Final \#1

Mark the correct answer in each part of the following questions.

1. The coin-die game with n players is played as follows. At the first stage, each player tosses a coin. If at least one of the coins shows a head, then at the second stage all players who have received a head roll a die. If none of the coins shows a head, then all n players continue to roll a die at the second stage. Denote by D the number of players who move on to the second stage, and by $X_{i}, 1 \leq i \leq 6$, the number of those who roll an i at the second stage. (For example, if $n=30$ and 17 players get a head at the first stage, and at the second stage 3 of them roll a " 1 ", 3 roll a " 2 ", 3 roll a " 3 ", 3 roll a " 4 ", 3 roll a " 5 ", and 2 roll a " 6 ", then $D=17, X_{1}=X_{2}=X_{3}=X_{4}=X_{5}=3, X_{6}=2$.)
(a) $V(D)=$
(i) $\frac{n}{4}-\frac{n^{2}}{2^{n}}$.
(ii) $\frac{n}{4}-\frac{n^{2}}{4^{n}}$.
(iii) $\frac{n}{4}+\frac{n^{2}}{4^{n}}$.
(iv) $\frac{n}{4}+\frac{n^{2}}{2^{n}}$.
(v) None of the above.
(b) For $1 \leq i \leq 6$ we have $P\left(X_{i}=0\right)=$
(i) $\left(\frac{11}{12}\right)^{n}-\left(\frac{1}{2}\right)^{n}+\left(\frac{5}{12}\right)^{n}$.
(ii) $\left(\frac{11}{12}\right)^{n}-\left(\frac{1}{12}\right)^{n}$.
(iii) $\left(\frac{7}{12}\right)^{n}-\left(\frac{1}{4}\right)^{n}$.
(iv) $2 \cdot\left(\frac{11}{12}\right)^{n}-\left(\frac{1}{2}\right)^{n-1}$.
(v) None of the above.
(c) $P\left(X_{6}=D\right)=$
(i) $\left(\frac{5}{12}\right)^{n}-\left(\frac{1}{3}\right)^{n}+\left(\frac{1}{4}\right)^{n}$.
(ii) $\left(\frac{1}{2}\right)^{n}-\left(\frac{5}{12}\right)^{n}+\left(\frac{1}{12}\right)^{n}$.
(iii) $\left(\frac{1}{3}\right)^{n}-\left(\frac{1}{6}\right)^{n}$.
(iv) $\left(\frac{7}{12}\right)^{n}-\left(\frac{1}{2}\right)^{n}+\left(\frac{1}{12}\right)^{n}$.
(v) None of the above.
(d) $E\left(X_{i}\right)=$
(i) $\frac{n}{12}+\frac{n}{12^{n}}$.
(ii) $\frac{n}{12}+\frac{n}{2 \cdot 6^{n}}$.
(iii) $\frac{n}{12}+\frac{n}{6 \cdot 2^{n}}$.
(iv) $\frac{n}{12}+\frac{5 n}{6 \cdot 2^{n}}$.
(v) None of the above.
(e) Suppose we repeat the game 2^{n} times. Let W be the number of times (out of 2^{n}) in which all n players move on to the second stage and roll a " 6 " (namely, the number of times $X_{6}=n$). For sufficiently large n we have $P(W=2) \in$
(i) $[0,0.01]$.
(ii) $(0.01,0.05]$.
(iii) $(0.05,0.1]$.
(iv) $(0.1,0.5]$.
(v) None of the above.
2. The number of the first generation descendants (children) of a bacterium of type "Probabilitas fortuitus" is distributed $P(2)$. Denote by S_{i} the total number of children of i random bacteria.
(a) The probability for a randomly chosen bacterium to have 3 descendants in the second generation (i.e., "grandchildren") is:
(i) $\frac{4}{3 e^{4}} e^{2 / e^{2}}\left(1+4 / e^{2}+4 / e^{4}\right)$.
(ii) $\frac{8}{3 e^{4}} e^{2 / e^{2}}\left(1+6 / e^{2}+4 / e^{4}\right)$.
(iii) $\frac{12}{3 e^{4}} e^{4 / e^{4}}\left(1+8 / e^{2}+4 / e^{4}\right)$.
(iv) $\frac{16}{3 e^{4}} e^{4 / e^{2}}\left(1+10 / e^{2}+4 / e^{4}\right)$.
(v) None of the above.
(b) It is known that the number of the second generation descendants ("grandchildren") of a randomly chosen bacterium is 2 . Then the probability for the same bacterium to have 3 first generation descendants ("children") is:
(i) $\frac{6}{e^{2}\left(2+e^{2}\right)} e^{+2 / e^{2}}$.
(ii) $\frac{4}{e^{2}\left(2+e^{2}\right)} e^{-2 / e^{2}}$.
(iii) $\frac{6}{e^{2}\left(2+e^{2}\right)} e^{-2 / e^{2}}$.
(iv) $\frac{6}{e^{2}\left(4+e^{2}\right)} e^{-2 / e^{2}}$.
(v) None of the above.
(c) By Stirling's Formula $\left(n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)$, we have $P\left(S_{100}=200\right) \approx$
(i) $\frac{1}{2^{10} e \sqrt{2 \pi}}$.
(ii) $\frac{e^{2}}{2^{10} \sqrt{\pi}}$.
(iii) $\frac{1}{20 \sqrt{\pi}}$.
(iv) $\frac{e}{10 \sqrt{2 \pi}}$.
(v) None of the above.
(d) Let $\psi_{S_{100}}(t)$ be the moment generating function of S_{100}. Then $\psi_{S_{100}}(0.0001) \approx$
(i) 1.002 .
(ii) 1.004
(iii) 1.01 .
(iv) 1.02 .
(v) None of the above.
(e) A direct application of Chebyshev's inequality to S_{2000} of first generation descendants of 2000 random bacteria yields $P(3800 \leq$ $\left.S_{2000} \leq 4200\right) \geq$
(i) 0.65 .
(ii) 0.71 .
(iii) 0.84 .
(iv) 0.90 .
(v) None of the above.
3. The weight X and height Y of a randomly chosen BGU student are distributed with joint 2-dimensional density function

