Final #1

Mark all correct answers in each of the following questions.

1. A coin is tossed n times. Let X be the number of heads and Y the
sum of the round numbers at which heads are tossed. For example,
if n = 7, and the results are H, T, H, T, T, H, T, then X = 3 and
Y=14+34+6=10.

(a) Y is binomially distributed.

( Y =6) =4/2" for all sufficiently large n.
(¢) P(X =3|Y =7) = 1/4.

(d) E(Y)=mn(n+1)/2.

(e) V(Y)=n(n+1)(2n+1)/6.

(

2. We select n random numbers as follows. The first number is 1. The
second number is either 1 or 2, each being selected at a probability of
1/2. In general, for 1 < k < n we select at the k-th stage one of the
numbers 1,2, ..., k, each with probability 1/k. Let X be the sum of
all selected numbers, Y — their product, Z — the number of those equal
to 1, and W the number of numbers between 1 and n chosen at least

once. For example, if n = 7 and the numbers 1, 1, 3, 2, 1, 6, 3 are
selected, then X =17, Y =108, Z =3, W = 4.

(a) For n > 2, the probability that the number 1 is selected more
times than the number 2 is 1/2.



(b) Markov’s inequality implies:

P(X > 04n(n+3)) — 2

n—oo &

(c) B(r?) = Z5t.

2127
(d) Chebyshev’s inequality implies that for every € > 0:

P(|Z —logn| > elogn) — 0.

() M 11,
(f) For sufficiently large n, there exist eactly two quadruples (a, b, ¢, d)
for which:

PY=0X=a)=P(Z=cX=a)=PW=dX=a)=1.

3. The variable (X,Y) is uniformly distributed in the planar region
S={(z,y):0<z <7, 0<y<sinz}.

(That is, since the area of S is 2, the probability of (X,Y’) to assume
a value in some set S’ C S is half the area of S’.)

(a) The distribution function of X is given by:

0, z <0,
Fx(z) =< 3— <z 0<z<m,
1, T <.
(b) The density function of Y is given by:
_ 8=y, 0<y<l,
Frly) = { 0, otherwise.

(¢) E(Y) = /4.
(d) BE(XY) = n2/16.



(e) The random variables X, Xs, ..., Xjgo are independent and have
the same distribution as X. Then:

100
P (Z X; > 170) < 0.05.

=1

4. Let X,Y, Z be random variables.

(a) If X,Y are independent and V(X) = V(Y), then X + Y, X - Y
are uncorrelated but not necessarily independent.

(b) If X +Y has a finite variance, then at least one of X and Y has
a finite variance as well.

(c) Suppose E(X) = E(Y) = E(Z) = 0 and all three correlation coef-
ficients p(X,Y), p(X, Z), p(Y, Z) are strictly positive. If E(XY Z)
exists, then F(XYZ) > 0.

Solutions

that Y is not binomially distributed unless n = 1.

The equality Y = 6 means that the outcomes of all tosses were T,
except for either (i) toss 6, or (ii) tosses 1 and 5, or (iii) tosses 2 and
4, or (iv) tosses 1,2 and 3. The probability of each exception (for
n > 6) is 1/2", and thus P(Y = 6) = 4/2". Similarly, we easily verify
that Y = 7 is obtained for 5 sequences only, out of which only the
sequence H, H, T, H, T, T, T, ..., T yields X = 3. Consequently,
P(X=3lY=17)=1/5.

Since n(n+1)/2 is the maximal possible value of Y, and there are other
possible values for Y, we must have E(Y) < n(n+1)/2.



Now define random variables X;, 1 <17 < n, by X; = 1 if the outcome
of the i-th toss is H and X; = 0 otherwise. Clearly, X =" | X; and
Y =" iX;. Since E(X;) = 1/2 and V(X;) = 1/4 for each i, we
have

E(y)zzzézw

4
and
., 1 nam+D)(@2n+1)
V)= .- = .
VYY) ZZIZ 1 24
Also
COV(X, Y) = Z ZCOV(XZ,X])
ij=1

n

= Y iCov(X;, X;) = ;ZV(XZ) _ n(n8+1) )

=1
and therefore

n(n+1)/8 . @
V4 -n(n+1)(2n +1)/24 -0 2

p(X,Y) =

Thus, only (b) is true.

. Let p., p— and p-. be the probabilities that the number of 1’s in the last
n — 1 tosses is less than, equal or larger, respectively, than the number
of 2’s in the same tosses. By symmetry, p. = p~, and therefore the
probability required in part (a) is (for n > 3)

p=+Ds =p=/24 (pc +p=+p>)/2=p=/2+1/2>1/2.

