
Final #1

Mark all correct answers in each of the following questions.

1. A coin is tossed n times. Let X be the number of heads and Y the
sum of the round numbers at which heads are tossed. For example,
if n = 7, and the results are H, T, H, T, T, H, T, then X = 3 and
Y = 1 + 3 + 6 = 10.

(a) Y is binomially distributed.

(b) P (Y = 6) = 4/2n for all sufficiently large n.

(c) P (X = 3|Y = 7) = 1/4.

(d) E(Y ) = n(n+ 1)/2.

(e) V (Y ) = n(n+ 1)(2n+ 1)/6.

(f) ρ(X, Y ) −→
n→∞

√
2

2
.

2. We select n random numbers as follows. The first number is 1. The
second number is either 1 or 2, each being selected at a probability of
1/2. In general, for 1 ≤ k ≤ n we select at the k-th stage one of the
numbers 1, 2, . . . , k, each with probability 1/k. Let X be the sum of
all selected numbers, Y – their product, Z – the number of those equal
to 1, and W the number of numbers between 1 and n chosen at least
once. For example, if n = 7 and the numbers 1, 1, 3, 2, 1, 6, 3 are
selected, then X = 17, Y = 108, Z = 3, W = 4.

(a) For n ≥ 2, the probability that the number 1 is selected more
times than the number 2 is 1/2.
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(b) Markov’s inequality implies:

P (X ≥ 0.4n(n+ 3)) −→
n→∞

5

8
.

(c) E(Y 2) = (2n+3)!
2·12n

.

(d) Chebyshev’s inequality implies that for every ε > 0:

P (|Z − log n| > ε log n) −→
n→∞

0.

(e) E(W )
n
−→
n→∞

1− 1
e
.

(f) For sufficiently large n, there exist eactly two quadruples (a, b, c, d)
for which:

P (Y = b|X = a) = P (Z = c|X = a) = P (W = d|X = a) = 1.

3. The variable (X, Y ) is uniformly distributed in the planar region

S = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ sin x}.

(That is, since the area of S is 2, the probability of (X,Y ) to assume
a value in some set S ′ ⊆ S is half the area of S ′.)

(a) The distribution function of X is given by:

FX(x) =


0, x < 0,
1
2
− cosx

2
, 0 ≤ x ≤ π,

1, π < x.

(b) The density function of Y is given by:

fY (y) =

{
3(1− y1/2), 0 ≤ y ≤ 1,
0, otherwise.

(c) E(Y ) = π/4.

(d) E(XY ) = π2/16.
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(e) The random variables X1, X2, . . . , X100 are independent and have
the same distribution as X. Then:

P

(
100∑
i=1

Xi ≥ 170

)
≤ 0.05.

4. Let X, Y, Z be random variables.

(a) If X, Y are independent and V (X) = V (Y ), then X + Y,X − Y
are uncorrelated but not necessarily independent.

(b) If X + Y has a finite variance, then at least one of X and Y has
a finite variance as well.

(c) Suppose E(X) = E(Y ) = E(Z) = 0 and all three correlation coef-
ficients ρ(X, Y ), ρ(X,Z), ρ(Y, Z) are strictly positive. If E(XY Z)
exists, then E(XY Z) ≥ 0.

Solutions

1. If Y ∼ B(m, p) for some m and p, then, since P (Y = 0) = P (Y = 1) =
P (Y = n(n+ 1)/2) = 1/2n, we obtain (1− p)m = mp(1− p)m−1 = pm.
The equality of the first and third expressions yields p = 1/2, and then
the equality of the first and second expressions yields m = 1. It follows
that Y is not binomially distributed unless n = 1.

The equality Y = 6 means that the outcomes of all tosses were T,
except for either (i) toss 6, or (ii) tosses 1 and 5, or (iii) tosses 2 and
4, or (iv) tosses 1, 2 and 3. The probability of each exception (for
n ≥ 6) is 1/2n, and thus P (Y = 6) = 4/2n. Similarly, we easily verify
that Y = 7 is obtained for 5 sequences only, out of which only the
sequence H, H, T, H, T, T, T, . . ., T yields X = 3. Consequently,
P (X = 3|Y = 7) = 1/5.

Since n(n+1)/2 is the maximal possible value of Y , and there are other
possible values for Y , we must have E(Y ) < n(n+ 1)/2.
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Now define random variables Xi, 1 ≤ i ≤ n, by Xi = 1 if the outcome
of the i-th toss is H and Xi = 0 otherwise. Clearly, X =

∑n
i=1 Xi and

Y =
∑n

i=1 iXi. Since E(Xi) = 1/2 and V (Xi) = 1/4 for each i, we
have

E(Y ) =
n∑
i=1

i · 1

2
=
n(n+ 1)

4

and

V (Y ) =
n∑
i=1

i2 · 1

4
=
n(n+ 1)(2n+ 1)

24
.

Also

Cov(X, Y ) =
n∑

i,j=1

iCov(Xi, Xj)

=
n∑
i=1

iCov(Xi, Xi) =
n∑
i=1

iV (Xi) = n(n+1)
8

,

and therefore

ρ(X, Y ) =
n(n+ 1)/8√

n/4 · n(n+ 1)(2n+ 1)/24
−→
n→∞

√
3

2
.

Thus, only (b) is true.

2. Let p<, p= and p> be the probabilities that the number of 1’s in the last
n− 1 tosses is less than, equal or larger, respectively, than the number
of 2’s in the same tosses. By symmetry, p< = p>, and therefore the
probability required in part (a) is (for n ≥ 3)

p= + p> = p=/2 + (p< + p= + p>)/2 = p=/2 + 1/2 > 1/2.

