
Final #2

Mark the correct answer in each part of the following questions.

1. We toss a coin over and over until it shows a head for the first time.
At each stage we also select a random number (uniformly distributed)
between 0 and 1. Consider the sequence of random numbers thus ob-
tained.

(a) The probability that the sequence is increasing is

(i) 1/3.

(ii) 1/2.

(iii)
√
e− 1.

(iv) ln 2.

(v) none of the above.

(b) The probability that the last number in the sequence is the largest
is

(i) 1/3.

(ii) 1/2.

(iii)
√
e− 1.

(iv) ln 2.

(v) none of the above.

2. Two drunkards – one positively-oriented and the other negatively-
oriented – leave the WWW (Water−→Wine−→Whisky) bar, located
at the origin of the x-axis, at the same time. The positively-oriented
drunkard makes at every second either a step in the positive direction or
in the negative direction, with probabilities 2/3 and 1/3, respectively.
The other moves similarly, but with reversed probabilities.
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(a) The probability that after n seconds the two are at the same point
is

(i)
(
2n
n

)
(1/9)n.

(ii)
(
2n
n

)
(1/8)n.

(iii)
(
2n
n

)
(2/9)n.

(iv)
(
2n
n

)
(1/4)n.

(v) none of the above.

(b) The probability that after 15 minutes the positively-oriented drunk-
ard is at least 640 steps to the right of the negatively-oriented one
lies in the interval:

(i) [0, 0.2).

(ii) [0.2, 0.4).

(iii) [0.4, 0.6).

(iv) [0.6, 0.8).

(v) [0.9, 1].

(c) It is given that after 15 minutes the positively-oriented drunkard
is at the point 200 on the axis. The probability that throughout
his walk he never got to the negative axis is

(i) 201/901.

(ii) 201/551.

(iii) 201/351.

(iv) 201/301.

(v) none of the above.

3. Consider Banach’s matchbox problem.

(a) Suppose that, unlike the version studied in class, the person does
not have the same number of matches in his pockets, but rather
M matches in his right pocket and N in his left. The probability
that, when he realizes one of the pockets is empty, the other pocket
contains exactly k matches is

(i)

((
M +N − k

M

)
+

(
M +N − k

N

))(
1

2

)M+N−k+1

.
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(ii)

((
M +N − k

M

)
+

(
M +N − k

N

))(
1

2

)M+N−k

.

(iii)

((
M +N − k
M + 1

)
+

(
M +N − k
N + 1

))(
1

2

)M+N−k+1

.

(iv)

((
M +N − k
M + 1

)
+

(
M +N − k
N + 1

))(
1

2

)M+N−k

.

(v) none of the above.

(b) Now suppose, as in class, that each pocket contains initially N
matches. However, when he looks for a match, he tries the right
pocket with probability 2/3 and the left one with probability 1/3.
The probability that, when he discovers one of the pockets is
empty, the other pocket contains exactly k matches is

(i)

(
2N − k
N

)
2N+1/32N−k+1.

(ii)

(
2N − k
N

)(
2N+1 + 2N−k

)
/32N−k+1.

(iii)

(
2N − k
N

)(
2N+2 − 2N−k

)
/32N−k+1.

(iv)

(
2N − k
N

)
2N+2/32N−k+1.

(v) None of the above.

(c) Now suppose that the person has three pockets with N matches
in each at the beginning, and he searches each of them with a
probability of 1/3. The probability that, when he discovers one of
the pockets is empty, the other two are empty as well, is

(i)

(
2N

N

)
/32N+1.

(ii)

(
2N

N

)
/32N .

(iii)

(
3N

N,N,N

)
/33N+1.

(iv)

(
3N

N,N,N

)
/33N .

(v) none of the above.
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(d) Now suppose he has two pockets, with an infinite number of
matches in each. Let X be the number of the trial at which he
searches his right pocket for the first time and Y the analogous
quantity for the left pocket. Then ρ(X, Y ) lies in the interval

(i) [−1,−0.6).

(ii) [−0.6,−0.2).

(iii) [−0.2, 0.2).

(iv) [0.2, 0.6).

(v) [0.6, 1].

4. (a) Consider the following four statements:

(A) If X is a discrete uniform random variable, then so is 2X.

(B) If X is a continuous uniform random variable, then so is 2X.

(C) If X is an exponential random variable, then so is 2X.

(D) If X is a normal random variable, then so is 2X.

