frac{1}{n+1}\binom{2 n}{n}$

Preference Structure

Definition

Let φ be an n-tuple and x and $y 2 n$-point intervals. Relations $P_{\leq \varphi}$ and $I_{\leq \varphi}$ where $(n, n-1, n-2, \ldots, 1) \ngtr \varphi$ are defined as

$$
\begin{aligned}
P_{\leq \varphi}(x, y) & \Longleftrightarrow \varphi(x, y) \triangleright \varphi \\
I_{\leq \varphi}(x, y) & \Longleftrightarrow \neg P_{\leq \varphi}(x, y) \wedge \neg P_{\leq \varphi}(y, x) .
\end{aligned}
$$

General Setting
What is the Problem?
$\langle P, I\rangle$ Preference Structures
$\langle P, Q, I\rangle$ Preference Structures
Conclusions

$P_{\leq(2,0,0)}$

$P_{\leq(3,1,0)}$

Preference Structure

Proposition

The strict preference and the indifference of Definition 4 form a preference structure, i.e. the strict preference is asymmetric, the indifference is symmetric and reflexive, their union is complete and their intersection is empty. And this preference structure verifies Axioms 1-5.

Component set

Definition

The component set $C p_{\leq \varphi}$ is the set of couples $\left(n-\varphi_{i}, i\right)$ such that $\varphi_{i} \neq n$ and there is no $i^{\prime}<i$ with $\varphi_{i^{\prime}}=\varphi_{i}$

$$
P_{\leq(2,0,0)}:(0,0,0)
$$

Component set

Definition

The component set $C p_{\leq \varphi}$ is the set of couples $\left(n-\varphi_{i}, i\right)$ such that $\varphi_{i} \neq n$ and there is no $i^{\prime}<i$ with $\varphi_{i^{\prime}}=\varphi_{i}$

$$
P_{\leq(2,0,0)}:(0,0,0) \cup(1,0,0)
$$

Component set

Definition

The component set $C p_{\leq \varphi}$ is the set of couples $\left(n-\varphi_{i}, i\right)$ such that $\varphi_{i} \neq n$ and there is no $i^{\prime}<i$ with $\varphi_{i^{\prime}}=\varphi_{i}$

$$
P_{\leq(2,0,0)}:(0,0,0) \cup(1,0,0) \cup(2,0,0)
$$

Component set

Definition

The component set $C p_{\leq \varphi}$ is the set of couples ($n-\varphi_{i}, i$) such that $\varphi_{i} \neq n$ and there is no $i^{\prime}<i$ with $\varphi_{i^{\prime}}=\varphi_{i}$

$$
\begin{aligned}
& P_{\leq(2,0,0)}:(0,0,0) \cup(1,0,0) \cup(2,0,0) \\
& C p_{\leq(2,0,0)}=\{(1,1),(3,2)\}
\end{aligned}
$$

Some characterisations

	$\left\|C p_{\leq \varphi}\right\|$	$(i, j) \in C p_{\leq \varphi}$
$P_{\leq \varphi}$ is transitive		$\forall(i, j), i \geq j$,
$I_{\leq \varphi}$ is transitive	1	$C p_{\leq \varphi}=\{(i, i)\}$
$P_{\leq \varphi} \cup I_{\leq \varphi}$ is a weak oder	1	$C p_{\leq \varphi}=\{(i, i)\}$
$P_{\leq \varphi} \cup U_{\leq \varphi}$ is a d-weak order	d	$\forall(i, j), i=j$
$P_{\leq \varphi} \cup I_{\leq \varphi}$ is an interval order	1	
$P_{\leq \varphi} \cup I_{\leq \varphi}$ is a "bi-tolerance order"	2	$\forall(i, j), i \geq j$,
$P_{\leq \varphi} \cup I_{\leq \varphi}$ is a triangle order	2	$C p_{\leq \varphi}=\{(I, l),(i, j)\}$ where $i \geq j$

How many representations?

	$n=2$	$n=3$	$n=4$	n
weak order	2	3	4	n
d-weak order	$\binom{2}{d}$	$\binom{3}{d}$	$\binom{4}{d}$	$\binom{n}{d}$
bi-weak order	1	3	6	$\frac{n(n-1)}{2}$
3-weak order	0	1	4	$\binom{n}{3}$
interval order	1	3	6	$\frac{n(n-1)}{2}$
bitolerance order	0	0	6	
triangle order	0	2	8	

Results for 3-point intervals

Preference Structure	$\left\langle P_{\leq \varphi}, I_{\leq \varphi}\right\rangle$ interval representation
	$C p_{\leq(3,3,0)}=\{(3,3)\}$
Weak Orders	$C p_{\leq(3,1,1)}=\{(2,2)\}$
	$C p_{\leq(2,2,2)}=\{(1,1)\}$
	$C p_{\leq(3,1,0)}=\{(2,2),(3,3)\}$
Bi-weak Orders	$C p_{\leq(2,1,1)}=\{(1,1),(2,2)\}$
	$C p_{\leq(2,2,0)}=\{(1,1),(3,3)\}$
Three-Weak Orders	$C p_{\leq(2,1,0)}=\{(1,1),(2,2),(3,3)\}$

