Final #1 – Part I

Mark the correct answer in each part of the following questions.

1. A two-stage experiment is performed. At the first stage, a coin is tossed repeatedly until it shows a head for the first time. Suppose the number of tosses at the first stage has been k for some positive integer k. Then, at the second stage, we use k coins. Each of these coins is tossed repeatedly until it shows a head for the first time. Let X be the number of tosses at the first stage and Y the number of tosses at the second. (For example, suppose at the first stage the coin showed a tail in the first 5 tosses and a head in the sixth. At the second stage, the first coin showed a head in the first toss, the second, third, fourth and fifth coins showed a head for the first time in the second toss each, and the sixth coin showed a head for the first time in the one hundredth toss. Then X = 6 and Y = 109.)

(a) The conditional distribution of Y given X is:

- (i) uniform.
 - (ii) binomial.
 - (iii) negative binomial.
 - (iv) Poissonian.
 - (v) none of the above.

(b)
$$E(Y|X = x) =$$

(i) x.
(ii) 2x.
(iii) 2^{x-1} .

(iv) 2^x .

(v) none of the above.

(c)
$$P(X = 1|Y = 2) =$$

(i) 1/6.
(ii) 1/3.
(iii) 1/2.
(iv) 2/3.
(v) none of the above.
(d) $P(Y = X) =$
(i) 1/6.
(ii) 1/3.
(iii) 1/2.
(iv) 2/3.
(v) none of the above.
(e) For each positive integer j we have $P(Y = j) =$
(i) $3^{j-1}/4^{j+1}$.
(ii) $3^j/4^{j+1}$.

- (iii) $3^{j-1}/4^j$.
- (iv) $3^{j}/4^{j}$.
- (v) none of the above.
- (f) Suppose now that the two-stage experiment is performed n times. Let Y_i be the number of tosses at the second stage of the *i*-th experiment, $1 \le i \le n$. For sufficiently large n have $P(\frac{1}{n}\sum_{i=1}^{n}Y_i \le 4) \approx$
 - (i) 0.25.
 - (ii) 0.5.
 - (iii) 0.75.
 - (iv) 0.95.
 - (v) none of the above.
- 2. Reuven and Shimon play the following *n*-stage game. At each stage a continuous roulette is turned, which gives a number (uniformly distributed) between 0 and 1. Denote by x_k the number thus obtained

at the k-th stage, k = 1, 2, ..., n. At each stage k, if $x_k > x_i$ for i = 1, 2, ..., k - 1, then Reuven gets from Shimon 1 shekel, while if $x_k < x_{k-1} < ... < x_2 < x_1$, then Shimon gets from Reuven 2^k shekels. Let R_n denote the total amount received by Reuven and S_n be the total amount received by Shimon. (For example, suppose $n = 10, x_k = 1/(k+1)$ for $1 \le k \le 5$, $x_6 = 0.6$, $x_7 = 0.7, x_8 = 0.1, x_9 = 0.2$, and $x_{10} = 0.9$. Then Reuven gets 1 shekel at each of the stages 1, 6, 7, and 10, so that $R_{10} = 4$ shekels. Shimon gets in this case 2^k shekel at each stage k for of the first 5 stages, and nothing later, so that $S_{10} = 2 + 4 + 8 + 16 + 32 = 62$.

- (a) For all sufficiently large *n* we have $P(S_n = 2 + 2^2 + ... + 2^n = 2^{n+1} 2|R_n = 1) =$
- (i) 1/n!. (ii) 2/n!. (iii) $2^n/n!$. (iv) 1/n. (v) none of the above. (b) $E(R_n) \xrightarrow[n \to \infty]{}$ (i) e - 1. (ii) e. (iii) e^2 . (iv) ∞ . (v) none of the above. (c) $E(S_n) \xrightarrow[n \to \infty]{}$ (i) *e*. (ii) e + 1. (iii) $e^2 - 1$. (iv) ∞ .
 - (v) none of the above.

Solutions

- 1. (a) Let "success" be the event whereby a coin shows a head in a toss. If X = x for some positive integer x, then the number of tosses at the second stage is the total number of tosses till x-th success (including). Clearly, the tosses are independent. Therefore, the conditional distribution of Y given X = x fits the model of the negative binomial distribution. Namely, $Y|_{X=x} \sim \overline{B}(x, 0.5)$. Thus, (iii) is true.
 - (b) Since $Y|_{X=x} \sim \overline{B}(x, 0.5)$,

$$E(Y|X = x) = \frac{x}{0.5} = 2x.$$

Thus, (ii) is true.

