Final \#1 - Part II

Solutions - Questions 3 and 4

3. (a) Obviously,

$$
E(Y)=E\left(Z_{1}^{2}\right)=V\left(Z_{1}\right)+E^{2}\left(Z_{1}\right)=1
$$

Therefore

$$
P(Y \geq a) \leq \frac{E(Y)}{a}=\frac{1}{a} \leq \frac{1}{100}
$$

which yields $a \geq 100$.
Thus, (iv) is true.
(b) Clearly, $F_{Y}(t)=0$ for $t<0$. For $t \geq 0$ we have:

$$
\begin{aligned}
F_{Y}(t) & =P(Y \leq t)=P\left(Z_{1}^{2} \leq t\right) \\
& =P\left(-\sqrt{t} \leq Z_{1} \leq \sqrt{t}\right) \\
& =\Phi(\sqrt{t})-\Phi(-\sqrt{t}) \\
& =2 \Phi(\sqrt{t})-1
\end{aligned}
$$

Therefore the density function of Y is

$$
f_{Y}(t)=\left(F_{Y}(t)\right)^{\prime}=2 f_{Z_{1}}(\sqrt{t}) \cdot \frac{1}{2 \sqrt{t}}=\frac{1}{\sqrt{2 \pi}} t^{-1 / 2} e^{-t / 2}, \quad t \geq 0,
$$

and 0 otherwise. Hence $Y \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$.
Thus, (i) is true.
(c) We have $T \sim N(0,100)$, so that $E\left(T^{2}\right)=V(T)=100$.

Thus, (i) is true.
(d)

$$
\begin{aligned}
P\left(T^{2} \leq 100\right) & =P(-10 \leq T \leq 10) \\
& =P\left(-1 \leq \frac{T-0}{10} \leq 1\right) \\
& =\Phi(1)-\Phi(-1)=2 \Phi(1)-1=0.6826 .
\end{aligned}
$$

Thus, (iii) is true.
(e)

$$
\begin{aligned}
F_{S}(0) & =P\left(W \leq 0, Z_{3}^{3} \leq 0\right) \\
& =P(W \leq 0) \cdot P\left(Z_{3}^{3} \leq 0\right) \\
& =(1-P(W>0)) \cdot P\left(Z_{3} \leq 0\right) \\
& =\left(1-P\left(Z_{1}>0, Z_{2}>0\right)\right) \cdot P\left(Z_{3} \leq 0\right) \\
& =\left(1-P\left(Z_{1}>0\right) \cdot P\left(Z_{2}>0\right)\right) \cdot P\left(Z_{3} \leq 0\right) \\
& =\left(1-(1-\Phi(0))^{2}\right) \cdot \Phi(0) \\
& =(1-1 / 4) \cdot 1 / 2=3 / 8
\end{aligned}
$$

Thus, (iv) is true.
4. First, note that (X, Y) is uniformly distributed in the trapezoid $T=\{-1 \leq x \leq 2,0 \leq y \leq 1, y \leq 2-x\}$. Therefore, various calculations can be done also geometrically. For example,

$$
c=\frac{1}{\operatorname{area}(\mathrm{~T})}=\frac{1}{(3+2) / 2 \cdot 1}=\frac{2}{5} .
$$

(a)

$$
\begin{aligned}
P(X+Y \leq 1 \mid X-Y \geq 0) & =\frac{P(X+Y \leq 1, X-Y \geq 0)}{P(X-Y \geq 0)} \\
& =\frac{P(Y \leq 1-X, Y \leq X)}{P(Y \leq X)}
\end{aligned}
$$

