Final \#1 - Part I

Mark the correct answer in each part of the following questions.

1. A two-stage experiment is performed. At the first stage, a coin is tossed repeatedly until it shows a head for the first time. Suppose the number of tosses at the first stage has been k for some positive integer k. Then, at the second stage, we use k coins. Each of these coins is tossed repeatedly until it shows a head for the first time. Let X be the number of tosses at the first stage and Y the number of tosses at the second. (For example, suppose at the first stage the coin showed a tail in the first 5 tosses and a head in the sixth. At the second stage, the first coin showed a head in the first toss, the second, third, fourth and fifth coins showed a head for the first time in the second toss each, and the sixth coin showed a head for the first time in the one hundredth toss. Then $X=6$ and $Y=109$.)
(a) The conditional distribution of Y given X is:
(i) uniform.
(ii) binomial.
(iii) negative binomial.
(iv) Poissonian.
(v) none of the above.
(b) $E(Y \mid X=x)=$
(i) x.
(ii) $2 x$.
(iii) 2^{x-1}.
(iv) 2^{x}.
(v) none of the above.
(c) $P(X=1 \mid Y=2)=$
(i) $1 / 6$.
(ii) $1 / 3$.
(iii) $1 / 2$.
(iv) $2 / 3$.
(v) none of the above.
(d) $P(Y=X)=$
(i) $1 / 6$.
(ii) $1 / 3$.
(iii) $1 / 2$.
(iv) $2 / 3$.
(v) none of the above.
(e) For each positive integer j we have $P(Y=j)=$
(i) $3^{j-1} / 4^{j+1}$.
(ii) $3^{j} / 4^{j+1}$.
(iii) $3^{j-1} / 4^{j}$.
(iv) $3^{j} / 4^{j}$.
(v) none of the above.
(f) Suppose now that the two-stage experiment is performed n times. Let Y_{i} be the number of tosses at the second stage of the i-th experiment, $1 \leq i \leq n$. For sufficiently large n have $P\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i} \leq 4\right) \approx$
(i) 0.25 .
(ii) 0.5 .
(iii) 0.75 .
(iv) 0.95 .
(v) none of the above.
2. Reuven and Shimon play the following n-stage game. At each stage a continuous roulette is turned, which gives a number (uniformly distributed) between 0 and 1 . Denote by x_{k} the number thus obtained
at the k-th stage, $k=1,2, \ldots, n$. At each stage k, if $x_{k}>x_{i}$ for $i=1,2, \ldots, k-1$, then Reuven gets from Shimon 1 shekel, while if $x_{k}<x_{k-1}<\ldots<x_{2}<x_{1}$, then Shimon gets from Reuven 2^{k} shekels. Let R_{n} denote the total amount received by Reuven and S_{n} be the total amount received by Shimon. (For example, suppose $n=10, x_{k}=$ $1 /(k+1)$ for $1 \leq k \leq 5, x_{6}=0.6, x_{7}=0.7, x_{8}=0.1, x_{9}=0.2$, and $x_{10}=0.9$. Then Reuven gets 1 shekel at each of the stages $1,6,7$, and 10 , so that $R_{10}=4$ shekels. Shimon gets in this case 2^{k} shekel at each stage k for of the first 5 stages, and nothing later, so that $S_{10}=2+4+8+16+32=62$.
(a) For all sufficiently large n we have $P\left(S_{n}=2+2^{2}+\ldots+2^{n}=\right.$ $\left.2^{n+1}-2 \mid R_{n}=1\right)=$
(i) $1 / n$!.
(ii) $2 / n$!.
(iii) $2^{n} / n$!.
(iv) $1 / n$.
(v) none of the above.
(b) $E\left(R_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}$
(i) $e-1$.
(ii) e.
(iii) e^{2}.
(iv) ∞.
(v) none of the above.
(c) $E\left(S_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}$
(i) e.
(ii) $e+1$.
(iii) $e^{2}-1$.
(iv) ∞.
(v) none of the above.

Solutions

1. (a) Let "success" be the event whereby a coin shows a head in a toss. If $X=x$ for some positive integer x, then the number of tosses at the second stage is the total number of tosses till x-th success (including). Clearly, the tosses are independent. Therefore, the conditional distribution of Y given $X=x$ fits the model of the negative binomial distribution. Namely, $\left.Y\right|_{X=x} \sim \bar{B}(x, 0.5)$.
Thus, (iii) is true.
(b) Since $\left.Y\right|_{X=x} \sim \bar{B}(x, 0.5)$,

$$
E(Y \mid X=x)=\frac{x}{0.5}=2 x
$$

Thus, (ii) is true.
(c) The required probability is

$$
\begin{aligned}
P(X=1 \mid Y=2) & =\frac{P(X=1, Y=2)}{P(Y=2)} \\
& =\frac{P(X=1) \cdot P(Y=2 \mid X=1)}{\sum_{i=1}^{\infty} P(X=i) \cdot P(Y=2 \mid X=i)} \\
& =\frac{P(X=1) \cdot P(Y=2 \mid X=1)}{\sum_{i=1}^{2} P(X=i) \cdot P(Y=2 \mid X=i)}
\end{aligned}
$$

