
Final #2 – Part I

Mark the correct answer in each part of the following questions.

1. An urn contains n balls, enumerated by 1, 2, . . . , n. The balls are drawn
out of the urn one by one without replacement, in a random order, as
follows. At the first stage, we continue drawing until we draw ball #1.
At the second stage, we draw until we get the ball with the minimal
number out of those remaining in the urn after the first stage. At the
third stage, we draw until we get the ball with the minimal number out
of those remaining in the urn after the first two stages, and so forth.
For 1 ≤ i ≤ n, let Ai denote the event whereby ball #i is the last to be
drawn at one of the stages. For 1 ≤ j ≤ n, let Xj denote the number
of balls drawn at stage j (if the process has not ended previously; if it
did, Xj = 0). Let T be the number of stages until the process ends.
(For example, suppose that n = 10, at the first stage the balls drawn
were 5, 8, 2, 3, 1, at the second stage – 10, 4, and at the third stage –
9, 7, 6. Then A1, A4, and A6 occur, while A2, A3, A5, A7, A8, A9, and
A10 do not; X1 = 5, X2 = 2, X3 = 3, X4 = X5 = . . . = X10 = 0, and
T = 3.)

(a) For 1 ≤ i ≤ n, we have P (Aj) =

(i) 1/i!.

(ii) 1/2i−1.

(iii) 1/i.

(iv) 1/2.

(v) none of the above.

(b) V (X1) is

(i) exactly n/4 for each n.

(ii) approximately en for large n.
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(iii) approximately πn for large n.

(iv) exactly (n2 − 1)/12 for each n.

(v) none of the above.

(c) For 1 ≤ k ≤ n− 1 we have P (X2 = k) =

(i) 1
n

∑n−1
r=k+1

1
r
.

(ii) 1
n

∑n−1
r=k

1
r
.

(iii) 1
n

∑n
r=k+1

1
r
.

(iv) 1
n

∑n
r=k

1
r
.

(v) none of the above.

(d) E(T |X1 = n− 2) =

(i) 2.

(ii) 5/2.

(iii) 3.

(iv) 7/2.

(v) none of the above.

(e) As n→∞
(i) E(T ) is bounded above but does not converge.

(ii) E(T ) converges to a finite limit.

(iii) E(T )→∞ but E(T )
n
→ 0.

(iv) E(T )
n
→ α, where 0 < α < 1.

(v) None of the above.

2. In this question we consider a version of the problem regarding the
queue at the cinema house, as follows. In the beginning of the process,
the cashier has no change. A ticket costs 50 shekels. Throughout the
generations, an infinite number of people will arrive. Each of them will
give the cashier either a 50 shekel bill with a probability of 3/4 or a
100 shekel bills with probability 1/4.

(a) Let Y be the number of people, out of the first 1000 people to visit,
who will give the cashier a 100 shekel bill, and Z the number of
people in that group who will give a 50 shekel bill. Then P (Z −
Y = 200) =

2



(i)
(
1000
200

)
· 3200

41000
.

(ii)
(
1000
400

)
· 3400

41000
.

(iii)
(
1000
600

)
· 3600

41000
.

(iv)
(
1000
800

)
· 3800

41000
.

(v) none of the above.

(b) Let T be a discrete uniformly distributed random variable, T ∼
U [1, 199]. Let X be the number of people, out of the first T
visitors, who give a 100 shekel bill. Then ρ(T,X) ∈
(i) [−1,−0.6].

(ii) (−0.6,−0.2].

(iii) (−0.2, 0.2].

(iv) (0.2, 0.6].

(v) (0.6, 1].

(c) The probability that the cashier will never get a 100 shekel bill
when there is no 50 shekel bill to give as change is

(i) 5/12.

(ii) 1/2.

(iii) 2/3.

(iv) 3/4.

(v) none of the above.
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Solutions

1. (a) Clearly, |Ω| = n!. The event Ai takes place if all balls marked by
the numbers smaller than i are drawn prior to ball number i. By
symmetry, each of the balls 1, 2, . . . , i may be the last to appear
among these balls, whence P (Ai) = 1

i
.

Let us prove this equality also in a more computational way. Sup-
pose that ball number i will be chosen at the j’th drawing for
some i ≤ j ≤ n. Then, out of the j−1 drawings prior to that, the
i − 1 smaller-numbered balls had to be chosen, where the order
matters, yielding

(
j−1
i−1

)
(i − 1)! possibilities. The remaining j − i

drawings will be of arbitrary balls whose numbers are larger than
i, yielding

(
n−i
j−i

)
(j − i)! possibilities. The rest of the balls pro-

vide (n−j)! possibilities. Therefore, by the product principle, the
required probability is

P (Ai) =
n∑

j=i

(
j−1
i−1

)
(i− 1)! ·

(
n−i
j−i

)
(j − i)! · (n− j)!

n!