$$
f_{X Y}(x, y)= \begin{cases}C(340-x-y), & 50 \leq x \leq 90,160 \leq y \leq 180 \\ 0, & \text { otherwise }\end{cases}
$$

where C is a constant.
(Hint: To avoid huge numbers during the calculation of the integrals, it is worthwhile introducing new integration variables t and s, defined by

$$
t=\frac{x-70}{10}, s=\frac{y-170}{10}
$$

and return to the original variables (x, y) (if necessary) only at the final stage.)
(a) The normalization constant C is:
(i) $\frac{3}{9 \cdot 10^{4}}$.
(ii) $\frac{2}{7 \cdot 10^{3}}$.
(iii) $\frac{1}{8 \cdot 10^{4}}$.
(iv) $\frac{4}{11 \cdot 10^{3}}$.
(v) None of the above.
(b) Let f_{X} and f_{Y} be the marginal density functions of X and Y, respectively. Then for every x, y :
(i) $f_{X Y}(x, y)=f_{X}(x)+f_{Y}(y)$.
(ii) $f_{X Y}(x, y)=-f_{X}(x)+f_{Y}(y)$.
(iii) $f_{X Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$.
(iv) $f_{X Y}(x, y)=f_{X}(x)-f_{Y}(y)$.
(v) None of the above.
(c) $P(X+2 Y \leq 410)=$
(i) 0.28 .
(ii) 0.55 .
(iii) 0.63 .
(iv) 0.76 .
(v)None of the above.
(d) $P(X>70 \mid Y>170) \approx$
(i) 0.1612 .
(ii) 0.3296 .
(iii) 0.4474 .
(iv) 0.6961 .
(v) None of the above.
(e) $F_{X}(70)=$
(i) 0.44 .
(ii) 0.55 .
(iii) approximately 0.66 .
(iv) approximately 0.77 .
(v) None of the above.

Solutions

1. (a) For $1 \leq k \leq n$, let $Y_{k}=1$ if the coin of k-th player shows a head and 0 otherwise. Thus $Y_{k} \sim B(1,1 / 2)$. Due to the independence of the variables Y_{k}, the variable $Y=\sum_{k=1}^{n} Y_{k}$ is distributed $B(n, 1 / 2)$. As a result

$$
P_{Y}(m)=\binom{n}{m} \frac{1}{2^{n}}, \quad m=0,1, \ldots n,
$$

and

$$
E(Y)=\frac{n}{2}, \quad V(Y)=\frac{n}{4} .
$$

The random variable D may be expressed as a sum, $D=Y+Y_{0}$, where

$$
Y_{0}= \begin{cases}0, & Y \neq 0 \\ n, & Y=0\end{cases}
$$

Therefore

$$
P_{Y_{0}}(s)= \begin{cases}1-\frac{1}{2^{n}}, & s=0 \\ \frac{1}{2^{n}}, & s=n\end{cases}
$$

and

$$
E\left(Y_{0}\right)=\frac{n}{2^{n}}, \quad V\left(Y_{0}\right)=\frac{n^{2}}{2^{n}}-\frac{n^{2}}{4^{n}} .
$$

