Final \#1

Mark all correct answers in each of the following questions.

1. A coin is tossed n times. Let X be the number of heads and Y the sum of the round numbers at which heads are tossed. For example, if $n=7$, and the results are $\mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{T}$, then $X=3$ and $Y=1+3+6=10$.
(a) Y is binomially distributed.
(b) $P(Y=6)=4 / 2^{n}$ for all sufficiently large n.
(c) $P(X=3 \mid Y=7)=1 / 4$.
(d) $E(Y)=n(n+1) / 2$.
(e) $V(Y)=n(n+1)(2 n+1) / 6$.
(f) $\rho(X, Y) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{2}}{2}$.
2. We select n random numbers as follows. The first number is 1 . The second number is either 1 or 2 , each being selected at a probability of $1 / 2$. In general, for $1 \leq k \leq n$ we select at the k-th stage one of the numbers $1,2, \ldots, k$, each with probability $1 / k$. Let X be the sum of all selected numbers, Y - their product, Z - the number of those equal to 1 , and W the number of numbers between 1 and n chosen at least once. For example, if $n=7$ and the numbers $1,1,3,2,1,6,3$ are selected, then $X=17, Y=108, Z=3, W=4$.
(a) For $n \geq 2$, the probability that the number 1 is selected more times than the number 2 is $1 / 2$.
(b) Markov's inequality implies:

$$
P(X \geq 0.4 n(n+3)) \underset{n \rightarrow \infty}{\longrightarrow} \frac{5}{8} .
$$

(c) $E\left(Y^{2}\right)=\frac{(2 n+3)!}{2 \cdot 12^{n}}$.
(d) Chebyshev's inequality implies that for every $\varepsilon>0$:

$$
P(|Z-\log n|>\varepsilon \log n) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

(e) $\frac{E(W)}{n} \underset{n \rightarrow \infty}{\longrightarrow} 1-\frac{1}{e}$.
(f) For sufficiently large n, there exist eactly two quadruples (a, b, c, d) for which:

$$
P(Y=b \mid X=a)=P(Z=c \mid X=a)=P(W=d \mid X=a)=1
$$

3. The variable (X, Y) is uniformly distributed in the planar region

$$
S=\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \sin x\} .
$$

(That is, since the area of S is 2 , the probability of (X, Y) to assume a value in some set $S^{\prime} \subseteq S$ is half the area of S^{\prime}.)
(a) The distribution function of X is given by:

$$
F_{X}(x)= \begin{cases}0, & x<0, \\ \frac{1}{2}-\frac{\cos x}{2}, & 0 \leq x \leq \pi \\ 1, & \pi<x\end{cases}
$$

(b) The density function of Y is given by:

$$
f_{Y}(y)= \begin{cases}3\left(1-y^{1 / 2}\right), & 0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(c) $E(Y)=\pi / 4$.
(d) $E(X Y)=\pi^{2} / 16$.
(e) The random variables $X_{1}, X_{2}, \ldots, X_{100}$ are independent and have the same distribution as X. Then:

$$
P\left(\sum_{i=1}^{100} X_{i} \geq 170\right) \leq 0.05 .
$$

4. Let X, Y, Z be random variables.
(a) If X, Y are independent and $V(X)=V(Y)$, then $X+Y, X-Y$ are uncorrelated but not necessarily independent.
(b) If $X+Y$ has a finite variance, then at least one of X and Y has a finite variance as well.
(c) Suppose $E(X)=E(Y)=E(Z)=0$ and all three correlation coefficients $\rho(X, Y), \rho(X, Z), \rho(Y, Z)$ are strictly positive. If $E(X Y Z)$ exists, then $E(X Y Z) \geq 0$.

Solutions

1. If $Y \sim B(m, p)$ for some m and p, then, since $P(Y=0)=P(Y=1)=$ $P(Y=n(n+1) / 2)=1 / 2^{n}$, we obtain $(1-p)^{m}=m p(1-p)^{m-1}=p^{m}$. The equality of the first and third expressions yields $p=1 / 2$, and then the equality of the first and second expressions yields $m=1$. It follows that Y is not binomially distributed unless $n=1$.

The equality $Y=6$ means that the outcomes of all tosses were T , except for either (i) toss 6 , or (ii) tosses 1 and 5 , or (iii) tosses 2 and 4, or (iv) tosses 1,2 and 3 . The probability of each exception (for $n \geq 6)$ is $1 / 2^{n}$, and thus $P(Y=6)=4 / 2^{n}$. Similarly, we easily verify that $Y=7$ is obtained for 5 sequences only, out of which only the sequence H, H, T, H, T, T, T, ..., T yields $X=3$. Consequently, $P(X=3 \mid Y=7)=1 / 5$.
Since $n(n+1) / 2$ is the maximal possible value of Y, and there are other possible values for Y, we must have $E(Y)<n(n+1) / 2$.