Obviously, $X \sim G(0.5)$. As mentioned above, $\left.Y\right|_{X=x} \sim \bar{B}(x, 0.5)$, and therefore:

$$
P(X=1 \mid Y=2)=\frac{0.5 \cdot 0.5^{2}}{0.5 \cdot 0.5^{2}+0.5^{2} \cdot 0.5^{2}}=\frac{2}{3}
$$

Thus, (iv) is true.
(d) The required probability is

$$
\begin{aligned}
P(X=Y) & =\sum_{r=1}^{\infty} P(X=r) \cdot P(Y=r \mid X=r) \\
& =\sum_{r=1}^{\infty} 0.5^{r} \cdot 0.5^{r} \\
& =\sum_{r=1}^{\infty} 0.25^{r}=\frac{1}{3} .
\end{aligned}
$$

Thus, (ii) is true.
(e) For each integer $j \geq 1$ we have

$$
\begin{aligned}
P(Y=j) & =\sum_{r=1}^{\infty} P(X=r) \cdot P(Y=j \mid X=r) \\
& =\sum_{r=1}^{\infty} 0.5^{r} \cdot\binom{j-1}{r-1} 0.5^{r} \cdot 0.5^{j-r} \\
& =0.5^{j+1} \sum_{r=1}^{j}\binom{j-1}{r-1} 0.5^{r-1} \\
& =0.5^{j+1}(0.5+1)^{j-1}=\frac{3^{j-1}}{4^{j}}
\end{aligned}
$$

Thus, (iii) is true.
(f) The variables $Y_{i}, \quad 1 \leq i \leq n$ are independent. By the previous part, $Y_{i} \sim G\left(\frac{1}{4}\right), 1 \leq i \leq n$, and hence $\mu=E\left(Y_{i}\right)=4$ and $\sigma^{2}=V\left(Y_{i}\right)=\frac{1-1 / 4}{(1 / 4)^{2}}=12$. Therefore:

$$
\begin{aligned}
P\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i} \leq 4\right) & =P\left(\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma / \sqrt{n}} \leq \frac{4-\mu}{\sigma / \sqrt{n}}\right) \\
& =P\left(\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma / \sqrt{n}} \leq 0\right)
\end{aligned}
$$

For sufficiently large n, by the Central Limit Theorem we obtain:

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i} \leq 4\right) \approx \Phi(0)=0.5
$$

Thus, (ii) is true.
2. (a) The required probability is

$$
\begin{aligned}
P\left(S_{n}=2^{n+1}-2 \mid R_{n}=1\right) & =\frac{P\left(S_{n}=2^{n+1}-2, R_{n}=1\right)}{P\left(R_{n}=1\right)} \\
& =\frac{P\left(S_{n}=2^{n+1}-2\right)}{P\left(R_{n}=1\right)} \\
& =\frac{P\left(x_{n}<x_{n-1}<\ldots<x_{1}\right)}{P\left(x_{1}>x_{2}, x_{3}, \ldots, x_{n}\right)} \\
& =\frac{\frac{1}{n!}}{\frac{(n-1)!}{n!}}=\frac{1}{(n-1)!} .
\end{aligned}
$$

Thus, (v) is true.
(b) For each stage k of the game $1 \leq k \leq n$, define a random variable Y_{k} by:
$Y_{1} \equiv 1, \quad Y_{k}=\left\{\begin{array}{ll}1, & x_{k}>x_{i} 1 \leq i \leq k-1, \\ 0, & \text { otherwise. }\end{array} \quad 2 \leq k \leq n\right.$.
Clearly, $Y_{k} \sim B\left(1, \frac{1}{k}\right)$. In these terms,

$$
R_{n}=Y_{1}+Y_{2}+\ldots+Y_{n}
$$

Therefore

$$
E\left(R_{n}\right)=\sum_{k=1}^{n} \frac{1}{k} \underset{n \rightarrow \infty}{\longrightarrow} \infty
$$

Thus, (iv) is true.
(c) Similarly, for each stage $k, 1 \leq k \leq n$, define a random variable T_{k} by:
$T_{1} \equiv 2, \quad T_{k}=\left\{\begin{array}{ll}2^{k}, & x_{k}<x_{k-1}<\ldots<x_{1}, \\ 0, & \text { otherwise. }\end{array} \quad 2 \leq k \leq n\right.$.
Clearly, $P\left(T_{k}=2^{k}\right)=\frac{1}{k!}$ for $1 \leq k \leq n$, . In these terms,

$$
S_{n}=T_{1}+T_{2}+\ldots+T_{n}
$$

Therefore

$$
E\left(T_{n}\right)=\sum_{k=1}^{n} 2^{k} \cdot \frac{1}{k!} \underset{n \rightarrow \infty}{\longrightarrow} \sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{k!}=e^{2}-1 .
$$

Thus, (iii) is true.

