Midterm

Mark the correct answer in each part of the following questions.

1. Reuven and Shimon play a dreidel game. In each round, each of them rolls the dreidel. If one of them gets a G and the other not, he wins; if both get a G or none gets it, the game continues. They play the game 11 times. Let R_{i} be the number of rounds in the i-th game, $1 \leq i \leq 11$. (For example, if in the first round of the sixth game Reuven got a P and Shimon an H, in the second both got a G, in the third - Reuven a P and Shimon an N, and in the fourth - Reuven a G and Shimon an H , then $R_{6}=4$.) Let R be the total number of rounds in all games, X the total number of wins of Reuven and A the event whereby at some point during the match Shimon has had more wins than Reuven.
(a) R_{1} is distributed:
(i) $B(4,1 / 4)$.
(ii) $G(3 / 4)$.
(iii) $\bar{B}(4,1 / 4)$.
(iv) approximately $P(1)$.
(v) None of the above.
(b) $E\left(R_{1}\right)=$
(i) $8 / 3$.
(ii) 4 .
(iii) $25 / 4$.
(iv) 8 .
(v) None of the above.
(c) $E\left(1 / R_{1}\right)=$
(i) $\frac{3}{5} \ln \frac{5}{3}$.
(ii) $\frac{3}{8} \ln \frac{8}{3}$.
(iii) $\frac{5}{8} \ln \frac{8}{5}$.
(iv) Does not exist.
(v) None of the above.
(d) X and R are distributed as follows:
(i) $X \sim U[0,11], R \sim G(1 / 11)$.
(ii) $X \sim H(11,11,11)$, Ris distributed approximately $\mathrm{P}(11)$.
(iii) $X \sim B(11,1 / 2), R \sim G(10 / 11)$.
(iv) $X \sim B(11,1 / 2), R \sim \bar{B}(11,3 / 8)$.
(v) None of the above.
(e) $P(A \mid X=7)=$
(i) $\frac{1}{12}$.
(ii) $\frac{1}{6}$.
(iii) $\frac{1}{4}$.
(iv) $\frac{1}{3}$.
(v) None of the above.
2. An urn contains cards, marked by the numbers $1,2, \ldots, n$. The cards are drawn randomly one by one without replacement. Let $X_{i}, 1 \leq i \leq$ n, be the number on the i-th card to be drawn, $Y_{i}, 1 \leq i \leq n$, the stage at which the card marked by the number i is drawn, $Z_{i}, 1 \leq i \leq n$, the (first) stage at which all cards $1,2 \ldots, i$ have already been drawn, and M the maximal number i such that the sequence $X_{1}, X_{2}, \ldots, X_{i}$ is increasing. (For example, if $n=4$ and the cards have been drawn in the order $2,4,1,3$, then $X_{1}=2, X_{2}=4, X_{3}=1, X_{4}=3, Y_{1}=3, Y_{2}=$ $1, Y_{3}=4, Y_{4}=2, Z_{1}=Z_{2}=3, Z_{3}=Z_{4}=4, M=2$.)
(a) For $n=10$ we have
(i) $P\left(X_{1}>X_{2}, X_{3}>X_{4}\right)=1 / 8$ and $P\left(X_{1}>X_{2}>X_{3}\right)=1 / 6$.
(ii) $P\left(X_{1}>X_{2}, X_{3}>X_{4}\right)=1 / 4$ and $P\left(X_{1}>X_{2}>X_{3}\right)=1 / 6$.
(iii) $P\left(X_{1}>X_{2}, X_{3}>X_{4}\right)=1 / 8$ and $P\left(X_{1}>X_{2}>X_{3}\right)=1 / 3$.
(iv) $P\left(X_{1}>X_{2}, X_{3}>X_{4}\right)=1 / 4$ and $P\left(X_{1}>X_{2}>X_{3}\right)=1 / 3$.
(v) None of the above.
(b) For $n=10$ we have $P\left(X_{5}=4 \mid Y_{7}=9\right)=$:
(i) $1 / 100$.
(ii) $1 / 90$.
(iii) $1 / 10$.
(iv) $1 / 9$.
(v) None of the above.
(c) Z_{1} is distributed:
(i) Uniformly.
(ii) Binomially.
(iii) Hypergeometrically.
(iv) Geometrically.
(v) None of the above.
(d)
(i) $P\left(Z_{i}=k\right)=k(k-1)(k-2) \ldots(k-i+1) / n$! for $i \leq k \leq n$.
(ii) $P\left(Z_{i}=k\right)=(k-1)(k-2) \ldots(k-i) / n$! for $i \leq k \leq n$.
(iii) $P\left(Z_{i}=k\right)=k(k-1)(k-2) \ldots(k-i) / n$! for $i \leq k \leq n$.
(iv) $P\left(Z_{i}=k\right)=i(k-1)(k-2) \ldots(k-i+1) / n$! for $i \leq k \leq n$.
(v) None of the above.
(e) Suppose $n=6$ and we repeat the experiment 2160 times. The probability that $M=6$ in exactly 3 out of the experiments is approximately:
(i) e^{-3}.
(ii) $3 e^{-3}$.
(iii) $9 e^{-3} / 2$.
(iv) $9 e^{-3}$.
(v) None of the above.
3. (a) A person draws a random number out of a discrete uniform distribution $U[1,2]$. If the selected number is not 1 , he draws again a random number, this time among $1,2,3$. In general, if the number
drawn at the $(n-1)$-st stage is 1 , the experiment is stopped; if not - he draws a number from $U[1, n+1]$. Let X be the number of stages until the game stops. (For example, if the number chosen at the first stage is 1 , at the second stage 2 , at the third stage 4 , at the fourth stage 3 and at the fifth stage 1 , then $X=5$.) Then $P(X=2 \mid X$ is even $)=$
(i) $\frac{\operatorname{arctg} 2}{\pi}$.
(ii) e^{-2}.
(iii) $\frac{1}{6 \ln 2}$.
(iv) $\frac{\pi}{12}$.
(v) None of the above.
(b) The Department of Randomization Sciences at Ben-Gurion University has $2 n$ students, n of whom are boys and n girls. The department has to send each student a letter regarding his/her academic status. The secretary deals with the letters just as the absent-minded secretary in the problem we considered in class. Denote by A the event whereby each of the boys gets a letter intended to some boy and each girl a letter intended to some girl, by B the event whereby none of the boys gets his letter, and by C the analogous event for girls.
(i) $P(A)=\frac{1}{n!}, P(B \mid A) \underset{n \rightarrow \infty}{\longrightarrow} 0, P(B \cap C \mid A) \underset{n \rightarrow \infty}{\longrightarrow} 0$.
(ii) $P(A)=\frac{1}{\binom{2 n}{n}}, P(B \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e}, P(B \cap C \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e^{2}}$.
(iii) $P(A)=\frac{1}{\binom{n n}{n}}, P(B \mid A) \underset{n \rightarrow \infty}{\longrightarrow} 1-\frac{1}{e}, P(B \cap C \mid A) \underset{n \rightarrow \infty}{\longrightarrow}\left(1-\frac{1}{e}\right)^{2}$.
(iv) $P(A)=\frac{1}{n!}, P(B \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e}, P(B \cap C \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e^{2}}$.
(v) None of the above.
(c) A discrete random variable X assumes all non-zero integer values according to the probability function