Obviously, $E\left(Y \cdot Y_{0}\right)=0$, so that $\operatorname{Cov}\left(Y, Y_{0}\right)=-\frac{n^{2}}{2^{n+1}}$. Hence:

$$
V(D)=V\left(Y+Y_{0}\right)=V(Y)+V\left(Y_{0}\right)+2 \operatorname{Cov}\left(Y, Y_{0}\right)=\frac{n}{4}-\frac{n^{2}}{4^{n}}
$$

Thus, (ii) is true.
(b) By the law of total probability

$$
P_{X_{i}}(0)=\sum_{m=1}^{n} P_{D}(m) P\left(X_{i}=0 \mid D=m\right) .
$$

According to the definition, the probability function of D is given by:

$$
P_{D}(m)= \begin{cases}\binom{n}{m} \frac{1}{2^{n}}, & 1 \leq m \leq n-1, \tag{1}\\ \frac{1}{2^{n-1}}, & m=n .\end{cases}
$$

Therefore

$$
\begin{aligned}
P_{X_{i}}(0) & =P_{D}(n) P_{X_{i} \mid D}(0 \mid n)+\sum_{m=1}^{n-1} P_{D}(m) P_{X_{i} \mid D}(0 \mid m) \\
& =\frac{1}{2^{n-1}}\left(\frac{5}{6}\right)^{n}+\sum_{m=1}^{n-1}\binom{n}{m}\left(\frac{1}{2}\right)^{n}\left(\frac{5}{6}\right)^{m} \\
& =2\left(\frac{5}{12}\right)^{n}+\sum_{m=1}^{n-1}\binom{n}{m}\left(\frac{5}{12}\right)^{m}\left(\frac{1}{2}\right)^{n-m} \\
& =2\left(\frac{5}{12}\right)^{n}+\sum_{m=0}^{n}\binom{n}{m}\left(\frac{5}{12}\right)^{m}\left(\frac{1}{2}\right)^{n-m}-\frac{1}{2^{n}}-\left(\frac{5}{12}\right)^{n} \\
& =\left(\frac{5}{12}\right)^{n}+\left(\frac{11}{12}\right)^{n}-\frac{1}{2^{n}} .
\end{aligned}
$$

Thus, (i) is true.
(c) This part is similar to the preceding one.

$$
\begin{aligned}
P\left(X_{6}=D\right) & =P_{D}(n) P_{X_{6} \mid D}(n \mid n)+\sum_{m=1}^{n-1} P_{D}(m) P_{X_{6} \mid D}(m \mid m) \\
& =\frac{1}{2^{n-1}}\left(\frac{1}{6}\right)^{n}+\sum_{m=1}^{n-1}\binom{n}{m}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{6}\right)^{m} \\
& =\frac{1}{2^{n}}\left(\frac{1}{6}\right)^{n}+\sum_{m=0}^{n}\binom{n}{m}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{6}\right)^{m}-\left(\frac{1}{2}\right)^{n} \\
& =\left(\frac{1}{12}\right)^{n}+\left(\frac{7}{12}\right)^{n}-\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

Thus, (iv) is true.
(d) Obviously, $D=\sum_{i=1}^{6} X_{i}$, so that $E(D)=\sum_{i=1}^{6} E\left(X_{i}\right)$. By symmetry, all X_{i} 's are identically distributed, and therefore

$$
E\left(X_{i}\right)=\frac{1}{6} E(D)
$$

for each i. The expectation $E(D)$ can be found either from the solution of part (a),

$$
E(D)=E(Y)+E\left(Y_{0}\right)=\frac{n}{2^{n}}+\frac{n}{2},
$$

or by a direct calculation using (1)

$$
\begin{aligned}
E(D) & =n \frac{1}{2^{n-1}}+\sum_{m=1}^{n-1} m\binom{n}{m} \frac{1}{2^{n}} \\
& =\frac{n}{2^{n}}+\sum_{m=1}^{n} m\binom{n}{m} \frac{1}{2^{n}} \\
& =\frac{n}{2^{n}}+\frac{n}{2^{n}} \sum_{m=1}^{n}\binom{n-1}{m-1} \\
& =\frac{n}{2^{n}}+\frac{n}{2} .
\end{aligned}
$$

