Final \#2

Mark the correct answer in each part of the following questions.

1. Computer Science students need to decide which of two electives Approximation Algorithms (AA) and Logic Programming (LP) - they take. Each student decides to take or not to take each course independently of other students and of his own choice concerning the other course. The probability that a random student takes AA is 0.3 , while the probability that he takes LP is 0.4 . (Thus, there are four possibilities for each student: a) choose none of the two courses, b) choose only AA, c) choose only LP, and d) choose both courses.)
The students of the department are labeled by numbers from 1 on. For each $k \geq 1$, denote by R_{k} the number of students, out of first k students, taking AA, and by S_{k} the number of those taking only AA. (For example, if students $3,5,8$ take none of the two courses, students $1,2,6$ - only AA, students 7,9 - only LP, and students 4,10 - both, then $R_{5}=3, S_{5}=2, R_{10}=5, S_{10}=3$.)
(a) The random variables R_{1} and S_{1} are:
(i) independent.
(ii) dependent, but uncorrelated.
(iii) correlated with $\left|\rho\left(R_{1}, S_{1}\right)\right|<1$.
(iv) linearly dependent, but not equal.
(v) equal.
(b) $\rho\left(R_{20}, S_{30}\right) \approx$
(i) 0 .
(ii) 0.24 .
(iii) 0.33 .
(iv) 0.58 .
(v) None of the above.
(c) The value of k, for which the probability $P\left(S_{20}=k\right)$ is maximal, is:
(i) 3 .
(ii) 4 .
(iii) 5 .
(iv) 6 .
(v) None of the above.
(d) $P\left(R_{5}<2 \mid S_{5}<2\right) \approx$
(i) 0.5 .
(ii) 0.679 .
(iii) 0.7 .
(iv) 0.932 .
(v) None of the above.
(e) A direct application of Markov's inequality shows that the inequality $P\left(S_{20} \geq a\right) \leq 0.05$ holds for $a \geq$
(i) 63 .
(ii) 72 .
(iii) 81 .
(iv) 90 .
(v) None of the above.

Remark: We mean here the best bound that can be obtained by Markov's inequality. For example, if Markov's inequality implies that inequality $P\left(S_{20} \geq a\right) \leq 0.05$ is true for $a \geq 63$, then it is evidently true for $a \geq 72, a \geq 81$ and $a \geq 90$, but only (i) should be marked as the correct answer.
2. A gambler participates in a 2 -stage game. At the first stage, he tosses a die till the result 4 is obtained for the first time. Let X be the number of his tosses at this stage. If $X=k$, then at the second stage the gambler tosses a coin k times. Let Y be the number of heads obtained during these k coin tosses.
(a) $E(Y)=$
(i) 2.1 .
(ii) 3 .
(iii) 4.25 .
(iv) 5 .
(v) None of the above.
(b) $V(Y)=$
(i) 6 .
(ii) 7 .
(iii) 8 .
(iv) 9 .
(v) None of the above.
(c) $\operatorname{Cov}(X, Y)=$
(i) 14 .
(ii) 15 .
(iii) 16 .
(iv) 17 .
(v) None of the above.
(d) $P(X=5 \mid Y=3)=$
(i) 0.2 .
(ii) 0.3 .
(iii) 0.45 .
(iv) 0.6.
(v) None of the above.
(e) The value of the moment generating function $\psi_{Y}(t)$ at the point $t=\ln (6 / 5)$ is
(i) 1.3 .
(ii) 2.2 .
(iii) 3.5 .
(iv) 4.1.
(v) None of the above.
3. In the Knesset there are 900 phones. Let X_{i} be the waiting time until the next call to be received at the i-th phone, $i=1,2, \ldots, 900$. The X_{i} 's are independent and $X_{i} \sim \operatorname{Exp}(1)$ for each i. Denote $S_{n}=\sum_{i=1}^{n} X_{i}, \quad n=$ $1,2, \ldots, 900$.
(a) $\rho\left(X_{1} X_{2}, S_{2}\right)=$
(i) $-\sqrt{\frac{3}{5}}$.
(ii) $-\sqrt{\frac{1}{3}}$.
(iii) $\sqrt{\frac{1}{5}}$.
(iv) $\sqrt{\frac{2}{3}}$.
(v) None of the above.
(b) For $s>0$ we have $f_{S_{2}}(s)=$
(i) $2 e^{-2 s}$.
(ii) $s e^{-2 s}$.
(iii) $2 e^{-s}$.
(iv) $s e^{-s}$.
(v) None of the above.
(c) $P\left(X_{1} \geq 1 \mid X_{2} \leq X_{1}\right)=$
(i) $\frac{1}{e}-\frac{1}{e^{2}}$.
(ii) $\frac{1}{e}-\frac{1}{2 e^{2}}$.
(iii) $\frac{2}{e}-\frac{1}{2 e^{2}}$.
(iv) $\frac{2}{e}-\frac{1}{e^{2}}$.
(v) None of the above.
(d) A direct application of Chebyshev's inequality yeilds $P\left(810 \leq S_{900} \leq 990\right) \geq$
(i) $23 / 27$.
(ii) $24 / 27$.
(iii) $25 / 27$.
(iv) $26 / 27$.
(v) None of the above.