=
n∑

j=i

(n− i)!(j − 1)!

n!(j − i)!
=

(n− i)!(i− 1)!

n!

n∑
j=i

(
j − 1

i− 1

)

=
(n− i)!(i− 1)!

n!

n−1∑
j=i−1

(
j

i− 1

)
.

(1)

Recall that
n−1∑

j=i−1

(
j

i− 1

)
=

(
n

i

)
. (2)

Now, substituting (2) into (1), we obtain:

P (Ai) =
(n− i)!(i− 1)!

n!

(
n

i

)
=

1

i
, 1 ≤ i ≤ n.

Thus, (iii) is true.
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(b) Obviously X1 ∼ U [1, n], and therefore V (X1) = (n2 − 1)/12.
Thus, (iv) is true.

(c) By the law of total probability we obtain:

P (X2 = k) =
n∑

i=1

P (X2 = k|X1 = i)P (X1 = i)

=
1

n

n−k∑
i=1

P (X2 = k|X1 = i).

Since, X2|X1=i ∼ U [1, n− i] we have:

P (X2 = k) =
1

n

n−k∑
i=1

1

n− i
=

1

n

n−1∑
r=k

1

r
.

Thus, (ii) is true.

(d) The event X1 = n−2 means that only two balls remain un the urn
after stage 1. The event T = 2 occurs in this case if the (n− 1)-st
drawing is of the ball marked by the larger of the two remaining
numbers, and the event T = 3 − if the (n − 1)-st drawing is of
the ball marked by the smaller of the numbers.

Hence T |X1=n−2 ∼ U [2, 3], and in particular E(T |X1=n−2) = 5/2.
Thus, (ii) is true.

(e) For each i, 1 ≤ i ≤ n, define a random variable Yi by:

Yi =

{
1, Ai will take place,
0, otherwise.

In these terms,
T = Y1 + Y2 + . . .+ Yn.

Therefore

E(T ) =
n∑

i=1

E(Yi) =
n∑

i=1

P (Ai) =
n∑

i=1

1

i
≈ lnn,

which converges to ∞ for n→∞. However,
E(T )

n
≈ lnn

n
−→
n→∞

0.

Thus, (iii) is true.
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2. (a) Obviously Z ∼ B(1000, 0.75) and Y = 1000 − Z. Therefore, the
required probability is

P (Z − Y = 200) = P (2Z − 1000 = 200) = P (Z = 600)

=

(
1000

600

)(
3

4

)600(
1

4

)400

=

(
1000

600

)
· 3600

41000
.

Thus, (iii) is true.

(b) First, note that since T ∼ U [1, 199], we have E(T ) = 100 and
V (T ) = 1992−1

12
. Moreover, obviously X|T ∼ B(T, 1/4) and in

particular E(X|T ) = T/4 and E(X2|T ) = V (X|T ) + E2(X|T ) =
3/16 · T + 1/16 · T 2.
Therefore,

E(X) = E(E(X|T )) = E(T/4) = 1/4 · E(T ) = 25,

and

V (X) = E(X2)− E2(X) = E(E(X2|T ))− E2(X)
= 3/16 · E(T ) + 1/16 · E(T 2)− E2(X),
= 3/16 · E(T ) + 1/16 · E(T 2)− 1/16 · E2(T )
= 3/16 · E(T ) + 1/16 · V (T ).

Thus:

Cov(X,T ) = E(X · T )− E(X)E(T )
= E(E(X · T |T ))− E(X)E(T )
= E(T · T/4)− E(X)E(T )
= 1/4 · E(T 2)− E(X)E(T )
= 1/4 · (V (T ) + E2(T ))− 1/4 · E(T )E(T ) = V (T )/4.

Therefore

ρ(X,T ) =
Cov(X,T )√
V (T ) · V (X)

=
1/4 · V (T )√

V (T ) · (3/16 · E(T ) + 1/16 · V (T ))

=
V (T )√

V 2(T ) + 300V (T )

=
1√

1 + 300
V (T )

=

√
11

12
.
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Thus, (v) is true.

(c) The problem is equivalent to that of the drunkard walk, where the
probability of moving right is p = 3/4, and the question is about
the probability of the drunkard to never get to the left of his home.
Hence the required probability is 1− 1−p

p
= 1− 1/3 = 2/3.

Thus, (iii) is true.
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