$$
P(X=n)=c \cdot \sin ^{2} \frac{1}{|n|}, \quad n= \pm 1, \pm 2, \ldots
$$

where c is a suitable constant. Let A be the event whereby X assumes either a positive even value or a negative odd value, and $B=\{X>0\}$.
(i) $P(A)=P(B)=1 / 2$ and $E(X)=0$.
(ii) $P(A)=P(B)>1 / 2$ and $E(X)=0$.
(iii) $P(A)=P(B)=1 / 2$ and $E(X)>0$.
(iv) $P(A)=P(B)=1 / 2$ but X does not have an expectation.
(v) None of the above.
(d) A continuous random variable X has a density function f given by

$$
f_{X}(x)=\left\{\begin{array}{l}
(\sin x)^{1 / \sin x}, \quad \frac{\pi}{12} \leq x \leq \frac{\pi}{3} \\
c \cdot \cos x, \quad \frac{\pi}{3}<x \leq \frac{\pi}{2} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

where c is a suitable constant. Then

$$
P\left(\frac{\pi}{6}-10^{-6} \leq X \leq \frac{\pi}{6}+10^{-6}\right) \approx
$$

(i) $\frac{1}{4} \cdot 10^{-6}$.
(ii) $\frac{1}{2} \cdot 10^{-6}$.
(iii) 10^{-6}.
(iv) $2 \cdot 10^{-6}$.
(v) None of the above.
(e) The distribution function of a random variable X is given by:

$$
F_{X}(x)= \begin{cases}0, & x \leq 0 \\ (\operatorname{tg} x)^{1 / \sin x}, & 0<x \leq \frac{\pi}{4} \\ 1, & \frac{\pi}{4}<x .\end{cases}
$$

Then $P\left(\frac{\pi}{6} \leq X \leq \frac{\pi}{4}\right)=$
(i) $\pi / 12$.
(ii) $1 / 3$.
(iii) $1 / 2$.
(iv) $2 / 3$.
(v) None of the above.