Remark: We mean here the best bound that can be obtained by Chebyshev's inequality. For example, if Chebyshev's inequality implies that the above probability is at most $26 / 27$, hence it is also at most $25 / 27$, and ($24 / 27$, and $23 / 27$), but only (iv) should be marked as the correct answer.
(e) A direct application of the Central Limit Theorem implies $P\left(810 \leq S_{900} \leq 990\right) \approx$
(i) 0.8889 .
(ii) 0.9234 .
(iii) 0.9561 .
(iv) 0.9974 .
(v) None of the above.

Solutions

1. (a)-(b) Define the random variables

$$
X_{i}= \begin{cases}1, & \text { the } i \text {-th student takes AA, } \\ 0, & \text { otherwise },\end{cases}
$$

and

$$
Y_{i}= \begin{cases}1, & \text { the } i \text {-th student takes only AA } \\ 0, & \text { otherwise }\end{cases}
$$

Clearly,

$$
X_{i} \sim B(1,0.3), \quad Y_{i} \sim B(1,0.3 \cdot(1-0.4))
$$

and

$$
R_{k}=\sum_{i=1}^{k} X_{i} \sim B(k, 0.3), \quad S_{k}=\sum_{i=1}^{k} Y_{i} \sim B(k, 0.18)
$$

Therefore:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, Y_{i}\right) & =E\left(X_{i} \cdot Y_{i}\right)-E\left(X_{i}\right) \cdot E\left(Y_{i}\right) \\
& =E\left(Y_{i}\right)-E\left(X_{i}\right) \cdot E\left(Y_{i}\right) \\
& =0.18-0.3 \cdot 0.18=0.126 .
\end{aligned}
$$

For $i \neq j$, the variables X_{i}, Y_{j} are independent. Therefore

$$
\begin{aligned}
\operatorname{Cov}\left(R_{k}, S_{m}\right) & =\sum_{i=1}^{k} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right) \\
& =\sum_{i=1}^{\min (k, m)} \operatorname{Cov}\left(X_{i}, Y_{i}\right) \\
& =0.126 \cdot \min (k, m)
\end{aligned}
$$

so that

$$
\begin{equation*}
\rho\left(R_{k}, S_{m}\right)=\frac{0.126 \cdot \min (k, m)}{\sqrt{V\left(R_{k}\right) \cdot V\left(S_{m}\right)}}=\frac{0.126 \cdot \min (k, m)}{\sqrt{0.030996 \cdot k \cdot m}} \tag{1}
\end{equation*}
$$