Results for 3-point intervals

Preference Structure	$\left\langle P_{\leq \varphi}, I_{\leq \varphi}\right\rangle$ interval representation
Interval Orders	$C p_{\leq(0,0,0)}=\{(3,1)\}$
	$C p_{\leq(3,0,0)}=\{(3,2)\}$
	$C p_{\leq(1,1,1)}=\{(2,1)\}$
Split Interval Orders	$C p_{\leq(1,0,0)}=\{(3,2),(2,1)\}$
Triangle Orders	$C p_{\leq(1,1,0)}=\{(2,1),(3,3)\}$
	$C p_{\leq(2,0,0)}=\{(1,1),(3,2)\}$
Intransitive Orders	$C p_{\leq(3,2,0)}=\{(3,3),(1,2)\}$
	$C p_{\leq(2,2,1)}=\{(1,1),(2,3)\}$

$\langle P, Q, I\rangle$ Interval Orders

Definition

$A\langle P, Q, I\rangle I O$ is a $\langle P, Q, I\rangle$ Preference Structure such that:
$P(x, y) \Leftrightarrow I(x)>r(y)$
$Q(x, y) \Leftrightarrow r(x)>r(y)>I(x)>I(y)$
$I(x, y) \Leftrightarrow r(x)>r(y)>I(y)>I(x)$ or the inverse.

Theorem

A $\langle P, Q, I\rangle$ Preference Structure is a $\langle P, Q, I\rangle$ Interval Order iff:
$I=I_{I} \cup I_{r} \cup I_{o} ; I_{r}=I_{I}^{-1}$
$\left(P \cup Q \cup I_{1}\right) \cdot P \subseteq P$
$P .\left(P \cup Q \cup I_{r}\right) \subseteq P$
$\left(P \cup Q \cup I_{I}\right) \cdot Q \subseteq P \cup Q \cup I_{I}$
$Q .\left(P \cup Q \cup I_{r}\right) \subseteq P \cup Q \cup I_{r}$

Double-threshold Orders

Definition

A Double-threshold Order is a $\langle P, Q, I\rangle$ Preference Structure such that:
$P(x, y) \Leftrightarrow I(x)>r(y)$
$Q(x, y) \Leftrightarrow r(y)>I(x)>k(y)$
$I(x, y) \Leftrightarrow k(y)>I(x) \wedge k(x)>I(y)$

Theorem

A $\langle P, Q, I\rangle$ Preference Structure is a Double-threshold Order iff:
$Q . I . Q \subseteq P \cup Q$
$Q . I . P \subseteq P$
$P . I . P \subseteq P$
$P . Q^{-1} . P \subseteq P$

Generalised Transitivity

Consider three asymmetric relations P_{3}, P_{2}, P_{1} such that:
$-P=P_{3}$

- $Q=P_{2}$
$-I=P_{1} \cup I_{0} \cup P_{1}^{-1}$

What happens to the preference structures we introduced before?

Generalised Transitivity

Theorem

$A\langle P, Q, I\rangle$ Preference Structure is a $\langle P, Q, I\rangle$ Interval Order iff:
$P_{3} . P_{3} \subseteq P_{3}$
$P_{2} \cdot P_{3} \subseteq P_{3}$
$P_{3} . P_{2} \subseteq P_{3}$
$P_{3} . P_{1} \subseteq P_{3}$
$P_{1}^{-1} . P_{3} \subseteq P_{3}$
$P_{2} \cdot P_{2} \subseteq P_{2} \cup P_{3}$
$P_{1} \cdot P_{2} \subseteq P_{2} \cup P_{1}$
$P_{2} \cdot P_{1}^{-1} \subseteq P_{2} \cup P_{1}^{-1}$

Generalised Transitivity

Theorem

A $\langle P, Q, I\rangle$ Preference Structure is a Double-threshold Order iff:
$P_{3} . P_{3} \subseteq P_{3}$
$P_{2} \cdot P_{3} \subseteq P_{3}$
$P_{3} . P_{1} \subseteq P_{3}$
$P_{1}^{-1} . P_{3} \subseteq P_{3}$
$P_{2}^{-1} . P_{3} \subseteq P_{3}$
$P_{2} \cdot P_{2} \subseteq P_{2} \cup P_{3}$
$P_{2} \cdot P_{1} \subseteq P_{2} \cup P_{3}$
$P_{1}^{-1} . P_{2} \subseteq P_{2} \cup P_{3}$

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

So what?

- A general framework for comparing n-point intervals and for characterising such relations.
- Some representation theorems for $\langle P, Q, I\rangle$ preference structures.
- A framework for continuous valuation of intervals comparison.
- Coherence Conditions
- Algorithmic and Complexity Issues.
- Further generalisations.