Solutions

1. (a) The game ends at any given round (assuming it did not end earlier) if exactly one of the players gets a G, which happens with a probability of $2 \cdot 3 / 4 \cdot 1 / 4=3 / 8$. Viewing this event as a success, we may say that the game ends upon the first success. Hence the number of rounds in a single game is distributed $G(3 / 8)$.
Thus, (v) is true.
(b) The expected value of a $G(p)$-distributed random variable is $1 / p$, and hence

$$
E\left(R_{1}\right)=\frac{1}{3 / 8}=\frac{8}{3} .
$$

Thus, (i) is true.
(c) Let us find, more generally, $E(1 / X)$ for a $G(p)$-distributed random variable X. We have:

$$
\begin{aligned}
E(1 / X) & =\sum_{n=1}^{\infty}(1-p)^{n-1} p \cdot \frac{1}{n} \\
& =\frac{p}{1-p} \sum_{n=1}^{\infty} \frac{(1-p)^{n}}{n} \\
& =-\frac{p}{1-p} \ln (1-(1-p)) \\
& =-\frac{p}{1-p} \ln p .
\end{aligned}
$$

Plugging in $p=3 / 8$, we obtain in our case:

$$
E\left(1 / R_{1}\right)=\frac{3}{5} \cdot \ln \frac{8}{3} .
$$

Thus, (v) is true.
(d) Due to the symmetry, Reuven wins each game with a probability of $1 / 2$. Since the games are independent, his total number of wins is distributed $B(11,1 / 2)$.
With the definition of success in (a), we may view R as the number of rounds in a sequence of independent experiments, with possible outcomes of success and failure for each, until 11 successes are obtained. Hence $R \sim \bar{B}(11,3 / 8)$.
Thus, (iv) is true.
(e) The question, regarding the probability of A when the value of X is given, is equivalent to the Ballot Problem. As the event $\{X=7\}$ means that Reuven wins 7 times and Shimon wins 4, we obtain:

$$
P(A \mid X=7)=1-\frac{7-4+1}{7+1}=\frac{1}{2} .
$$

Thus, (v) is true.
2. (a) Due to symmetry, the events $\left\{X_{i}<X_{j}\right\}$ have the same probability for all pairs i, j with $i \neq j$. Also, such events for mutually disjoint pairs are independent. Thus:

$$
P\left(X_{1}>X_{2}, X_{3}>X_{4}\right)=P\left(X_{1}>X_{2}\right) P\left(X_{3}>X_{4}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

Similarly, all $3!=6$ possible orders of the values of X_{1}, X_{2} and X_{3} are equi-probable, so that:

$$
P\left(X_{1}>X_{2}>X_{3}\right)=\frac{1}{6}
$$

Thus, (ii) is true.
(b) The event $\left\{Y_{7}=9\right\}$ occurs if the card marked by 7 is the ninth to be drawn. If this is the case, then each of the other cards has an equal probability of $1 / 9$ to be drawn at any of the drawings but the ninth. In particular:

$$
P\left(X_{5}=4 \mid Y_{7}=9\right)=\frac{1}{9}
$$

Thus, (iv) is true.
(c) Z_{1} is the number of the drawing at which the card marked by 1 is drawn. Clearly, this card (as any other) has equal probabilities of being drawn at each of the stages, and therefore $Z_{1} \sim U[1, n]$.
Thus, (i) is true.
(d) The event $\left\{Z_{i} \leq k\right\}$ occurs if all cards $1,2, \ldots, i$ are drawn within the first k stages. Consequently

$$
P\left(Z_{i} \leq k\right)=\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \ldots \cdot \frac{k-i+1}{n-i+1}
$$

which yields

$$
\begin{aligned}
P\left(Z_{i}=k\right) & =P\left(Z_{i} \leq k\right)-P\left(Z_{i} \leq k-1\right) \\
& =\frac{k(k-1) \ldots(k-i+1)}{n(n-1) \ldots(n-i+1)}-\frac{(k-1)(k-2) \ldots(k-i)}{n(n-1) \ldots(n-i+1)} \\
& =\frac{i(k-1) \ldots(k-i+1)}{n(n-1) \ldots(n-i+1)} .
\end{aligned}
$$