As a result we get

$$
E\left(X_{i}\right)=\frac{n}{6 \cdot 2^{n}}+\frac{n}{12}
$$

Thus, (iii) is true.
(e) We have:

$$
P\left(X_{6}=n\right)=P_{D}(n) \cdot P\left(X_{6}=n \mid D=n\right)=\frac{1}{2^{n-1}} \cdot \frac{1}{6^{n}}=\frac{2}{12^{n}} .
$$

It follows that $W \sim B\left(2^{n}, 2 / 12^{n}\right)$, and in particular

$$
P_{W}(2)=\binom{2^{n}}{2}\left(\frac{2}{12^{n}}\right)^{2} \cdot\left(1-\frac{2}{12^{n}}\right)^{2^{n}-2} \leq \frac{2^{2 n}}{2} \cdot \frac{2^{2}}{12^{2 n}}=\frac{2}{6^{2 n}}
$$

The right-hand side decreases monotonically and is less than 0.01 already for $n=2$.
Thus, (i) is true.
2. Let X_{i} be the number of descendants of a random bacterium in the i-th generation, and set $P_{i}(n) \equiv P\left(X_{i}=n\right)$. According to the formulation of the problem, $X_{1} \sim P(2)$, so that

$$
P_{1}(n)=e^{-2} \cdot \frac{2^{n}}{n!}
$$

(a) The required probability is

$$
\begin{aligned}
P_{2}(3)= & \sum_{n=1}^{\infty} P_{1}(n) P\left(X_{2}=3 \mid X_{1}=n\right) \\
= & \sum_{n=1}^{\infty} P_{1}(n)\left(\binom{n}{1} P_{1}(3) P_{1}^{n-1}(0)+2\binom{n}{2} P_{1}(2) P_{1}(1) P_{1}^{n-2}(0)\right. \\
& \left.\quad+\binom{n}{3} P_{1}^{3}(1) P_{1}^{n-3}(0)\right) \\
= & \frac{8}{3 e^{4}}\left(1+\frac{6}{e^{2}}+\frac{4}{e^{4}}\right) e^{2 / e^{2}} .
\end{aligned}
$$

Thus, (ii) is true.
(b) According to definition of conditional probability:

$$
\begin{aligned}
P\left(X_{1}=3 \mid X_{2}=2\right) & =\frac{P\left(X_{1}=3, X_{2}=2\right)}{P\left(X_{2}=2\right)} \\
& =\frac{P\left(X_{1}=3\right) P\left(X_{2}=2 \mid X_{1}=3\right)}{P\left(X_{2}=2\right)} .
\end{aligned}
$$

Now
$P\left(X_{2}=2 \mid X_{1}=3\right)=\binom{3}{1} P_{1}(2) P_{1}^{2}(0)+\binom{3}{2} P_{1}^{2}(1) P_{1}(0)=\frac{18}{e^{6}}$,
and

$$
\begin{aligned}
P\left(X_{2}=2\right) & =\sum_{n=1}^{\infty} P\left(X_{1}=n\right) P\left(X_{2}=2 \mid X_{1}=n\right) \\
& =\sum_{n=1}^{\infty} P_{1}(n)\left(\binom{n}{1} P_{1}(2) P_{1}^{n-1}(0)+\binom{n}{2} P_{1}^{2}(1) P_{1}^{n-2}(0)\right) \\
& =\frac{4}{e^{4}}\left(1+\frac{2}{e^{2}}\right) e^{2 / e^{2}} .
\end{aligned}
$$

Finally,

$$
P\left(X_{1}=3 \mid X_{2}=2\right)=\frac{6}{e^{2}\left(2+e^{2}\right)} e^{-2 / e^{2}}
$$

Thus, (iii) is true.
(c) Enumerate the bacteria by an index k, running from 1 to 100 , and let Y_{k} be the number of first generation descendants of bacterium number k. Then $S_{100}=\sum_{k=1}^{100} Y_{k}$ is a sum of 100 independent $P(2)$ distributed variables, and therefore $S_{100} \sim P(100 \cdot 2)$. Hence:

$$
P\left(S_{100}=200\right)=e^{-200} \frac{(200)^{200}}{200!}
$$

Applying Stirling's formula we obtain

$$
P\left(S_{100}=200\right) \approx \frac{1}{20 \sqrt{\pi}} .
$$

Thus, (iii) is true.
(d) Since $S_{100} \sim P(200)$ we have $\psi_{S_{100}}(t)=e^{200\left(e^{t}-1\right)}$. For $t \approx 0$ we obtain