Obviously,

$$
T_{1}=\{0 \leq x \leq 1,0 \leq y \leq 0.5, y \leq 1-x, y \leq x\}
$$

and

$$
T_{2}=\{0 \leq x \leq 2,0 \leq y \leq 1, y \leq x, y \leq 2-x\},
$$

are triangles, and

$$
\frac{P(Y \leq 1-X, Y \leq X)}{P(Y \leq X)}=\frac{c \cdot \operatorname{area}\left(\mathrm{~T}_{1}\right)}{c \cdot \operatorname{area}\left(\mathrm{~T}_{2}\right)}=\frac{1 \cdot 0.5 \cdot 0.5}{2 \cdot 1 \cdot 0.5}=\frac{1}{4} .
$$

Therefore:

$$
P(X+Y \leq 1 \mid X-Y \geq 0)=\frac{1}{4} .
$$

Thus, (iii) is true.
(b) Obviously, X and Y are not independent. Moreover, the large values of X correspond to the small values of Y, and therefore it is intuitively clear that the covariance between X and Y should be negative. However, the explicit calculations provided here support the intuition. The marginal density functions of X is

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& = \begin{cases}c \int_{0}^{1} d y, & -1 \leq x \leq 1, \\
c \int_{0}^{2-x} d y, & 1<x \leq 2, \\
0, & \text { otherwise },\end{cases} \\
& = \begin{cases}c, & -1 \leq x \leq 1, \\
c(2-x), & 1<x \leq 2, \\
0, & \text { otherwise },\end{cases}
\end{aligned}
$$

and that of Y is similarly

$$
f_{Y}(y)=\left\{\begin{array}{ll}
c \int_{-1}^{2-y} d x, & 0 \leq y \leq 1, \\
0, & \text { otherwise }
\end{array}= \begin{cases}c(3-y), & 0 \leq y \leq 1 \\
0, & \text { otherwise }\end{cases}\right.
$$

Therefore

$$
\begin{gathered}
E(X)=c \int_{-1}^{1} x d x+c \int_{1}^{2} x(2-x) d x=\frac{2}{3} c=\frac{4}{15}, \\
E(Y)=c \int_{0}^{1} y(3-y) d y=\frac{7}{6} c=\frac{14}{30}
\end{gathered}
$$

and

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y \\
& =c \int_{0}^{1} y \int_{-1}^{2-y} x d x d y \\
& =\frac{c}{2} \int_{0}^{1} y\left((2-y)^{2}-1\right) d y \\
& =\frac{c}{2} \int_{0}^{1} y\left(3-4 y+y^{2}\right) d y \\
& =\frac{c}{2}\left(\frac{3}{2}-\frac{4}{3}+\frac{1}{4}\right)=\frac{5}{24} c .
\end{aligned}
$$

Finally
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{5}{24} c-\frac{2}{3} c \cdot \frac{7}{6} c=c\left(\frac{5}{24}-\frac{28}{90}\right)<0$.
Thus, (iv) is true.
(c)

$$
E\left(X^{2}\right)=c \int_{-1}^{1} x^{2} d x+c \int_{1}^{2} x^{2}(2-x) d x=\frac{19}{12} c .
$$

Therefore:

$$
V(X)=E\left(X^{2}\right)-E^{2}(X)=\frac{19}{12} c-\left(\frac{2}{3} c\right)^{2}=\frac{19}{12} c-\frac{4}{9} c^{2} .
$$

Thus, (i) is true.
(d) For an arbitrary $0 \leq t \leq 1$:

$$
P(\min (X, Y) \leq t)=1-P(\min (X, Y)>t)=1-P(X>t, Y>t) .
$$

Denote by T_{3} the trapezoid

$$
T_{3}=\{t \leq x \leq 2-t, t \leq y \leq 1, y \leq 2-x\} .
$$

Clearly
$P(X>t, Y>t)=c \cdot$ area $\left(T_{3}\right)=c \cdot \frac{2-t-t+1-t}{2} \cdot(1-t)=\frac{3}{5}(1-t)^{2}$.
Therefore:

$$
P(\min (X, Y) \leq t)=1-\frac{3}{5}(1-t)^{2} .
$$

Thus, (iv) is true.

