
Final #2

Mark the correct answer in each part of the following questions.

1. The participants of a sport event need to organize themselves in teams.
The first person to arrive starts a new team. The second person joins
the team of the first with probability 1/2 and starts a new team with
probability 1/2. In general, when any person arrives, if by now there
are k teams, he joins each of these teams with probability 1/(k + 1)
and starts a new team with probability 1/(k + 1). For n ≥ 1, denote
by Xn the number of people who arrived until the n-th team has been
started. (For example, if the first three people started new teams, the
fourth joined the first, the fifth joined the third, the sixth and seventh
joined the first, and the eighth started a new team, then X1 = 1, X2 =
2, X3 = 3, X4 = 8.)

(a) P (Xn = n) =

(i) 1/n!.

(ii) 1/2n−1.

(iii) 1/
(
n+1

2

)
.

(iv) 1/n.

(v) None of the above.

(b) For m ≥ 1 we have P (X2 > m) =

(i) 1/(2m− 1)!.

(ii) 1/m!.

(iii) 1/2m−1.

(iv) m/2m.

(v) None of the above.

(c) E(Xn) =

1



(i) 2n− 1.

(ii)
(
n
2

)
+ 1.

(iii)
(
n+1

2

)
.

(iv) n2.

(v) None of the above.

(d) ρ(Xn, X2n) −→
n→∞

(i) − 1
2
√

2
.

(ii) 0.

(iii) 1
2
√

2
.

(iv) 1.

(v) None of the above.

(e) The process is repeated 1320 times, each time until the tenth
team is started. Let S be the total number of people required in
all experiments. Then P (71280 ≤ S ≤ 73920) ≈
(i) 0.05.

(ii) 0.32.

(iii) 0.68.

(iv) 0.95.

(v) None of the above.

2. From a full deck of 52 cards we draw 26 cards without replacement.
Let W2 be the total number of 2’s drawn, W3 – total number of 3’s,
..., Wace – total number of aces. For 0 ≤ i ≤ 26, denote by Xi the
number of hearts drawn in the first i drawings, and by Yi the analogue
for diamonds.

(a) By Stirling’s Formula (n! ≈
√

2πn
(
n
e

)n
) we have P (W2 = W3 =

. . . = Wace = 2) ≈
(i) 313

239·
√

26π
.

(ii) 1
613
√
π
.

(iii) 313·
√

26π
239 .
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(iv) 213·339√π
2626 .

(v) None of the above.

(b) P (Xi ≥ Yi + 4 ∀ 4 ≤ i ≤ 22 |X4 = 4, X22 = 13, Y26 = 13) =

(i) 1/27.

(ii) 1/14.

(iii) 1/10.

(iv) 1/7.

(v) None of the above.

(c) ρ(X26, Y26) =.

(i) −1.

(ii) −1/3.

(iii) 1/4.

(iv) 1/2.

(v) None of the above.

(d) A direct application of Markov’s Inequality yields:

(i) P (X26 ≥ 10) ≤ 0.35.

(ii) P (X26 ≥ 10) ≤ 0.65.

(iii) P (X26 ≥ 10) ≤ 0.85.

(iv) P (X26 ≥ 10) ≤ 0.95.

(v) None of the above.

Remark: We mean here the best bound that be reached. For
example, if Markov’s Inequality implies that the above probability
is at most 0.35, hence it is also at most 0.65, and (0.85 and 0.95),
but only (i) should be marked as the correct answer.

(e) Suppose now that all 52 cards are drawn from the deck without
replacement. Let A be the event whereby out of the first 4 cards
to be drawn there is exactly one heart and one diamond, out of the
following 4 cards – again exactly one heart and one diamond, and
so forth. The conditional probability that in each such quadru-
ple the heart card and the diamond card are of different values
(i.e., not both are 2’s, not both are 3’s, ..., not both are aces) is
approximately

(i) 1
2e2

.
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(ii) 1
e2

.

(iii) 2
e2

.

(iv) 1
e
.

(v) None of the above.