(c) The required probability is

$$P(X = 1|Y = 2) = \frac{P(X = 1, Y = 2)}{P(Y = 2)}$$
$$= \frac{P(X = 1) \cdot P(Y = 2|X = 1)}{\sum_{i=1}^{\infty} P(X = i) \cdot P(Y = 2|X = i)}$$
$$= \frac{P(X = 1) \cdot P(Y = 2|X = 1)}{\sum_{i=1}^{2} P(X = i) \cdot P(Y = 2|X = i)}.$$

Obviously, $X \sim G(0.5)$. As mentioned above, $Y|_{X=x} \sim \overline{B}(x, 0.5)$, and therefore:

$$P(X = 1 | Y = 2) = \frac{0.5 \cdot 0.5^2}{0.5 \cdot 0.5^2 + 0.5^2 \cdot 0.5^2} = \frac{2}{3}.$$

Thus, (iv) is true.

(d) The required probability is

$$P(X = Y) = \sum_{r=1}^{\infty} P(X = r) \cdot P(Y = r | X = r)$$
$$= \sum_{r=1}^{\infty} 0.5^r \cdot 0.5^r$$
$$= \sum_{r=1}^{\infty} 0.25^r = \frac{1}{3}.$$

Thus, (ii) is true.

(e) For each integer $j \ge 1$ we have

$$P(Y = j) = \sum_{r=1}^{\infty} P(X = r) \cdot P(Y = j | X = r)$$
$$= \sum_{r=1}^{\infty} 0.5^{r} \cdot {\binom{j-1}{r-1}} 0.5^{r} \cdot 0.5^{j-r}$$
$$= 0.5^{j+1} \sum_{r=1}^{j} {\binom{j-1}{r-1}} 0.5^{r-1}$$
$$= 0.5^{j+1} (0.5+1)^{j-1} = \frac{3^{j-1}}{4^{j}}.$$

Thus, (iii) is true.

(f) The variables Y_i , $1 \le i \le n$ are independent. By the previous part, $Y_i \sim G\left(\frac{1}{4}\right)$, $1 \le i \le n$, and hence $\mu = E(Y_i) = 4$ and $\sigma^2 = V(Y_i) = \frac{1-1/4}{(1/4)^2} = 12$. Therefore:

$$P\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\leq4\right) = P\left(\frac{\frac{1}{n}\sum_{i=1}^{n}Y_{i}-\mu}{\sigma/\sqrt{n}}\leq\frac{4-\mu}{\sigma/\sqrt{n}}\right)$$
$$= P\left(\frac{\frac{1}{n}\sum_{i=1}^{n}Y_{i}-\mu}{\sigma/\sqrt{n}}\leq0\right).$$

For sufficiently large n, by the Central Limit Theorem we obtain:

$$P\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\leq 4\right) \approx \Phi(0)=0.5.$$

Thus, (ii) is true.

2. (a) The required probability is

$$P(S_n = 2^{n+1} - 2|R_n = 1) = \frac{P(S_n = 2^{n+1} - 2, R_n = 1)}{P(R_n = 1)}$$
$$= \frac{P(S_n = 2^{n+1} - 2)}{P(R_n = 1)}$$
$$= \frac{P(x_n < x_{n-1} < \dots < x_1)}{P(x_1 > x_2, x_3, \dots, x_n)}$$
$$= \frac{\frac{1}{n!}}{\frac{(n-1)!}{n!}} = \frac{1}{(n-1)!}.$$

Thus, (v) is true.

(b) For each stage k of the game $1 \leq k \leq n,$ define a random variable Y_k by:

$$Y_1 \equiv 1, \qquad Y_k = \begin{cases} 1, & x_k > x_i \ 1 \le i \le k-1, \\ 0, & \text{otherwise.} \end{cases} \qquad 2 \le k \le n.$$

Clearly, $Y_k \sim B(1, \frac{1}{k})$. In these terms,

$$R_n = Y_1 + Y_2 + \ldots + Y_n.$$

Therefore

$$E(R_n) = \sum_{k=1}^n \frac{1}{k} \xrightarrow[n \to \infty]{} \infty.$$

Thus, (iv) is true.

(c) Similarly, for each stage $k, \ 1 \leq k \leq n,$ define a random variable T_k by:

$$T_1 \equiv 2, \qquad T_k = \begin{cases} 2^k, \qquad x_k < x_{k-1} < \ldots < x_1, \\ 0, \qquad \text{otherwise.} \end{cases} \qquad 2 \le k \le n.$$

Clearly, $P(T_k=2^k)=\frac{1}{k!}$ for $1\leq k\leq n,$. In these terms,

$$S_n = T_1 + T_2 + \ldots + T_n.$$

Therefore

$$E(T_n) = \sum_{k=1}^n 2^k \cdot \frac{1}{k!} \xrightarrow[n \to \infty]{} \sum_{k=1}^\infty 2^k \cdot \frac{1}{k!} = e^2 - 1.$$

Thus, (iii) is true.