Now define random variables $X_{i}, 1 \leq i \leq n$, by $X_{i}=1$ if the outcome of the i-th toss is H and $X_{i}=0$ otherwise. Clearly, $X=\sum_{i=1}^{n} X_{i}$ and $Y=\sum_{i=1}^{n} i X_{i}$. Since $E\left(X_{i}\right)=1 / 2$ and $V\left(X_{i}\right)=1 / 4$ for each i, we have

$$
E(Y)=\sum_{i=1}^{n} i \cdot \frac{1}{2}=\frac{n(n+1)}{4}
$$

and

$$
V(Y)=\sum_{i=1}^{n} i^{2} \cdot \frac{1}{4}=\frac{n(n+1)(2 n+1)}{24}
$$

Also

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\sum_{i, j=1}^{n} i \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} i \operatorname{Cov}\left(X_{i}, X_{i}\right)=\sum_{i=1}^{n} i V\left(X_{i}\right)=\frac{n(n+1)}{8},
\end{aligned}
$$

and therefore

$$
\rho(X, Y)=\frac{n(n+1) / 8}{\sqrt{n / 4 \cdot n(n+1)(2 n+1) / 24}} \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{3}}{2} .
$$

Thus, only (b) is true.
2. Let $p_{<}, p_{=}$and $p_{>}$be the probabilities that the number of 1 's in the last $n-1$ tosses is less than, equal or larger, respectively, than the number of 2's in the same tosses. By symmetry, $p_{<}=p_{>}$, and therefore the probability required in part (a) is (for $n \geq 3$)

$$
p_{=}+p_{>}=p_{=} / 2+\left(p_{<}+p_{=}+p_{>}\right) / 2=p_{=} / 2+1 / 2>1 / 2 .
$$

Denote by X_{i} the number selected at the i-th round, $1 \leq i \leq n$. Clearly, $X_{i} \sim U[1, i]$, so that $E\left(X_{i}\right)=(1+i) / 2$ and $V\left(X_{i}\right)=\left(i^{2}-1\right) / 2$ for each i. Thus

$$
E(X)=\sum_{i=1}^{n} \frac{i+1}{2}=\frac{n(n+1)}{4}+\frac{n}{2}=\frac{n(n+3)}{4}
$$

and

$$
V(X)=\sum_{i=1}^{n} \frac{i^{2}-1}{2}=\frac{n(n+1)(2 n+1)}{12}-\frac{n}{2}=\frac{n\left(2 n^{2}+3 n-5\right)}{12} .
$$

Markov's inequality implies therefore

$$
P(X \geq 0.4 n(n+3)) \leq \frac{n(n+3) / 4}{0.4 n(n+3)} \underset{n \rightarrow \infty}{\longrightarrow} \frac{5}{8},
$$

so that:

$$
\limsup _{n \rightarrow \infty} P(X \geq 0.4 n(n+3)) \leq \frac{5}{8}
$$

Obviously, $Y=\prod_{i=1}^{n} X_{i}$, which implies

$$
\begin{aligned}
E\left(Y^{2}\right) & =\prod_{i=1}^{n} E\left(X_{i}^{2}\right)=\prod_{i=1}^{n} \frac{(i+1)(2 i+1)}{6} \\
& =\prod_{i=1}^{n} \frac{(2 i+2)(2 i+1)}{12}=\frac{(2 n+4)!}{2 \cdot 12^{n}} .
\end{aligned}
$$

We may write $Z=\sum_{i=1}^{n} Z_{i}$, where $Z_{i}=1$ if the number selected at the i-th stage is 1 and $Z_{i}=0$ otherwise. Consequently

$$
E(Z)=\sum_{i=1}^{n} \frac{1}{i}=\log n+O(1)
$$

and

$$
V(Z)=\sum_{i=1}^{n} \frac{1}{i}\left(1-\frac{1}{i}\right)=\log n+O(1) .
$$

Chebyshev's inequality then implies for $\varepsilon>0$:

$$
\begin{aligned}
P(|Z-\log n|>\varepsilon \log n) & \leq P\left(\left|Z-\sum_{i=1}^{n} \frac{1}{i}\right|>\varepsilon \log n+O(1)\right) \\
& \leq \frac{\log n+O(1)}{(\varepsilon \log n+O(1))^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
\end{aligned}
$$