3. We define a random one-to-one function h from the set N = {1, 2, 3, . . .}
to itself as follows. To define h(1), we toss a coin repeatedly until a
head shows up; if this happens at the k-th toss, we let h(1) = k. In
general, suppose h(1), h(2), . . . , h(n − 1) have already been defined.
We toss a coin repeatedly until a head shows up; if this happens at
the k-th toss, we let h(n) be the k-th number not equal to any of the
numbers h(1), h(2), . . . , h(n − 1). For each n ≥ 1, let Xn = h(n),
let Yn be the number of the stage at which the number n has been
selected as the value of h at some point (namely, Yn = h−1(n)), and
Zn be the number of tosses at the n-th stage. (For example, if we
toss the coin 4 times until the first time a head shows up, 1 time until
the second, 20 times until the third and 3 times until the fourth, then
X1 = 4, X2 = 1, X3 = 22, X4 = 5, Y1 = 2, Y4 = 1, Y5 = 4, Y22 = 3, Z1 =
4, Z2 = 1, Z3 = 20, Z4 = 3.)

(a) The probability that the function h is onto N is:

(i) 0.

(ii) 1/4.

(iii) 1/2.

(iv) 1.

(v) None of the above.

(b)

(i) The random variables X1, X2, . . . are both independent and
identically distributed, the random variable Y1 is geometri-
cally distributed.

(ii) The random variables X1, X2, . . . are independent but not
identically distributed, the random variable Y1 is geometri-
cally distributed.
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(iii) The random variables X1, X2, . . . are non-independent but
identically distributed, the random variable Y1 is geometri-
cally distributed.

(iv) The random variables X1, X2, . . . are neither independent
nor identically distributed, the random variable Y1 is geomet-
rically distributed.

(v) None of the above.

(c) For k ≥ 1, we have:

(i) P (X2 = k) = 1/2k − 1/22k.

(ii) P (X2 = k) = 1/2k+1.

(iii) P (X2 = k) = 1/2k−1 − 3/22k.

(iv) P (X2 = k) = (k + 1)/2k+2.

(v) None of the above.

(d) P (X1 = 1|X2 = 2) =

(i) 1/5.

(ii) 2/5.

(iii) 3/5.

(iv) 4/5.

(v) None of the above.

(e)

(i) None of the three sequences (Zn)∞n=1, (Z
2
n)∞n=1, (2

Zn)∞n=1 satis-
fies the weak law of large numbers.

(ii) The sequence (Zn)∞n=1 satisfies the weak law of large numbers,
but the two sequences (Z2

n)∞n=1, (2
Zn)∞n=1 do not.

(iii) The sequences (Zn)∞n=1, (Z
2
n)∞n=1 satisfy the weak law of large

numbers, but the sequence (2Zn)∞n=1 does not.

(iv) All three sequences (Zn)∞n=1, (Z
2
n)∞n=1, (2

Zn)∞n=1 satisfy the
weak law of large numbers.

(v) None of the above.

4. The number X (in millions) of senecios growing annually in a certain
region is (approximately) distributed according to the density function
f , defined by

f(x) =

{
cxe−x

2
, x ≥ 0,

0, x < 0,
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for an appropriate constant c.

(a) c =

(i) 1
2
√
π
.

(ii) 1√
π
.

(iii) 1.

(iv) 2.

(v) None of the above.

(b) Let ψ be the moment generating function of X. Then ψ(0.001) ≈)

(i) 1 + 1
8000

.

(ii) 1 +
√
π

2000
.

(iii) 1 + 1
1000e

.

(iv) 1 + ln 2
500

.

(v) None of the above.

(c) E
(
eX

2
/X(1 +X)2

)
=

(i)2/e.

(ii) 2 ln 2.

(iii) 2.

(iv) 2
√
π.

(v) None of the above.

(d) For t1, t2 > 0 we have P (X ≥ t1 + t2|X ≥ t1) =

(i) e−2t22−2t1t2 .

(ii) e−t
2
2−t1t2 .

(iii) e−2t22−t1t2 .

(iv) e−t
2
2−2t1t2 .

(v) None of the above.

