
Final #1

Mark the correct answer in each part of the following questions.

1. The coin-die game with n players is played as follows. At the first stage,
each player tosses a coin. If at least one of the coins shows a head, then
at the second stage all players who have received a head roll a die. If
none of the coins shows a head, then all n players continue to roll a die
at the second stage. Denote by D the number of players who move on
to the second stage, and by Xi, 1 ≤ i ≤ 6, the number of those who roll
an i at the second stage. (For example, if n = 30 and 17 players get a
head at the first stage, and at the second stage 3 of them roll a “1”, 3
roll a “2”, 3 roll a “3”, 3 roll a “4”, 3 roll a “5”, and 2 roll a “6”, then
D = 17, X1 = X2 = X3 = X4 = X5 = 3, X6 = 2.)

(a) V (D) =

(i) n
4
− n2

2n .

(ii) n
4
− n2

4n .

(iii) n
4

+ n2

4n .

(iv) n
4

+ n2

2n .

(v) None of the above.

(b) For 1 ≤ i ≤ 6 we have P (Xi = 0) =

(i)
(

11
12

)n − (1
2

)n
+
(

5
12

)n
.

(ii)
(

11
12

)n − ( 1
12

)n
.

(iii)
(

7
12

)n − (1
4

)n
.

(iv) 2 ·
(

11
12

)n − (1
2

)n−1
.

(v) None of the above.
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(c) P (X6 = D) =

(i)
(

5
12

)n − (1
3

)n
+
(

1
4

)n
.

(ii)
(

1
2

)n − ( 5
12

)n
+
(

1
12

)n
.

(iii)
(

1
3

)n − (1
6

)n
.

(iv)
(

7
12

)n − (1
2

)n
+
(

1
12

)n
.

(v) None of the above.

(d) E(Xi) =

(i) n
12

+ n
12n .

(ii) n
12

+ n
2·6n .

(iii) n
12

+ n
6·2n .

(iv) n
12

+ 5n
6·2n .

(v) None of the above.

(e) Suppose we repeat the game 2n times. Let W be the number of
times (out of 2n) in which all n players move on to the second
stage and roll a “6” (namely, the number of times X6 = n). For
sufficiently large n we have P (W = 2) ∈
(i) [0, 0.01].

(ii) (0.01, 0.05].

(iii) (0.05, 0.1].

(iv) (0.1, 0.5].

(v) None of the above.
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2. The number of the first generation descendants (children) of a bac-
terium of type “Probabilitas fortuitus” is distributed P (2). Denote by
Si the total number of children of i random bacteria.

(a) The probability for a randomly chosen bacterium to have 3 de-
scendants in the second generation (i.e., “grandchildren”) is:

(i) 4
3e4
e2/e

2
(1 + 4/e2 + 4/e4) .

(ii) 8
3e4
e2/e

2
(1 + 6/e2 + 4/e4) .

(iii) 12
3e4
e4/e

4
(1 + 8/e2 + 4/e4) .

(iv) 16
3e4
e4/e

2
(1 + 10/e2 + 4/e4) .

(v) None of the above.

(b) It is known that the number of the second generation descendants
(“grandchildren”) of a randomly chosen bacterium is 2. Then the
probability for the same bacterium to have 3 first generation de-
scendants (“children”) is:

(i) 6
e2(2+e2)

e+2/e2 .

(ii) 4
e2(2+e2)

e−2/e2 .

(iii) 6
e2(2+e2)

e−2/e2 .

(iv) 6
e2(4+e2)

e−2/e2 .

(v) None of the above.
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(c) By Stirling’s Formula
(
n! ≈

√
2πn

(n
e

)n)
, we have P (S100 = 200) ≈

(i) 1
210e
√

2π
.

(ii) e2

210
√
π
.

(iii) 1
20
√
π
.

(iv) e
10
√

2π
.

(v) None of the above.

(d) Let ψS100(t) be the moment generating function of S100. Then
ψS100(0.0001) ≈

(i) 1.002.