Write $W=\sum_{i=1}^{n} W_{i}$, where $W_{i}=1$ if the number i is chosen at least once and $W_{i}=0$ otherwise. For $1 \leq i \leq n$:

$$
E\left(W_{i}\right)=P\left(W_{i}=1\right)=1-\prod_{j=i}^{n}\left(1-\frac{1}{j}\right)=1-\frac{i-1}{n} .
$$

Hence

$$
E(W)=\sum_{i=1}^{n}\left(1-\frac{i-1}{n}\right)=n-\frac{n(n-1) / 2}{n}=\frac{n+1}{2},
$$

and thus

$$
\frac{E(W)}{n} \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{2} .
$$

In (f), the issue is really which values of X determine, up to order, the outcomes of all tosses. For example, if $X=n$, then all numbers selected in the process are 1 , and then $Y=1, Z=n, W=1$. Other such values are $X=n+1$, which implies that all numbers selected are 1, except for a single 2 , and then $Y=2, Z=n-1, W=2$, and $X=n(n+1) / 2$, which implies that at each stage i the number i was chosen, and therefore $Y=n!, Z=1, W=n$.
Thus, only (d) is true.
3. In the "interesting" interval, namely $[0, \pi]$, the density function of X is clearly proportional to the height of the region S. Since the total area of S is 2 , this implies:

$$
f_{X}(x)=\left\{\begin{array}{lr}
0, & x<0 \\
\frac{1}{2} \sin x, & 0 \leq x \leq \pi \\
0, & \pi<x,
\end{array}\right.
$$

and therefore, by integration, we obtain for $F_{X}(x)$ the function claimed in (a). Now by symmetry:

$$
E(X)=\frac{\pi}{2} .
$$

Similarly, the density function of Y is proportional to the width of S, that is, for $0 \leq y \leq 1$:

$$
f_{Y}(y)=\frac{1}{2}((\pi-\arcsin y)-\arcsin y) .
$$

Consequently:

$$
f_{Y}(y)= \begin{cases}\frac{\pi}{2}-\arcsin y, & 0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore:

$$
E(Y)=\int_{0}^{1}\left(\frac{\pi}{2}-\arcsin y\right) y d y
$$

The substitution $y=\sin t$ yields:

$$
E(Y)=\int_{0}^{\pi / 2}\left(\frac{\pi}{2}-t\right) \sin t \cos t d t=\frac{\pi}{8} .
$$

By symmetry $E(X Y)=E(Y(\pi-X))$, and therefore

$$
E(X Y)=\frac{1}{2} E(\pi Y)=\frac{\pi}{2} E(Y)=\frac{\pi^{2}}{16}
$$

Next we have

$$
E\left(X^{2}\right)=\int_{0}^{\pi / 2} x^{2} \cdot \frac{1}{2} \sin x d x
$$

and routine integration by parts gives

$$
E\left(X^{2}\right)=\frac{\pi^{2}}{2}-2
$$

Hence:

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{\pi^{2}}{4}-2
$$

Estimating the probability in part (e) by the Central Limit Theorem, we obtain:

$$
\begin{aligned}
P\left(\sum_{i=1}^{100} X_{i} \geq 170\right) & =P\left(\frac{\sum_{i=1}^{100} X_{i}-100 \cdot \pi / 2}{\sqrt{100\left(\pi^{2} / 4-2\right)}} \geq \frac{170-100 \cdot \pi / 2}{\sqrt{100\left(\pi^{2} / 4-2\right)}}\right) \\
& \approx P(Z \geq 1.89) .
\end{aligned}
$$

(where Z is a standard normal random variable), and therefore the required probability is approximately 0.029 .
Thus, (a), (d) and (e) are true.
4. In (a), the random variables $X+Y, X-Y$ are indeed uncorrelated since

$$
\begin{aligned}
E((X+Y)(X-Y)) & =E\left(X^{2}-Y^{2}\right) \\
& =V(X)+E(X)^{2}-V(Y)-E(Y)^{2} \\
& =E(X)^{2}-E(Y)^{2}
\end{aligned}
$$

and
$E(X+Y) E(X-Y)=(E(X)+E(Y))(E(X)-E(Y))=E(X)^{2}-E(Y)^{2}$.
For (b), let X be any random variable with infinite variance (say, Cauchy distributed) and $Y=-X$. Then neither X nor Y have finite variances, yet $X+Y=0$ does.
In (c), let X take the values 1 and -2 with probabilities $2 / 3$ and $1 / 3$, respectively, and take $Y=Z=X$. Then $E(X)=E(Y)=E(Z)=0$, all three correlation coefficients are 1 , and $E(X Y Z)=E\left(X^{3}\right)=1^{3}$. $2 / 3+(-2)^{3} \cdot 1 / 3=-2<0$.
Thus, only (a) is true.