By (1), with $k=m=1$, and with $k=20, m=30$, we obtain

$$
\rho\left(R_{1}, S_{1}\right)=\frac{0.126}{\sqrt{0.030996}} \approx 0.716
$$

and

$$
\rho\left(R_{20}, S_{30}\right)=\frac{0.126 \cdot 20}{\sqrt{0.030996 \cdot 20 \cdot 30}} \approx 0.584
$$

respectively.
Thus, (a.iii) and (b.iv) are true.
(c) We have:

$$
P\left(S_{20}=k\right)=\binom{20}{k} \cdot 0.18^{k} \cdot 0.82^{20-k}, \quad 0 \leq k \leq 20
$$

The condition $P\left(S_{20}=k\right)>P\left(S_{20}=k+1\right)$ is equivalent to

$$
(k+1)!(19-k)!\cdot 0.82>k!(20-k)!\cdot 0.18
$$

namely

$$
(k+1) \cdot 0.82>(20-k) \cdot 0.18
$$

which is valid if and only if $k \geq 3$.
Thus, (i) is true.
(d) Evidently, $\left\{R_{5}<2\right\} \subset\left\{S_{5}<2\right\}$, so

$$
\begin{aligned}
P\left(R_{5}<2 \mid S_{5}<2\right) & =\frac{P\left(R_{5}<2, S_{5}<2\right)}{P\left(S_{5}<2\right)} \\
& =\frac{P\left(R_{5}<2\right)}{P\left(S_{5}<2\right)} \\
& =\frac{\binom{5}{0} \cdot 0.7^{5}+\binom{5}{1} \cdot 0.3 \cdot 0.7^{4}}{\binom{5}{0} \cdot 0.82^{5}+\binom{5}{1} \cdot 0.18 \cdot 0.82^{4}} \\
& \approx 0.679 .
\end{aligned}
$$

Thus, (ii) is true.
(e) Markov's inequality for S_{20} reads $P\left(S_{20} \geq a\right) \leq E\left(S_{20}\right) / a$. Since $E\left(S_{20}\right)=20 \cdot 0.18=3.6$, we need $\frac{3.6}{a} \leq 0.05$, namely $a \geq 72$. Thus, (ii) is true.
2. Evidently, $X \sim G(1 / 6)$ and $\left.Y\right|_{X=k} \sim B(k, 1 / 2)$. Therefore

$$
P(X=k)=\frac{1}{6}\left(\frac{5}{6}\right)^{k-1}, \quad k=1,2, \ldots,
$$

and

$$
P(X=k, Y=m)=\frac{1}{6}\left(\frac{5}{6}\right)^{k-1} \cdot\binom{k}{m}\left(\frac{1}{2}\right)^{k}, \quad k \geq 1,0 \leq m \leq k
$$

Hence

$$
P(Y=m)=\sum_{k=1}^{\infty} P(X=k, Y=m)
$$

can easily be calculated to yield:

$$
P(Y=m)= \begin{cases}\frac{1}{7}, & m=0 \\ \frac{12}{35}\left(\frac{5}{7}\right)^{m}, & m \geq 1\end{cases}
$$

(Note that for $m=0$ the calculation is different than for $m \geq 1$.) However, it is simpler to start our calculations using $P_{X, Y}$ rather than P_{Y} even for $E(Y)$.
(a) We have:

$$
\begin{aligned}
E(Y) & =\sum_{k=1}^{\infty} \sum_{m=0}^{k} m P_{X, Y}(k, m) \\
& =\sum_{k=1}^{\infty} \frac{1}{6}\left(\frac{5}{6}\right)^{k-1} \sum_{m=0}^{k} m \cdot\binom{k}{m}\left(\frac{1}{2}\right)^{k} .
\end{aligned}
$$