(e) There are two other regions in which the numbers Y, Z of senecios
growing annually is distributed as X. The three random variables
X,Y, Z are pairwise independent, but not independent. Set S =
X + Y + Z. Then Cov(X,S)

(i) is the same as −V (X).
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(ii) is the same as V (X).

(iii) is the same as 3V (X).

(iv) cannot be determined by the given data.

(v) None of the above.

Solutions

1. (a) The event {Xn = n} occurs if each of the first n people starts his
own team. Hence:

P (Xn = n) =
1

1
· 1

2
· . . . · 1

n
=

1

n!
.

Thus, (i) is true.

(b) We have X2 > m when all the people from the second up to the
m-th joined the first person’s team. Each of them, given that all
his predecessors from the second on have not started new teams,
joins the existing team with probability 1/2. Thus:

P (X2 > m) =
1

1
· 1

2
· 1

2
· . . . · 1

2
=

1

2m−1
.

One can also reach the same conclusion by noting that X2 is dis-
tributed as X + 1, where X ∼ G

(
1
2

)
. Hence:

P (X2 > m) = P (X + 1 > m) = P (X ≥ m)

=
∞∑
k=m

1

2k
=

1

2m−1
.

Thus, (iii) is true.

(c) For 1 ≤ i ≤ n denote by Yi the number of people who arrive from
the time the (i − 1)-st team is started until the i-th is. Namely,
Yi = Xi − Xi−1, where X0 = 0. Clearly, the variables Yi are
independent and G

(
1
i

)
-distributed. In these terms:

Xn = Y1 + Y2 + . . .+ Yn. (1)
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Hence:

E(Xn) = E(Y1 + Y2 + . . .+ Yn)

=
n∑
i=1

E(Yi) =
n∑
i=1

i

=
n+ 1

2
· n =

(
n+ 1

2

)
.

Thus, (iii) is true.

(d) By (1) and the independence of the Yi’s:

V (Xn) =
n∑
i=1

V (Yi) =
n∑
i=1

(i− 1)i2

i

=
n∑
i=1

(i− 1)i = 2 ·
n∑
i=1

(
i

2

)
(2)

= 2 ·
(
n+ 1

3

)
=

(n− 1)n(n+ 1)

3
.

Thus:

V (X2n) =
2(2n− 1)n(2n+ 1)

3
. (3)

Since
X2n = Xn + Yn+1 + . . .+ Y2n, (4)

we have

Cov(Xn, X2n) = Cov(Xn, Xn) +
2n∑

i=n+1

Cov(Xn, Yi).

SinceXn and Yi, n+1 ≤ i ≤ 2n, are independent, Cov(Xn, Yi) = 0,
and we have

Cov(Xn, X2n) = V (Xn) =
(n− 1)n(n+ 1)

3
. (5)

By (2), (3) and (5) we obtain:

ρ(Xn, X2n) =

√
(n− 1)n(n+ 1)/3

2(2n− 1)n(2n+ 1)/3

=
1√
2
·

√
(n− 1)(n+ 1)

(2n− 1)(2n+ 1)
.
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Hence ρ(Xn, X2n) −→
n→∞

1
2
√

2
.

Thus, (iii) is true.

(e) For 1 ≤ i ≤ 1320, denote by X10,i the number of people who arrive
until the tenth team was started at the i-th experiment. Obvi-
ously, the variables X10,i, 1 ≤ i ≤ 1320, are independent and
identically distributed with E(X10,i) = E(X10) =

(
10+1

2

)
= 55 and

V (X10,i) = V (X10) = (10−1)10(10+1)
3

= 330. Now, S =
∑1320

i=1 X10,i,
and hence

P (71280 ≤ S ≤ 73920)

= P
(

71280−1320·55√
1320·330

≤ S−1320·55√
1320·330

≤ 73920−1320·55√
1320·330

)
≈P (−2 ≤ Z ≤ 2),

where Z is a standard normal variable. Therefore:

P (71280 ≤ S ≤ 73920) ≈ 2Φ(2)− 1 ≈ 0.95.

Thus, (iv) is true.