(ii) 1.004.

(iii) 1.01.

(iv) 1.02.

(v) None of the above.
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(e) A direct application of Chebyshev’s inequality to S2000 of first
generation descendants of 2000 random bacteria yields P (3800 ≤
S2000 ≤ 4200) ≥

(i) 0.65.

(ii) 0.71.

(iii) 0.84.

(iv) 0.90.

(v) None of the above.
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3. The weight X and height Y of a randomly chosen BGU student are
distributed with joint 2-dimensional density function

fXY (x, y) =

{
C(340− x− y), 50 ≤ x ≤ 90, 160 ≤ y ≤ 180,
0, otherwise,

where C is a constant.

(Hint: To avoid huge numbers during the calculation of the integrals,
it is worthwhile introducing new integration variables t and s, defined
by

t =
x− 70

10
, s =

y − 170

10
,

and return to the original variables (x, y) (if necessary) only at the final
stage. )

(a) The normalization constant C is:

(i)
3

9 · 104
.

(ii)
2

7 · 103
.

(iii)
1

8 · 104
.

(iv)
4

11 · 103
.

(v) None of the above.

(b) Let fX and fY be the marginal density functions of X and Y ,
respectively. Then for every x, y:

(i) fXY (x, y) = fX(x) + fY (y).

(ii) fXY (x, y) = −fX(x) + fY (y).
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(iii) fXY (x, y) = fX(x) · fY (y).

(iv) fXY (x, y) = fX(x)− fY (y).

(v) None of the above.

(c) P (X + 2Y ≤ 410) =

(i) 0.28.

(ii) 0.55.

(iii) 0.63.

(iv) 0.76.

(v)None of the above.

(d) P (X > 70|Y > 170) ≈

(i) 0.1612.

(ii) 0.3296.

(iii) 0.4474.

(iv) 0.6961.

(v) None of the above.
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(e) FX(70) =

(i) 0.44.

(ii) 0.55.

(iii) approximately 0.66.

(iv) approximately 0.77.

(v) None of the above.

Solutions

1. (a) For 1 ≤ k ≤ n, let Yk = 1 if the coin of k-th player shows a head
and 0 otherwise. Thus Yk ∼ B (1, 1/2).Due to the independence of

the variables Yk, the variable Y =
n∑
k=1

Yk is distributed B (n, 1/2).

As a result

PY (m) =

(
n

m

)
1

2n
, m = 0, 1, ...n,

and
E(Y ) =

n

2
, V (Y ) =

n

4
.

The random variable D may be expressed as a sum, D = Y + Y0,
where

Y0 =

{
0, Y 6= 0,
n, Y = 0.

Therefore

PY0(s) =

{
1− 1

2n , s = 0,
1
2n , s = n,

and

E(Y0) =
n

2n
, V (Y0) =

n2

2n
− n2

4n
.
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Obviously, E(Y · Y0) = 0, so that Cov(Y, Y0) = − n2

2n+1 . Hence:

V (D) = V (Y + Y0) = V (Y ) + V (Y0) + 2Cov(Y, Y0) =
n

4
− n2

4n
.

Thus, (ii) is true.

(b) By the law of total probability

PXi
(0) =

n∑
m=1

PD(m)P (Xi = 0|D = m).

According to the definition, the probability function of D is given
by:

PD(m) =


(
n

m

)
1

2n
, 1 ≤ m ≤ n− 1,

1

2n−1
, m = n.

(1)

Therefore

PXi
(0) = PD(n)PXi|D(0|n) +

n−1∑
m=1

PD(m)PXi|D(0|m)

=
1

2n−1

(
5

6

)n
+

n−1∑
m=1

(
n

m

)(
1

2

)n(
5

6

)m
= 2

(
5

12

)n
+

n−1∑
m=1

(
n

m

)(
5

12

)m(
1

2

)n−m
= 2

(
5

12

)n
+

n∑
m=0

(
n

m

)(
5

12

)m(
1

2

)n−m
− 1

2n
−
(

5

12

)n
=

(
5

12

)n
+

(
11

12

)n
− 1

2n
.