$$
\psi_{S_{100}}(t)=e^{200(1+t-1)+o(t)}=1+200 t+o(t)
$$

Alternatively, the same result may be obtained from the expansion of the moment generating function in general:
$\psi_{S_{100}}(t)=1+\psi_{S_{100}}^{\prime}(0) \cdot t+o(t)=1+E\left(S_{100}\right) \cdot t+o(t)=1+200 t+o(t)$.
Substituting $t=0.0001$ we obtain

$$
\psi_{S_{100}}(0.0001) \approx 1+200 \cdot 0.0001=1.02
$$

Thus, (iv) is true.
(e) Similarly to the preceding parts, $S_{2000} \sim P(4000)$. Therefore $E\left(S_{2000}\right)=4000$, and the event we are interested in may be written as

$$
\left|\frac{S_{2000}-E\left(S_{2000}\right)}{2000}\right| \leq 0.1
$$

Applying Chebyshev's inequality to the random variable $S_{2000} / 2000$, we obtain:

$$
P\left(\left|\frac{S_{2000}}{2000}-\frac{E\left(S_{2000}\right)}{2000}\right| \geq 0.1\right) \leq \frac{V\left(S_{2000} / 2000\right)}{0.1^{2}}=0.1 .
$$

Therefore

$$
P\left(\left|\frac{S_{2000}}{2000}-\frac{E\left(S_{2000}\right)}{2000}\right| \leq 0.1\right) \geq 0.9
$$

Thus, (iv) is true.
3. The expectation of a function $g(X, Y)$ of X and Y is:

$$
E(g(X, Y))=\int_{50}^{90} \int_{160}^{180} f_{X Y}(x, y) g(x, y) d y d x
$$

In terms of the variables

$$
t=\frac{x-70}{10}, \quad s=\frac{y-170}{10}
$$

we have
$E(g(X, Y))=C \cdot 10^{3} \int_{-2}^{2} \int_{-1}^{1}(10-t-s) g(70+10 t, 170+10 s) d s d t$.
(a) Choosing $g(X, Y)=1$ in (2) we get the normalization constant

$$
C^{-1}=10^{3} \int_{-2}^{2} \int_{-1}^{1}(10-t-s) d s d t=8 \cdot 10^{4} .
$$

Thus, (iii) is true.
(b) The calculation of the two marginal density functions $f_{X}(x)=$ $\int_{160}^{180} f_{X Y}(x, y) d y$ and $f_{Y}(y)=\int_{50}^{90} f_{X Y}(x, y) d x$ leads to the results

$$
f_{X}(x)= \begin{cases}\frac{1}{4 \cdot 10^{3}}(170-x), & 50 \leq x \leq 90 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{2 \cdot 10^{3}}(270-y), & 160 \leq y \leq 180 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, (v) is true.
(c) We have:

$$
\begin{aligned}
P(2 Y+X \leq 410) & =\iint_{2 Y+X \leq 410} f_{X Y}(x, y) d x d y \\
& =\int_{160}^{180} \int_{50}^{410-2 y} \frac{1}{8 \cdot 10^{3}}(340-x-y) d x d y \\
& =\frac{1}{80} \int_{-1}^{1} \int_{-2}^{-2 s}(10-t-s) d t d s=0.55 .
\end{aligned}
$$

Thus, (ii) is true.
(d)

$$
P(X>70 \mid Y>170)=\frac{P(X>70, Y>170)}{P(Y>170)} .
$$

Now
$P(Y>170)=\int_{170}^{180} f_{Y}(y) d y=\int_{170}^{180} \frac{1}{2 \cdot 10^{3}}(270-y) d y=\frac{19}{40}$,
and

$$
\begin{aligned}
P(X>70, Y>170) & =\frac{1}{8 \cdot 10^{4}} \int_{170}^{180} \int_{70}^{90}(340-x-y) d x d y \\
& =\frac{1}{80} \int_{0}^{1} \int_{0}^{2}(10-s-t) d t d s=\frac{17}{80} .
\end{aligned}
$$

Consequently:

$$
P(X>70 \mid Y>170)=\frac{17}{38} \approx 0.4474 .
$$

Thus, (iii) is true.
(e) The value of the distribution function of the weight at any point $x \in[50,90]$ is

$$
\begin{aligned}
F_{X}(x) & =\int_{50}^{x} f_{X}(u) d u \\
& =\int_{50}^{x} \frac{1}{4 \cdot 10^{3}}(170-u) d u \\
& =\frac{1}{4 \cdot 10^{3}}\left(-\frac{1}{2} x^{2}+170 x-7250\right) .
\end{aligned}
$$

For $x=70$ we get $F_{X}(70)=0.55$.
Thus, (ii) is true.