(i) (B),(C), and (D) are true, but (A) is false.

(ii) Only (D) is true.

(iii) Only (B) and (D) are true.

(iv) All four statements are true.

(v) None of the above.

(b) Consider the following four statements, all relating to a random
variable X that assumes only non-negative values:

(A) If X is memory-less, then so is 2X.

(B) If X is memory-less, then so is X2.

(C) If X ∼ U [0, a], then X is memory-less.

(D) If X ∼ U(0, a), then X is memory-less.

(i) Only (A) is true.

(ii) Only (A) and (B) are true.

(iii) Only (A) and (D) are true.

(iv) (A),(C), and (D) are true, but (B) is false.

(v) None of the above.
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5. Let us say (for the purpose of this question only) that a non-negative
random variable X satisfies Markov’s Inequality if there exists a con-
stant C > 0 such that P (X ≥ a) ≤ C/a for every a > 0. Similarly,
a (not necessarily non-negative) random variable X with expectation
µ satisfies Chebyshev’s Inequality if there exists a constant C > 0 such
that P (|X − µ| ≥ ε) ≤ C/ε2 for every ε > 0.

(a)X1, X2, X3 are random variables with distribution functions F1, F2, F3,
respectively, given by:

F1(x) =

{
1− 1√

x
, x ≥ 1,

0, otherwise,

F2(x) =

{
1− 1

x
, x ≥ 1,

0, otherwise,

F3(x) =

{
1− 1

x2 , x ≥ 1,
0, otherwise.

(i) All three random variables have finite expectations, and in
particular all of them satisfy Markov’s Inequality.

(ii) Out of the three random variables, only X3 has a finite expec-
tation, and it is the only one satisfying Markov’s Inequality.

(iii) Out of the three random variables, only X3 has a finite ex-
pectation, yet X2 also satisfies Markov’s Inequality.

(iv) X2 and X3 have finite expectations. X1 does not have a
finite expectation, nor does it satisfy Markov’s Inequality.

(v) None of the above.

(b) X1, X2, X3 are random variables with density functions f1, f2, f3,
respectively, given by:

f1(x) = θ|x|e−x2

, −∞ < x <∞, (θ > 0),

f2(x) =

{ 1
|x|3 , |x| ≥ 1,

0, otherwise,

f3(x) =

{ 1
|x|5/2 , |x| ≥ 1, (θ > 0),

0, otherwise.

(i) All three random variables satisfy Chebyshev’s Inequality.
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(ii) X1 and X2 satisfy Chebyshev’s Inequality, whereas X3 does
not.

(iii) X2 and X3 satisfy Chebyshev’s Inequality, whereas X1 does
not.

(iv) X1 satisfies Chebyshev’s Inequality, whereas X2 and X3 do
not.

(v) None of the above.

6. The two-dimensional density function of a continuous random variable
(X, Y ) is defined by:

fXY (x, y) =

{
C(3 + 2x− y), −1 ≤ x ≤ 1,−1 ≤ y ≤ 1,
0, otherwise.

(a) C =

(i) 1/24.

(ii) 1/18.

(iii) 1/16.

(iv) 1/12.

(v) none of the above.

(b) P (X > 0|Y < 0) =

(i) 3/7.

(ii) 1/2.

(iii) 4/7.

(iv) 9/14.

(v) none of the above.

(c) P (XY > 0) =

(i) 2C.

(ii) 3C.

(iii) 6C.

(iv) 9C.

(v) none of the above.

(d) ρ(X, Y ) =

(i) −1/
√

299.
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(ii) 0.

(iii)
√

2/299.

(iv) 2/
√

299.

(v) none of the above.

(e) The value of the moment generating function of X at the point 1
is

(i) C(4e+ 4/e).

(ii) C(4e+ 2/e).

(iii) C(6e+ 4/e).

(iv) C(6e+ 2/e).

(v) none of the above.
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Solutions

1. (a) Let X be the number of tosses of the coin until it shows a head
for the first time. Obviously, X ∼ G

(
1
2

)
. Denote by A the event

whereby the sequence of random numbers is increasing. By the
law of total probability:

P (A) =
∞∑
k=1

P (A|X = k) · P (X = k).

Since at each stage we select a random number from the continu-
ous distribution, then the probability of the two (or more) random
numbers being equal is 0. Hence, by symmetry, P (A|X = k) = 1

k!
.