Denote by X; the number selected at the i-th round, 1 < ¢ < n. Clearly,
X; ~ U[1,1], so that B(X;) = (141i)/2 and V(X;) = (i*—1)/2 for each
1. Thus

n

E(X):Zi—i-l :n(n+1)+n n(n+ 3)

2 4 2 4



n

i?—1 nn+1D)2n+1) n  n(2n*+3n-—>5)
X — = —_ = .
VX) Z 2 12 2 12

i=1
Markov’s inequality implies therefore
n(n+3)/4 5
P(X >04 N —— —
(X 2 0dnln + ))_0.4n(n+3)r:o8’
so that:
limsup P(X > 0.4n(n + 3)) <

n—oo

Obviously, Y =[], X;, which implies

oo | Ut

E(y2) — H E(XZQ) _ H (i+1)é2z‘+1)

=1 =1

ﬁ (2i+2)(2i+1) _ (2n+4)!
1 12 = 21 -
1=

We may write Z = )" | Z;, where Z; = 1 if the number selected at
the i-th stage is 1 and Z; = 0 otherwise. Consequently

n

E(Z) = Z% =logn+ O(1)

and
n

viz) =3 % (1 _ %) — logn + O(1).

- 2
=1

Chebyshev’s inequality then implies for € > 0:

P(|Z —logn| > elogn) < P(|Z—3 1 >¢clogn+ O(1))
i=1

logn + O(1)
(elogn + O(1))? ey

Write W = >"" | W;, where W; = 1 if the number 7 is chosen at least
once and W, = 0 otherwise. For 1 < ¢ < n:

n

E(W@)zP(W@zl)zl—H(l—l)zl—i_l.

n
j=i J




Hence

= -1 —1 1
E(OW) = (1_1 :n_n(n )/2:n+ |
— n n 2
and thus
E(W) 1
—)_.
n  n—oo 2

In (f), the issue is really which values of X determine, up to order,
the outcomes of all tosses. For example, if X = n, then all numbers
selected in the process are 1, and then Y = 1,7 = n, W = 1. Other
such values are X = n + 1, which implies that all numbers selected
are 1, except for a single 2, and then Y =2, Z =n—1,W = 2, and
X = n(n+ 1)/2, which implies that at each stage ¢ the number i was
chosen, and therefore Y =n!, Z =1, W =n.

Thus, only (d) is true.

. In the “interesting” interval, namely [0, 7], the density function of X is
clearly proportional to the height of the region S. Since the total area
of S is 2, this implies:

0, x <0,
fe@) ={ Lsme,  0<e<m
0, <,

and therefore, by integration, we obtain for Fx(z) the function claimed
in (a). Now by symmetry:

Similarly, the density function of Y is proportional to the width of S,
that is, for 0 <y < 1:

1
fy(y) = 3 ((m — arcsiny) — arcsiny) .
Consequently:
_ | 5 —arcsiny, 0<y<l1,
() { ; otherwise.



Therefore:

1
E(Y)= / (g — arcsiny> y dy.
0

The substitution y = sint yields:

w/2
E(Y):/ <g—t> sintcostdt:g.
0

By symmetry E(XY) = E(Y (7 — X)), and therefore

7T2

E(XY) = %E(WY) = SE(Y) =1

Next we have
/2 1
E(X2):/ x2~§sinxdaz
0

and routine integration by parts gives

7.‘.2

B(X?) = 5 =2

Hence:

7T.2

V(X)=FE(X?) - E(X)*= -2

Estimating the probability in part (e) by the Central Limit Theorem,
we obtain:

100 - o 100 X, —100-7/2 170—100-7 /2
P (Zizl Xi 2 170) o P( \/100(x2 /4—2) = \/100(2 /4—2)

~ P(Z >1.89).

(where Z is a standard normal random variable), and therefore the
required probability is approximately 0.029.

Thus, (a), (d) and (e) are true.



4. In (a), the random variables X +Y, X —Y are indeed uncorrelated since

E(X+Y)X -Y)) = E(X?-Y?
= V(X)+EX)?2-V(Y)—=EY)?
= BE(X)?-E(Y)?

and
E(X+Y)E(X-Y) = (E(X)+EY))(E(X)-E(Y)) = BE(X)*~E(Y)>.

For (b), let X be any random variable with infinite variance (say,
Cauchy distributed) and Y = —X. Then neither X nor Y have fi-
nite variances, yet X +Y = 0 does.

In (c), let X take the values 1 and —2 with probabilities 2/3 and 1/3,
respectively, and take Y = Z = X. Then FE(X) = E(Y) = E(Z) =0,
all three correlation coefficients are 1, and F(XY Z) = E(X3) = 13-
2/3+ (=2)?-1/3=—2 < 0.

Thus, only (a) is true.



