Final \#2 - Part II

Solutions - Questions 3 and 4

3. (a) For $t \geq 0$ we have:

$$
\begin{aligned}
F_{Y}(t) & =P(Y \leq t)=P\left(X_{1} \leq t, X_{2} \leq t\right) \\
& =F_{X_{1}}(t) \cdot F_{X_{2}}(t)=F_{X_{1}}^{2}(t) \\
& =\left(1-e^{-t}\right)^{2}=1-2 e^{-t}+e^{-2 t} .
\end{aligned}
$$

Therefore:

$$
E(Y)=\int_{0}^{\infty}\left(1-F_{Y}(t)\right) d t=\int_{0}^{\infty} 2 e^{-t} d t-\int_{0}^{\infty} e^{-2 t} d t=\frac{3}{2} .
$$

By Markov's Inequality:Therefore:

$$
P(Y \geq a) \leq \frac{E(Y)}{a}=\frac{3}{2 a}
$$

For the right-hand side to be bounded by $\frac{1}{100}$, we need $a \geq 150$.
Thus, (iii) is true.
(b) Clearly, $F_{T}(t)=0$ for $t<0$. For $t \geq 0$ we have:

$$
\begin{aligned}
F_{T}(t) & =1-P(Y>t)=1-\left(1-F_{X_{1}}(t)\right)^{2} \\
& =1-e^{-2 t} .
\end{aligned}
$$

Therefore $T \sim \operatorname{Exp}(2)$.
Thus, (ii) is true.
(c) Since the function $f(t)=e^{-t}$ is decreasing, the density function of W is given by

$$
\begin{aligned}
f_{W}(w) & =f_{X_{1}}(-\ln w) \cdot\left|(-\ln w)^{\prime}\right| \\
& =e^{-(-\ln w)} \cdot \frac{1}{w}=w \cdot\left|-\frac{1}{w}\right|=1, \quad 0 \leq w \leq 1,
\end{aligned}
$$

and $f_{W}(w)=0$ for $w \notin[0,1]$.
Thus, (ii) is true
(d)

$$
\begin{aligned}
V\left(X_{1} X_{2}\right) & =E\left(X_{1}^{2} X_{2}^{2}\right)-E^{2}\left(X_{1} X_{2}\right) \\
& =E\left(X_{1}^{2}\right) E\left(X_{2}^{2}\right)-E^{2}\left(X_{1}\right) E^{2}\left(X_{2}\right) \\
& =E^{2}\left(X_{1}^{2}\right)-E^{4}\left(X_{1}\right) \\
& =\left(V\left(X_{1}\right)+E^{2}\left(X_{1}\right)\right)^{2}-E^{4}\left(X_{1}\right) \\
& =\left(1+1^{2}\right)^{2}-1^{4}=3
\end{aligned}
$$

Thus, (iii) is true.
(e) Since $E\left(X_{i}^{2}\right)=2$ and

$$
V\left(X_{i}^{2}\right)=E\left(X_{i}^{4}\right)-E^{2}\left(X_{i}^{2}\right)=\int_{0}^{\infty} t^{4} e^{-t} d t-2^{2}=\Gamma(5)-4=4!-4,
$$

we have:

$$
P\left(\sum_{i=1}^{100} X_{i}^{2} \leq 200\right)=P\left(\frac{\sum_{i=1}^{100} X_{i}^{2}-2 \cdot 100}{\sqrt{(4!-4) \cdot 100}} \leq 0\right)
$$

Using the normal approximation we obtain

$$
P\left(\sum_{i=1}^{100} X_{i}^{2} \leq 200\right) \approx \Phi(0)=\frac{1}{2}
$$

Thus, (iii) is true.
(f)

$$
\rho\left(X_{1}, e^{-X_{1}}\right)=\frac{\operatorname{Cov}\left(X_{1}, e^{-X_{1}}\right)}{\sqrt{V\left(X_{1}\right) V\left(e^{-X_{1}}\right)}} .
$$

Since $W=e^{-X_{1}} \sim U(0,1)$, we have $E(W)=\frac{1}{2}$ and $V(W)=\frac{1}{12}$, and

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, e^{-X_{1}}\right) & =E\left(X_{1} \cdot e^{-X_{1}}\right)-E\left(X_{1}\right) \cdot E(W) \\
& =\int_{0}^{\infty} t e^{-2 t} d t-1 \cdot \frac{1}{2}=1 / 4-1 / 2=-1 / 4
\end{aligned}
$$

Therefore

$$
\rho\left(X_{1}, e^{-X_{1}}\right)=\frac{-1 / 4}{\sqrt{1 \cdot 1 / 12}}=-\frac{\sqrt{3}}{2} .
$$

Thus, (ii) is true.
4. First, note that (X, Y) is uniformly distributed in the region

$$
T=\{-1 \leq x \leq 0,-1 \leq y \leq 0\} \cup\{0 \leq x \leq 1,0 \leq y \leq 1\}
$$

Therefore, various calculations can be done also using geometricl considerations. For example,

$$
c=\frac{1}{\operatorname{area}(\mathrm{~T})}=\frac{1}{1+1}=\frac{1}{2} .
$$

(a)

$$
P\left(X^{2}+Y^{2} \leq 1\right)=c \cdot \frac{\pi \cdot 1^{2}}{2}=\frac{\pi}{4}
$$

Thus, (iii) is true.
(b) Obviously, X and Y are not independent. Moreover, large values of X correspond to large values of Y, so it is intuitively clear that the covariance between X and Y should be positive. The explicit calculations provided below confirm this intuition. Obviously $E(X)=E(Y)=0$, and

$$
\begin{aligned}
E(X Y) & =\int_{-1}^{0} \int_{-1}^{0} c x y d x d y+\int_{0}^{1} \int_{0}^{1} c x y d x d y \\
& =c(1 / 4+1 / 4)=1 / 4
\end{aligned}
$$

Finally

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{4}>0 .
$$

Thus, (iii) is true.
(c) By symmetry, obviously $Y \sim U(-1,1)$. Therefore:

$$
V(X)=\frac{2^{2}}{12}=\frac{1}{3}
$$

Thus, (iii) is true.
(d) For an arbitrary $0 \leq t \leq 1$ we have:

$$
P(Z \leq t)=P(X \leq t, Y \leq t)
$$

Denote by R the following region:

$$
R=\{x \leq t, y \leq t\}
$$

Clearly:
$P(X \leq t, Y \leq t)=c \cdot \operatorname{area}(R)=c \cdot\left(1+t^{2}\right)=\frac{1}{2}\left(1+t^{2}\right), \quad t \in[0,1]$.
Thus, (i) is true.