Therefore:

P (A) =
∞∑
k=1

1

k!
·
(

1

2

)k
= e1/2 − 1.

Thus, (iii) is true.

(b) Let X be as in the previous part. Denote by B the event whereby
the last number in the sequence is the largest. By the law of total
probability

P (B) =
∞∑
k=1

P (B|X = k) · P (X = k)

=
∞∑
k=1

1

k
·
(

1

2

)k
= − ln 1/2 = ln 2.

Thus, (iv) is true.

2. (a) Suppose during n seconds the positively-oriented drunkard makes
k steps in the positive direction and n−k in the negative direction.
To arrive at the same point on the x-axis, the negatively-oriented
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drunkard should also make k steps in the positive direction and
n− k in the negative one.

Therefore, denoting by A the event whereby after n seconds the
two will be at the same point:

P (A) =
n∑
k=0

(
n

k

)(
2

3

)k (
1

3

)n−k
·
(
n

k

)(
1

3

)k (
2

3

)n−k
=

(
2

9

)n n∑
k=0

(
n

k

)2

=

(
2

9

)n(
2n

n

)
.

Thus, (iii) is true.

(b) For 1 ≤ i ≤ 900, let Xi = 1 if the i-th step of the positively-
oriented drunkard is in the positive direction and Xi = −1 other-
wise. Let Yi be the analogous random variable for the negatively-
oriented drunkard. Obviously, the variables X1, Y1, . . . , X900, Y900

are independent and

P (Xi = −1) =
1

3
, P (Xi = 1) = 2

3
,

P (Yi = −1) =
2

3
, P (Yi = 1) = 1

3
.

Obviously, for each i we have:

E(Xi) =
1

3
, E(Yi) = −1

3
, V (Xi) = V (Yi) =

8

9
.

Denote by X =
∑900

i=1Xi and Y =
∑900

i=1 Yi the location of the
positively-oriented and the negatively-oriented drunkard, respec-
tively, after 900 seconds. With these notations:

P (X − Y ≥ 640) = P

(
900∑
i=1

(Xi − Yi) ≥ 640

)
.

Clearly, E(X − Y ) =
∑900

i=1(E(Xi) − E(Yi)) = 900 · 2
3

= 600 and

V (X − Y ) =
∑900

i=1(V (Xi) + V (Yi)) = 900 ·
(

8
9

+ 8
9

)
= 1600. Now
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by the Central Limit Theorem:

P (X − Y ≥ 640) = P

(∑900
i=1(Xi − Yi)− 600√

1600
≥ 640− 600√

1600

)
≈ 1− Φ (1)

≈ 0.1587.

Thus, (i) is true.

(c) Let L be event whereby the positively-oriented drunkard never gets
to the negative axis, given that after 900 steps he is located at the
point 200 on the axis. L corresponds to the event considered in the
Ballot Problem, with total number of votes for both candidates
m+ n = 900, while the first candidate obtains m− n = 200 votes
more than the second. Namely, if in the ballot the first candidate
gets m = 550 votes and the second gets n = 350 votes, then the
required probability is the probability that the second candidate
never leads throughout the counting process. Hence the required
probability it is m−n+1

m+1
= 201

551
.

Thus, (ii) is true.

3. (a) Let AL be event whereby the left pocket will be found empty at
the moment when the right one contains exactly k matches. In
this case let us identify a “success” with choosing the left pocket.
Hence AL occurs if and only if exactly M − k failures precede the
(N + 1)-st success. Hence:

P (AL) =

(
M − k +N + 1− 1

M − k

)(
1

2

)M+N−k+1

=

(
M +N − k

N

)(
1

2

)M+N−k+1

.

Similarly, let AR be event whereby the right pocket will be found
empty at the moment when the left one contains exactly k matches.
Now let us identify a “success” with choosing the right pocket.
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Hence AR occurs if and only if exactly N − k failures precede the
(M + 1)-st success. Hence:

P (AR) =

(
N − k +M + 1− 1

N − k

)(
1

2

)M+N−k+1

=

(
M +N − k

M

)(
1

2

)M+N−k+1

.

Therefore, the probability that, when the person realizes one of
the pockets is empty, the other pocket contains exactly k matches,
is

P (AL) + P (AR) =

(
M+N−k

M

)
+
(
M+N−k

N

)
2M+N−k+1

.

Thus, (i) is true.