2. (a) Obviously,

P (W2 = W3 = . . . = Wace = 2) =

(
4
2

)13(
52
26

) =
613(
52
26

) . (6)

Stirling’s Formula implies(
2n

n

)
=

2n!

n! · n!
≈
√

4nπ
(

2n
e

)2n

2nπ
(
n
e

)2n =
22n

√
πn

, (7)

and in particular, for n = 26,(
52

26

)
≈ 252

√
26π

. (8)
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Substituting (8) in the right hand-side of (6), we obtain:

P (W2 = W3 = . . . = Wace = 2) ≈ 613
√

26π

252
=

313
√

26π

239
.

Thus, (iii) is true.

(b) The equalities X4 = 4, X22 = 13, Y26 = 13 imply that the 26 cards
drawn are exactly all hearts and all diamonds; moreover, the first
4 cards are hearts and the last 4 are diamonds. Given this, to
require that Xi ≥ Yi + 4 for 4 ≤ i ≤ 22 amounts to requiring
that the 9 hearts and 9 diamonds in between the first 4 hearts
and the last 4 diamonds are drawn in such a way that the number
of hearts is never below that of diamonds. This is equivalent to
the requirement that the first candidate never trails in the Bal-
lot Problem. Hence the probability in question is 1/(9+1) = 1/10.

Thus, (iii) is true.

(c) Obviously, X26 ∼ H(26, 13, 39) and Y26 ∼ H(26, 13, 39). Thus,

V (X26) = V (Y26) =
26 · 13 · 39

522

(
1− 25

51

)
. (9)

Denote Z = X26 + Y26. Clearly, Z ∼ H(26, 26, 26), and therefore

V (Z) =
263

522

(
1− 25

51

)
. (10)

Hence, by (9):

ρ(X26, Y26) =
Cov(X26, Y26)√
V (X26) · V (Y26)

=
V (Z)− (V (X26) + V (Y26))

2 ·
√
V (X26) · V (Y26)

=
V (Z)− 2 · V (X26)

2 · V (X26)

=
1

2
· V (Z)

V (X26)
− 1.
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By (9) and (10) we have V (Z)
V (X26)

= 4
3
. Thus,

ρ(X26, Y26) =
1

2
· 4

3
− 1 = −1

3
.

One can also reach the same conclusion almost without compu-
tations. In fact, similarly to X26 and Y26, we may consider the
variables Z26 and V26, denoting the number of spades and of clubs
among the 26 drawn cards. Due to symmetry, all four variables
have the same variance, and all pairs of distinct variables have the
same covariance. Since X26 + Y26 + Z26 + V26 = 26, we have

V (X26 + Y26 + Z26 + V26) = 0.

On the other hand, due to the symmetry mentioned above,

V (X26 + Y26 + Z26 + V26) = 4V (X26) + 12 Cov(X26, Y26).

It follows that

Cov(X26, Y26) = −1

3
V (X26),

and consequently

ρ(X26, Y26) = −1

3
.

Thus, (ii) is true.

(d) As mentioned, in part (c), X26 ∼ H(26, 13, 39), and therefore

E(X26) =
26 · 13

13 + 39
=

13

2
.

Markov’s Inequality implies:

P (X26 ≥ 10) ≤ 13/2

10
= 0.65.

Thus, (ii) is true.

(e) Here the spades and clubs do not count. Consider the permu-
tation defining the inner order among the hearts. The question
is about the probability that the permutation defining the inner

11



order among the diamonds does not agree with that among the
hearts for any of the 13 pairs. This is equivalent to the ques-
tion in the Absent-Minded Secretary Problem. Thus the required
probability is

1− 1

1!
+

1

2!
− . . .− 1

13!
≈ 1

e
.

Thus, (iv) is true.

3. (a) For any positive integer m and n, the probability that m will not
be chosen as h(n), given that it has not been chosen as any of the
values of h at the points 1, 2, . . . , n − 1, is at most 1 − 1/2m+1.
By the product formula, the probability that m will be chosen as
h(n) for no n is 0. The event whereby h is not onto is the union,
over all positive integers m, of the events whereby m is not in the
image of h. Since each of the events in the union is of probabil-
ity 0, so is the probability of the complementary event in question.

Thus, (iv) is true.