For each k, the inner sum is the expectation of a $B\left(k, \frac{1}{2}\right)$ random variable. Consequently:

$$
E(Y)=\sum_{k=1}^{\infty} \frac{1}{6}\left(\frac{5}{6}\right)^{k-1} \frac{k}{2}=\frac{1}{2} \cdot E(X)=\frac{1}{2} \cdot 6=3
$$

Thus, (ii) is true.
(b) Similarly to the previous part:

$$
\begin{aligned}
E\left(Y^{2}\right) & =\sum_{k=1}^{\infty} \sum_{m=0}^{k} m^{2} P_{X, Y}(k, m) \\
& =\sum_{k=1}^{\infty} \frac{1}{6}\left(\frac{5}{6}\right)^{k-1}\left(\frac{k}{4}+\frac{k^{2}}{4}\right) \\
& =\frac{1}{4}\left(E(X)+E\left(X^{2}\right)\right) \\
& =\frac{1}{4}\left(E(X)+V(X)+E^{2}(X)\right) \\
& =\frac{1}{4}(6+30+36)=18
\end{aligned}
$$

Hence $V(Y)=E\left(Y^{2}\right)-E^{2}(Y)=9$.
Thus, (iv) is true.
(c) Similarly to (a) and (b),

$$
\begin{aligned}
E(X Y) & =\sum_{k=1}^{\infty} \sum_{m=0}^{k} k m P_{X Y}(k, m) \\
& =\sum_{k=1}^{\infty} k \cdot \frac{1}{6}\left(\frac{5}{6}\right)^{k-1} \cdot \frac{k}{2} \\
& =\frac{1}{2} E\left(X^{2}\right)=33
\end{aligned}
$$

Therefore:
$\operatorname{Cov}(X, Y)=E(X Y)-E(Y) \cdot E(X)=33-3 \cdot 6=15$.

Thus, (ii) is true.
(d) Obviously:

$$
\begin{aligned}
P(X=5 \mid Y=3) & =\frac{P(X=5, Y=3)}{P(Y=3)} \\
& =\frac{\frac{1}{6}\left(\frac{5}{6}\right)^{5-1} \cdot\binom{5}{3}\left(\frac{1}{2}\right)^{5}}{\frac{12}{35}\left(\frac{5}{7}\right)^{3}} \approx 0.2
\end{aligned}
$$

Thus, (i) is true.
(e) A routine calculation yields:

$$
\psi_{Y}(t)=E\left(e^{t Y}\right)=\sum_{k=1}^{\infty} \sum_{m=0}^{k} e^{t m} P_{X Y}(k, m)=\frac{1}{7}-\frac{12 e^{t}}{35 e^{t}-49}
$$

In particular:

$$
\psi_{Y}(\ln (6 / 5))=2.2
$$

Thus, (ii) is true.
3. (a) Since $X_{i} \sim \operatorname{Exp}(1)$, we have $E\left(X_{i}\right)=1$ and $E\left(X_{i}^{2}\right)=V\left(X_{i}\right)+$ $E^{2}\left(X_{i}\right)=1+1=2$. We have:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1} X_{2}, S_{2}\right) & =\operatorname{Cov}\left(X_{1} X_{2}, X_{1}+X_{2}\right) \\
& =\operatorname{Cov}\left(X_{1} X_{2}, X_{1}\right)+\operatorname{Cov}\left(X_{1} X_{2}, X_{2}\right) \\
& =2 \cdot \operatorname{Cov}\left(X_{1} X_{2}, X_{1}\right) \\
& =2 \cdot\left(E\left(X_{1}^{2}\right) \cdot E\left(X_{2}\right)-E^{2}\left(X_{1}\right) \cdot E\left(X_{2}\right)\right) \\
& =2 \cdot\left(2 \cdot 1-1^{2} \cdot 1\right)=2 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
V\left(X_{1} X_{2}\right) & =E\left(X_{1}^{2} X_{2}^{2}\right)-E^{2}\left(X_{1} X_{2}\right) \\
& =E\left(X_{1}^{2}\right) \cdot E\left(X_{2}^{2}\right)-E^{2}\left(X_{1}\right) \cdot E^{2}\left(X_{2}\right) \\
& =2 \cdot 2-1^{2} \cdot 1^{2}=3
\end{aligned}
$$