(b) Let AL and AR be as defined in the previous part. Since M = N :

P (AL) =

(
2N − k
N

)(
1

3

)N+1

·
(

2

3

)N−k
=

(
2N − k
N

)
2N−k

32N−k+1
.

Similarly,

P (AR) =

(
2N − k
N

)(
2

3

)N+1

·
(

1

3

)N−k
=

(
2N − k
N

)
2N+1

32N−k+1
.

Therefore the probability that, when the person realizes one of the
pockets is empty, the other pocket contains exactly k matches, is

P (AL) + P (AR) =

(
2N − k
N

)
2N+1 + 2N−k

32N−k+1
.

Thus, (ii) is true.
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(c) To discover that a pocket is empty, when the other two are empty
as well, the person needs first to do 3N searches, N in each pocket,
and then at the (3N+1)-st search he will in any case find an empty

pocket. Hence the required probability is

(
3N

N,N,N

)
33N

.

Thus, (iv) is true.

(d) Obviously, X ∼ G
(

1
2

)
and Y ∼ G

(
1
2

)
. Therefore

E(X) = E(Y ) = 2

and
V (X) = V (Y ) = 2.

However, X and Y are not independent. In fact, P (X = 1, Y =

1) = 0 and P (X = 1, Y = i) = P (X = i, Y = 1) =
(

1
2

)i
for i > 1,

and P (X = i, Y = j) = 0 for i, j > 1. Hence:

E(X · Y ) = 2
∞∑
i=2

i ·
(

1

2

)i
=

∞∑
i=1

i ·
(

1

2

)i−1

− 1 = 3.

Therefore

ρ(X, Y ) =
E(X · Y )− E(X) · E(Y )√

V (X) · V (Y )
=

3− 2 · 2
2

= −1

2
.

Thus, (ii) is true.

4. (a) Obviously, (A) is wrong. For example, if X ∼ U [0, 1] then P (X =
0) = P (X = 1) = 1

2
, while P (2X = 0) = P (2X = 2) = 1

2
6= 0 =

P (2X = 1), so that 2X is not a discrete uniform random variable.
However, all other parts (B)-(D) are correct. These follows from
the properties of the relevant distributions studied in class.
Thus, (i) is true.
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(b) Part (A) is correct. Indeed, suppose that X is memory-less,
namely, P (X > t+ s|X > t) = P (X > s) for t, s ≥ 0. Therefore:

P (2X > t+ s | 2X > t) = P (X > (t+ s)/2 | X > t/2)

= P (X > s/2)

= P (2X > s) .

Therefore 2X is also memory-less.
However, all other parts (B)-(D) are wrong. In particular, if X ∼
Exp(1) then (as was shown in class) X is memory-less. However,
for arbitrary t, s ≥ 0:

P (X2 > t+ s | X2 > t) =
P (X >

√
t+ s)

P (X >
√
t)

=
e−
√
t+s

e−
√
t

= e−
√
t+s+

√
t

6= e−
√
s

= P (X >
√
s) = P (X2 > s).

Thus, (B) is false.
Now, if X ∼ U [0, a], then, in particular, for t = a − 2 and s = 1
we have:

P (X > a− 1 | X > a− 2) =
P (X > a− 1)

P (X > a− 2)

=
1/(a+ 1)

2/(a+ 2)
=

1

2

6= a− 1

a+ 1
= P (X > 1).

Thus, (C) is also false.
Similarly, if X ∼ U(0, a), then

P (X > 3a/4 | X > a/2) =
1

2
6= 3

4
= P (X > a/4).

Hence, (D) is false too.
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Thus, (i) is true.

5. (a) Note that the density functions f1, f2, f3 of X1, X2, X3, respec-
tively, are given by:

f1(x) =

{
1

2x3/2 , x ≥ 1,
0, otherwise,

f2(x) =

{
1
x2 , x ≥ 1,
0, otherwise,

f3(x) =

{
2
x3 , x ≥ 1,
0, otherwise.

Therefore

E(X1) =

∫ ∞
1

t · 1

2t3/2
dt =

∫ ∞
1

1

2
√
t
dt =∞.

Similarly, E(X2) =∞, while E(X3) =
∫∞

1
2
t2
dt = 2. Moreover,

P (X3 ≥ a) = 1− F3(a) =

{
1
a2 , a ≥ 1,
1, otherwise.