Denote by Xi the number selected at the i-th round, 1 ≤ i ≤ n. Clearly,
Xi ∼ U [1, i], so that E(Xi) = (1+ i)/2 and V (Xi) = (i2−1)/2 for each
i. Thus

E(X) =
n∑
i=1

i+ 1

2
=
n(n+ 1)

4
+
n

2
=
n(n+ 3)

4

4



and

V (X) =
n∑
i=1

i2 − 1

2
=
n(n+ 1)(2n+ 1)

12
− n

2
=
n(2n2 + 3n− 5)

12
.

Markov’s inequality implies therefore

P (X ≥ 0.4n(n+ 3)) ≤ n(n+ 3)/4

0.4n(n+ 3)
−→
n→∞

5

8
,

so that:

lim sup
n→∞

P (X ≥ 0.4n(n+ 3)) ≤ 5

8
.

Obviously, Y =
∏n

i=1 Xi, which implies

E(Y 2) =
n∏
i=1

E(X2
i ) =

n∏
i=1

(i+1)(2i+1)
6

=
n∏
i=1

(2i+2)(2i+1)
12

= (2n+4)!
2·12n

.

We may write Z =
∑n

i=1 Zi, where Zi = 1 if the number selected at
the i-th stage is 1 and Zi = 0 otherwise. Consequently

E(Z) =
n∑
i=1

1

i
= log n+O(1)

and

V (Z) =
n∑
i=1

1

i

(
1− 1

i

)
= log n+O(1).

Chebyshev’s inequality then implies for ε > 0:

P (|Z − log n| > ε log n) ≤ P (|Z −
n∑
i=1

1
i
| > ε log n+O(1))

≤ log n+O(1)
(ε log n+O(1))2 −→

n→∞
0.

Write W =
∑n

i=1 Wi, where Wi = 1 if the number i is chosen at least
once and Wi = 0 otherwise. For 1 ≤ i ≤ n:

E(Wi) = P (Wi = 1) = 1−
n∏
j=i

(
1− 1

j

)
= 1− i− 1

n
.
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Hence

E(W ) =
n∑
i=1

(
1− i− 1

n

)
= n− n(n− 1)/2

n
=
n+ 1

2
,

and thus
E(W )

n
−→
n→∞

1

2
.

In (f), the issue is really which values of X determine, up to order,
the outcomes of all tosses. For example, if X = n, then all numbers
selected in the process are 1, and then Y = 1, Z = n,W = 1. Other
such values are X = n + 1, which implies that all numbers selected
are 1, except for a single 2, and then Y = 2, Z = n − 1,W = 2, and
X = n(n + 1)/2, which implies that at each stage i the number i was
chosen, and therefore Y = n!, Z = 1,W = n.

Thus, only (d) is true.

3. In the “interesting” interval, namely [0, π], the density function of X is
clearly proportional to the height of the region S. Since the total area
of S is 2, this implies:

fX(x) =


0, x < 0,
1
2

sin x, 0 ≤ x ≤ π,
0, π < x,

and therefore, by integration, we obtain for FX(x) the function claimed
in (a). Now by symmetry:

E(X) =
π

2
.

Similarly, the density function of Y is proportional to the width of S,
that is, for 0 ≤ y ≤ 1:

fY (y) =
1

2
((π − arcsin y)− arcsin y) .

Consequently:

fY (y) =

{
π
2
− arcsin y, 0 ≤ y ≤ 1,

0, otherwise.
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Therefore:

E(Y ) =

∫ 1

0

(π
2
− arcsin y

)
y dy.

The substitution y = sin t yields:

E(Y ) =

∫ π/2

0

(π
2
− t
)

sin t cos t dt =
π

8
.

By symmetry E(XY ) = E(Y (π −X)), and therefore

E(XY ) =
1

2
E(πY ) =

π

2
E(Y ) =

π2

16
.

Next we have

E(X2) =

∫ π/2

0

x2 · 1

2
sin x dx

and routine integration by parts gives

E(X2) =
π2

2
− 2.

Hence:

V (X) = E(X2)− E(X)2 =
π2

4
− 2.

Estimating the probability in part (e) by the Central Limit Theorem,
we obtain:

P
(∑100

i=1 Xi ≥ 170
)

= P

(∑100
i=1 Xi−100·π/2√

100(π2/4−2)
≥ 170−100·π/2√

100(π2/4−2)

)
≈ P (Z ≥ 1.89).

(where Z is a standard normal random variable), and therefore the
required probability is approximately 0.029.

Thus, (a), (d) and (e) are true.
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4. In (a), the random variables X+Y,X−Y are indeed uncorrelated since

E((X + Y )(X − Y )) = E(X2 − Y 2)
= V (X) + E(X)2 − V (Y )− E(Y )2

= E(X)2 − E(Y )2

and

E(X+Y )E(X−Y ) = (E(X)+E(Y ))(E(X)−E(Y )) = E(X)2−E(Y )2.

For (b), let X be any random variable with infinite variance (say,
Cauchy distributed) and Y = −X. Then neither X nor Y have fi-
nite variances, yet X + Y = 0 does.

In (c), let X take the values 1 and −2 with probabilities 2/3 and 1/3,
respectively, and take Y = Z = X. Then E(X) = E(Y ) = E(Z) = 0,
all three correlation coefficients are 1, and E(XY Z) = E(X3) = 13 ·
2/3 + (−2)3 · 1/3 = −2 < 0.

Thus, only (a) is true.
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