(b) Clearly, X1, X2, . . . are neither independent nor identically dis-
tributed random variables. Indeed, for example, P (X1 = 1) =
1
2
> 0 and P (X2 = 1) = 1

2
· 1

2
= 1

4
> 0, while

0 = P (X1 = 1, X2 = 1) 6= P (X1 = 1) · P (X2 = 1).

Moreover, since Y1 counts the number of experiments held until a
head has been obtained at the first toss, we have Y1 ∼ G(1/2).

Thus, (iv) is true.
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(c) For k ≥ 1 we have:

P (X2 = k) =
k−1∑
i=1

P (Z1 = i, Z2 = k − 1) +
∞∑

i=k+1

P (Z1 = i, Z2 = k)

=
k−1∑
i=1

1

2i
· 1

2k−1
+

∞∑
i=k+1

1

2i
· 1

2k

=
1

2k−1

(
1− 1

2k−1

)
+

1

2k
· 2

2k+1

=
1

2k−1
− 3

22k
.

Thus, (iii) is true.

(d) By part (c) we have:

P (X1 = 1|X2 = 2) =
P (X1 = 1, X2 = 2)

P (X2 = 2)

=
P (Z1 = 1, Z2 = 1)

1
22−1 − 3

24

=
P (Z1 = 1) · P (Z2 = 1)

5/16

=
1/2 · 1/2

5/16
=

4

5
.

Thus, (iv) is true.

(e) Obviously, the variables Zn are independent andG(1/2)-distributed.
Thus, E(Zn) and V (Zn) are finite. Hence, the sequence (Zn)∞n=1

satisfies the weak law of large numbers. The situation with (Z2
n)∞n=1

is similar. Namely, the variables Z2
n are independent and iden-

tically distributed, with final expectation and variance. Thus,
(Z2

n)∞n=1 also satisfies the weak law of large numbers. However,

E(2Zn) =
∞∑
k=1

2k · 1

2k
=∞,

13



as in the St. Petersburg Paradox. Hence, the sequence (2Zn)∞n=1

does not satisfy the weak law.

Thus, (iii) is true.

4. (a) Since f is the density function, we obtain

1 =

∫ ∞
−∞

f(x)dx

= c ·
∫ ∞

0

xe−x
2

dx =
c

2
·
∫ ∞

0

e−x
2

dx2

=
c

2
·
∫ ∞

0

e−tdt =
c

2
,

which yields c = 2.

Thus, (iv) is true.

(b) A linear approximation near 0 yields:

ψ(0.001) ≈ ψ(0) + ψ′(0) · 1

1000
= 1 + E(X) · 1

1000
, (11)

where E(X) =

∫ ∞
0

2 · x2e−x
2

dx. Now, if Y ∼ N
(
0, 1

2

)
, then

1

2
= V (Y ) = E(Y 2) =

∫ ∞
−∞

x2e−x
2

√
π

dx =

∫ ∞
0

2x2e−x
2

√
π

dx =
E(X)√

π
,

which implies

E(X) =

√
π

2
. (12)

Substituting (12) into (11) we obtain

ψ(0.001) ≈ 1 +

√
π

2
· 1

1000
= 1 +

√
π

2000
.

Thus, (ii) is true.
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(c)

E

(
eX

2

X(1 +X)2

)
=

∫ ∞
0

ex
2

x(1 + x)2
· 2xe−x2

dx

=

∫ ∞
0

2

(1 + x)2
dx

= −2/(1 + x)
∣∣∞
0

= 2.

Thus, (iii) is true.

(d)

P (X ≥ t1 + t2|X ≥ t1) =

∫∞
t1+t2

2xe−x
2
dx∫∞

t1
2xe−x2dx

=

∫∞
(t1+t2)2 e

−udu∫∞
t21
e−udu

=
e−(t1+t2)2

e−t
2
1

= e−t
2
2−2t1t2 .

Thus, (iv) is true.

(e)

Cov(X,S) = Cov(X,X + Y + Z)

= Cov(X,X) + Cov(X, Y ) + Cov(X,Z)

= Cov(X,X)

= V (X).

Thus, (ii) is true.

15