Thus, (i) is true.
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(c) This part is similar to the preceding one.

P (X6 = D) = PD(n)PX6|D(n|n) +
n−1∑
m=1

PD(m)PX6|D(m|m)

=
1

2n−1

(
1

6

)n
+

n−1∑
m=1

(
n

m

)(
1

2

)n(
1

6

)m
=

1

2n

(
1

6

)n
+

n∑
m=0

(
n

m

)(
1

2

)n(
1

6

)m
−
(

1

2

)n
=

(
1

12

)n
+

(
7

12

)n
−
(

1

2

)n
.

Thus, (iv) is true.

(d) Obviously, D =
∑6

i=1Xi, so that E(D) =
∑6

i=1E(Xi). By sym-
metry, all Xi’s are identically distributed, and therefore

E(Xi) =
1

6
E(D)

for each i. The expectation E(D) can be found either from the
solution of part (a),

E(D) = E(Y ) + E(Y0) =
n

2n
+
n

2
,

or by a direct calculation using (1)

E(D) = n
1

2n−1
+

n−1∑
m=1

m

(
n

m

)
1

2n

=
n

2n
+

n∑
m=1

m

(
n

m

)
1

2n

=
n

2n
+
n

2n

n∑
m=1

(
n− 1

m− 1

)
=

n

2n
+
n

2
.

As a result we get

E(Xi) =
n

6 · 2n
+

n

12
,
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Thus, (iii) is true.

(e) We have:

P (X6 = n) = PD(n) · P (X6 = n|D = n) =
1

2n−1
· 1

6n
=

2

12n
.

It follows that W ∼ B (2n, 2/12n), and in particular

PW (2) =

(
2n

2

)(
2

12n

)2

·
(

1− 2

12n

)2n−2

≤ 22n

2
· 22

122n
=

2

62n
.

The right-hand side decreases monotonically and is less than 0.01
already for n = 2.
Thus, (i) is true.

2. Let Xi be the number of descendants of a random bacterium in the i-th
generation, and set Pi(n) ≡ P (Xi = n). According to the formulation
of the problem, X1 ∼ P (2), so that

P1(n) = e−2 · 2n

n!
.

(a) The required probability is

P2(3) =
∞∑
n=1

P1(n)P (X2 = 3|X1 = n)

=
∞∑
n=1

P1(n)

((
n

1

)
P1(3)P n−1

1 (0) + 2

(
n

2

)
P1(2)P1(1)P n−2

1 (0)

+

(
n

3

)
P 3

1 (1)P n−3
1 (0)

)
=

8

3e4

(
1 +

6

e2
+

4

e4

)
e2/e

2

.

Thus, (ii) is true.

11



(b) According to definition of conditional probability:

P (X1 = 3|X2 = 2) =
P (X1 = 3, X2 = 2)

P (X2 = 2)

=
P (X1 = 3)P (X2 = 2|X1 = 3)

P (X2 = 2)
.

Now

P (X2 = 2|X1 = 3) =

(
3

1

)
P1(2)P 2

1 (0) +

(
3

2

)
P 2

1 (1)P1(0) =
18

e6
,

and

P (X2 = 2) =
∞∑
n=1

P (X1 = n)P (X2 = 2|X1 = n)

=
∞∑
n=1

P1(n)

((
n

1

)
P1(2)P n−1

1 (0) +

(
n

2

)
P 2

1 (1)P n−2
1 (0)

)
=

4

e4

(
1 +

2

e2

)
e2/e

2

.

Finally,

P (X1 = 3|X2 = 2) =
6

e2(2 + e2)
e−2/e2 .

Thus, (iii) is true.

(c) Enumerate the bacteria by an index k, running from 1 to 100, and
let Yk be the number of first generation descendants of bacterium

number k. Then S100 =
100∑
k=1

Yk is a sum of 100 independent P (2)-

distributed variables, and therefore S100 ∼ P (100 · 2). Hence:

P (S100 = 200) = e−200 (200)200

200!
.