Taking C = 1 we obtain P (X3 ≥ a) ≤ C/a for every a > 0.
Therefore X3 satisfies Markov’s Inequality. Similarly,

P (X2 ≥ a) = 1− F2(a) =

{
1
a
, a ≥ 1,

1, otherwise.

Again, taking C = 1 we obtain P (X2 ≥ a) ≤ C/a for every a > 0.
Therefore, X2 also satisfies Markov’s Inequality. However,

P (X1 ≥ a) = 1− F1(a) =

{ 1√
a
, a ≥ 1,

1, otherwise.

Hence P (X1 ≥ a) ≤ C/a if and only if C ≥
√
a. Therefore, X1

does not satisfy Markov’s Inequality, since there is no constant
C > 0 such that P (X1 ≥ a) ≤ C/a for every a > 0.
Thus, (iii) is true.
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(b) Obviously, all the density functions are even, and there is no prob-
lem with the existence of expectation for each random variable.
Therefore, E(X1) = E(X2) = E(X3) = µ = 0. Moreover, for X1

we have

V (X1) = E(X2
1 ) =

∫ ∞
−∞

x2fX1(x)dx

= 2

∫ ∞
0

x3e−x
2

dx = 2

∫ ∞
0

te−tdt = 1 <∞,

and in particular X1 satisfies Chebyshev’s Inequality.

Now:

P (|X2| ≥ ε) = 2

∫ ∞
ε

1

x3
dx =

1

ε2
.

Therefore, X2 also satisfies Chebyshev’s Inequality with C = 1.
However,

P (|X3| ≥ ε) = 2θ

∫ ∞
ε

1

x5/2
dx =

4θ

3

1

ε1.5
.

Hence P (|X3| ≥ ε) ≤ C/ε2 if and only if C ≥ 4θ
3
·
√
ε. Therefore,

X3 does not satisfy Chebyshev’s Inequality, since there is no con-
stant C > 0 such that the inequality takes place for every ε > 0.
Thus, (ii) is true.

6. (a)

1 =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y)dxdy

=

∫ 1

−1

∫ 1

−1

(3 + 2x− y)dxdy

= C · 12.

Hence C = 1
12

.
Thus, (iv) is true.
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(b)

P (X > 0|Y < 0) =
P (X > 0, Y < 0)

P (Y < 0)

=

C

∫ 0

−1

∫ 1

0

(3 + 2x− y)dxdy

C

∫ 0

−1

∫ 1

−1

(3 + 2x− y)dxdy

=
9

14
.

Thus, (iv) is true.

(c)

P (X · Y > 0) = C

∫ 1

0

∫ 1

0

(3 + 2x− y)dxdy

+ C

∫ 0

−1

∫ 0

−1

(3 + 2x− y)dxdy

= 6C.

Thus, (iii) is true.

(d) The marginal density function X is

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

=

 C
∫ 1

−1
(3 + 2x− y)dy, −1 ≤ x ≤ 1,

0, otherwise,

=


3+2x

6
, −1 ≤ x ≤ 1,

0, otherwise.

Hence

E(X) =

∫ ∞
−∞

xfX(x)dx =

∫ 1

−1

x · 3 + 2x

6
dx =

2

9
,
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and

E(X2) =

∫ 1

−1

x2 · 3 + 2x

6
dx =

1

3
.

Therefore

V (X) = E(X2)− E2(X) =
1

3
−
(

2

9

)2

=
23

81
.

Similarly, one can verify that

fY (y) =

∫ ∞
−∞

fXY (x, y)dx

=


3−y
6
, −1 ≤ y ≤ 1,

0, otherwise,

and E(Y ) = −1
9
, E(Y 2) = 1

3
and V (Y ) = 26

81
.

Moreover, from the previous part one can easily see that the den-
sity function of X ·Y is even on the interval [−1, 1], which implies
that E(X · Y ) = 0. Therefore:

ρ(X, Y ) =
E(X · Y )− E(X) · E(Y )√

V (X) · V (Y )
=

0− 2
9
·
(
−1

9

)√
23
81
· 26

81

=

√
2

299
.

Thus, (iii) is true.

(e)

ψ(1) = E(eX)

=

∫ ∞
−∞

ex · fX(x)dx

=
1

6

(
3

∫ 1

−1

exdx+ 2

∫ 1

−1

exxdx

)
= c

(
6e+

2

e

)
.

Thus, (iv) is true.
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