Thus, (v) is true.
(e) The event $\{M=n\}$ occurs if all cards are drawn by order, so that $P(M=n)=1 / n!$. For $n=6$ we have $P(M=n)=1 / 720$. The number of times we get $M=6$ out of 2160 trials is distributed $B(2160,1 / 720)$. By the Poissonian approximation of the binomial, this number is distributed approximately $P(3)$. It follows that the required probability is approximately

$$
\frac{3^{3}}{3!} \cdot e^{-3}=\frac{9}{2} \cdot e^{-3}
$$

Thus, (iii) is true.
3. (a) Let us first find the probability function of X. We have $X=n$ if at the first time we do not choose 1 - which happens with probability $1 / 2$, at the second time we do not choose 1 - which happens with probability $2 / 3, \ldots$, at the $(n-1)$-st time we do not choose 1 which happens with probability $(n-1) / n$, but at the n-th time we do choose 1 - which happens with probability $1 /(n+1)$. Hence:

$$
P(X=n)=\frac{1}{2} \cdot \frac{2}{3} \cdot \ldots \cdot \frac{n-1}{n} \cdot \frac{1}{n+1}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} .
$$

It follows that

$$
\begin{aligned}
P(X \text { is even }) & =\sum_{k=1}^{\infty}\left(\frac{1}{2 k}-\frac{1}{2 k+1}\right) \\
& =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots=1-\ln 2
\end{aligned}
$$

and therefore:

$$
P(X=2 \mid X \text { is even })=\frac{\mathrm{P}(\mathrm{X}=2)}{\mathrm{P}(\mathrm{X} \text { is even })}=\frac{1}{6(1-\ln 2)} .
$$

Thus, (v) is true.
(b) There are $\binom{2 n}{n}$ ways for choosing the set of n students to whom the boys' letters will go, of which only one belongs to A. Hence:

$$
P(A)=\frac{1}{\binom{2 n}{n}}
$$

Under A, the event B is equivalent to the event studied in the absent-minded secretary problem, and the same holds for C. Moreover, B and C are independent under A, and therefore:

$$
P(A)=\frac{1}{\binom{2 n}{n}}, P(B \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e}, P(B \cap C \mid A) \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{e^{2}}
$$

Thus, (ii) is true.
(c) Obviously, $P(B)=1 / 2$. Now both events A and B contain the event $C=\{X=2,4,6, \ldots\}$. Since the events $A-C$ and $B-C$ occur when X assumes a negative odd value and a positive odd value, respectively, and $P(n)=P(-n)$ for each n, we clearly have $P(A-C)=P(B-C)$, and therefore $P(A)=P(B)$.
We mention, more generally, the following observation. Let D be any set of non-zero integers, which is anti-symmetric with respect to 0 (namely, for each positive integer n, exactly one of the numbers n and $-n$ belongs to D). Then, due to the symmetry of X, we have $P(X \in D)=1 / 2$. The events A and B are particular cases, with D consisting of all positive even integers and negative odd integers for A and of all positive integers for B.

Since X is symmetric about 0 , one would guess that $E(X)=$ 0 . However, we need to check whether the series defining $E(X)$ indeed converges absolutely. Namely, we need to check whether the series $\sum_{n=1}^{\infty} n \sin ^{2}(1 / n)$ converges. Now, as $\sin x \approx x$ for $x \approx$ 0 , the series in question behaves as the series $\sum_{n=1}^{\infty} n(1 / n)^{2}=$ $\sum_{n=1}^{\infty} 1 / n$, and therefore diverges.
Thus, (iv) is true.
(d)

$$
\begin{aligned}
P\left(\frac{\pi}{6}-10^{-6} \leq X \leq \frac{\pi}{6}+10^{-6}\right) & =F_{X}\left(\frac{\pi}{6}-10^{-6}\right)-F_{X}\left(\frac{\pi}{6}+10^{-6}\right) \\
& \approx 2 \cdot 10^{-6} \cdot F_{X}^{\prime}\left(\frac{\pi}{6}\right) \\
& =2 \cdot 10^{-6} \cdot f_{X}\left(\frac{\pi}{6}\right) \\
& =2 \cdot 10^{-6} \cdot \frac{1}{4}=\frac{1}{2} \cdot 10^{-6} .
\end{aligned}
$$

Thus, (ii) is true.
(e)

$$
\begin{aligned}
P\left(\frac{\pi}{6} \leq X \leq \frac{\pi}{4}\right) & =F_{X}\left(\frac{\pi}{4}\right)-F_{X}\left(\frac{\pi}{6}\right) \\
& =1^{\sqrt{2}}-\left(\frac{1}{\sqrt{3}}\right)^{2}=\frac{2}{3} .
\end{aligned}
$$

Thus, (iv) is true.