Applying Stirling’s formula we obtain

P (S100 = 200) ≈ 1

20
√
π
.
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Thus, (iii) is true.

( d) Since S100 ∼ P (200) we have ψS100(t) = e200(et−1). For t ≈ 0 we
obtain

ψS100(t) = e200(1+t−1)+o(t) = 1 + 200t+ o(t).

Alternatively, the same result may be obtained from the expansion
of the moment generating function in general:

ψS100(t) = 1+ψ′S100
(0)·t+o(t) = 1+E(S100)·t+o(t) = 1+200t+o(t).

Substituting t = 0.0001 we obtain

ψS100(0.0001) ≈ 1 + 200 · 0.0001 = 1.02.

Thus, (iv) is true.

(e) Similarly to the preceding parts, S2000 ∼ P (4000). Therefore
E(S2000) = 4000, and the event we are interested in may be writ-
ten as ∣∣∣∣S2000 − E(S2000)

2000

∣∣∣∣ ≤ 0.1.

Applying Chebyshev’s inequality to the random variable S2000/2000,
we obtain:

P

(∣∣∣∣S2000

2000
− E(S2000)

2000

∣∣∣∣ ≥ 0.1

)
≤ V (S2000/2000)

0.12
= 0.1.

Therefore

P

(∣∣∣∣S2000

2000
− E(S2000)

2000

∣∣∣∣ ≤ 0.1

)
≥ 0.9

Thus, (iv) is true.

3. The expectation of a function g(X, Y ) of X and Y is:

E(g(X, Y )) =

∫ 90

50

∫ 180

160

fXY (x, y) g(x, y)dydx.
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In terms of the variables

t =
x− 70

10
, s =

y − 170

10

we have

E(g(X, Y )) = C · 103

∫ 2

−2

∫ 1

−1

(10− t− s)g(70 + 10t, 170 + 10s)dsdt. (2)

(a) Choosing g(X, Y ) = 1 in (2) we get the normalization constant

C−1 = 103

∫ 2

−2

∫ 1

−1

(10− t− s)dsdt = 8 · 104.

Thus, (iii) is true.

(b) The calculation of the two marginal density functions fX(x) =∫ 180

160
fXY (x, y)dy and fY (y) =

∫ 90

50
fXY (x, y)dx leads to the results

fX(x) =


1

4 · 103
(170− x), 50 ≤ x ≤ 90,

0, otherwise,

and

fY (y) =


1

2 · 103
(270− y), 160 ≤ y ≤ 180,

0, otherwise.

Thus, (v) is true.

(c) We have:

P (2Y +X ≤ 410) =

∫∫
2Y+X≤410

fXY (x, y)dxdy

=

∫ 180

160

∫ 410−2y

50

1

8 · 103
(340− x− y)dxdy

=
1

80

∫ 1

−1

∫ −2s

−2

(10− t− s)dtds = 0.55.

Thus, (ii) is true.
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(d)

P (X > 70|Y > 170) =
P (X > 70, Y > 170)

P (Y > 170)
.

Now

P (Y > 170) =

∫ 180

170

fY (y)dy =

∫ 180

170

1

2 · 103
(270− y)dy =

19

40
,

and

P (X > 70, Y > 170) =
1

8 · 104

∫ 180

170

∫ 90

70

(340− x− y)dxdy

=
1

80

∫ 1

0

∫ 2

0

(10− s− t)dtds =
17

80
.

Consequently:

P (X > 70|Y > 170) =
17

38
≈ 0.4474.

Thus, (iii) is true.

(e) The value of the distribution function of the weight at any point
x ∈ [50, 90] is

FX(x) =

∫ x

50

fX(u)du

=

∫ x

50

1

4 · 103
(170− u)du

=
1

4 · 103

(
−1

2
x2 + 170x− 7250

)
.

For x = 70 we get FX(70) = 0.55.
Thus, (ii) is true.
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