and $V\left(S_{2}\right)=V\left(X_{1}+X_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=2$. Hence:

$$
\rho\left(X_{1} X_{2}, S_{2}\right)=\frac{\operatorname{Cov}\left(X_{1} X_{2}, S_{2}\right)}{\sqrt{V\left(X_{1} X_{2}\right) \cdot V\left(S_{2}\right)}}=\frac{2}{\sqrt{2 \cdot 3}}=\sqrt{\frac{2}{3}} .
$$

Thus, (iv) is true.
(b) Obviously, $F_{S_{2}}(s)$ for $s<0$. For $s \geq 0$:

$$
\begin{aligned}
F_{S_{2}}(s) & =P\left(X_{1}+X_{2} \leq s\right) \\
& =\int_{0}^{s} d x_{1} \int_{0}^{s-x_{1}} e^{-x_{1}-x_{2}} d x_{2} \\
& =\int_{0}^{s} e^{-x_{1}}\left(1-e^{-s+x_{1}}\right) d x_{1} \\
& =1-e^{-s}-s e^{-s} .
\end{aligned}
$$

It follows that:

$$
f_{S_{2}}(s)=F_{S_{2}}^{\prime}(s)= \begin{cases}s e^{-s}, & s \geq 0 \\ 0, & s<0\end{cases}
$$

Thus, (iv) is true.
(c) We have:

$$
\begin{aligned}
P\left(X_{1} \geq 1, X_{2} \leq X_{1}\right) & =\int_{1}^{\infty} e^{-x_{1}} d x_{1} \int_{0}^{x_{1}} e^{-x_{2}} d x_{2} \\
& =\int_{1}^{\infty} e^{-x_{1}}\left(1-e^{-x_{1}}\right) d x_{1} \\
& =\frac{1}{e}-\frac{1}{2 e^{2}}
\end{aligned}
$$

By symmetry, $P\left(X_{2} \leq X_{1}\right)=\frac{1}{2}$. Therefore:

$$
P\left(X_{1} \geq 1 \mid X_{2} \leq X_{1}\right)=\frac{P\left(X_{1} \geq 1, X_{2} \leq X_{1}\right)}{P\left(X_{2} \leq X_{1}\right)}=\frac{2}{e}-\frac{1}{e^{2}}
$$

Thus, (iv) is true.
(d) Clearly, $E\left(S_{900}\right)=900 E\left(X_{1}\right)=900$ and $V\left(S_{900}\right)=900 V\left(X_{1}\right)=900$.

Since S_{900} is continuous,

$$
\begin{aligned}
P\left(810 \leq S_{900} \leq 990\right) & =P\left(810<S_{900}<990\right) \\
& =1-P\left(\left|S_{900}-E\left(S_{900}\right)\right| \geq 90\right) \\
& \geq 1-\frac{V\left(S_{900}\right)}{90^{2}}=\frac{8}{9} .
\end{aligned}
$$

Thus, (ii) is true.
(e) We have:

$$
P\left(810 \leq S_{900} \leq 990\right)=P\left(810 \leq \sum_{i=1}^{900} X_{i} \leq 990\right)
$$

Therefore, the required probability is

$$
\begin{aligned}
P\left(\frac{810-900}{\sqrt{900}} \leq \frac{\sum_{i=1}^{900} X_{i}-E\left(S_{900}\right)}{\sqrt{V\left(S_{900}\right)}} \leq \frac{990-900}{\sqrt{900}}\right) & \approx \Phi(3)-\Phi(-3) \\
& =2 \Phi(3)-1 \\
& \approx 0.9974
\end{aligned}
$$

Thus, (iv) is true.

